
Individual Representations in Visual Working Memory Inherit
Ensemble Properties

Igor S. Utochkin
National Research University Higher School of Economics

Timothy F. Brady
University of California, San Diego

Prevailing theories of visual working memory assume that each encoded item is stored or forgotten as a
separate unit independent from other items. Here, we show that items are not independent and that the
recalled orientation of an individual item is strongly influenced by the summary statistical representation
of all items (ensemble representation). We find that not only is memory for an individual orientation
substantially biased toward the mean orientation, but the precision of memory for an individual item also
closely tracks the precision with which people store the mean orientation (which is, in turn, correlated
with the physical range of orientations). Thus, individual items are reported more precisely when items
on a trial are more similar. Moreover, the narrower the range of orientations present on a trial, the more
participants appear to rely on the mean orientation as representative of all individuals. This can be
observed not only when the range is carefully controlled, but also shown even in randomly generated,
unstructured displays, and after accounting for the possibility of location-based ‘swap’ errors. Our results
suggest that the information about a set of items is represented hierarchically, and that ensemble
information can be an important source of information to constrain uncertain information about
individuals.

Public Significance Statement
When we need to remember multiple items at a time, we do not remember these items independently.
Instead, properties of the entire set of items, like how variable it is, impact how precisely we
remember each individual item.
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Visual working memory is the cognitive system that maintains
visual information to make it accessible for use in ongoing tasks
(Baddeley, 1986; Baddeley & Hitch, 1974). This system has a
severely limited capacity in terms of individual item information
that can be held at a time (Alvarez & Cavanagh, 2004; Cowan,
2001; Luck & Vogel, 1997). The nature of this limited capacity is

a highly debated topic (Brady, Konkle, & Alvarez, 2011; Luck &
Vogel, 2013; Suchow, Fougnie, Brady, & Alvarez, 2014). For
example, one important issue is whether visual working memory
contains a fixed number of items in a discrete “slot” fashion (Luck
& Vogel, 1997; Zhang & Luck, 2008) or can be allocated among
variable number of items in a continuous “resource” fashion de-
pending of the complexity of these units or task requirements
(Bays, Catalao, & Husain, 2009; Bays & Husain, 2008; Ma,
Husain, & Bays, 2014). Another interesting line of debate is
whether objects in visual working memory are stored (and forgot-
ten) as monolithic units with well bound features (e.g., Luck &
Vogel, 1997, 2013; Raffone & Wolters, 2001) or as relatively
independent features that can be swapped (Bays et al., 2009; Bays,
Wu, & Husain, 2011; Pertzov, Dong, Peich, & Husain, 2012) or
lost separately from other features (Fougnie & Alvarez, 2011) and
require attention for binding (Wheeler & Treisman, 2002).

Importantly, both these and other areas of the literature are
based on interpreting data from experimental paradigms in terms
of the number of items that are stored and how precisely they are
stored (Cowan, 2001; Luck & Vogel, 1997; Wilken & Ma, 2004;
Zhang & Luck, 2008). The basic assumption of such theories and
models is that every item is stored as a single representation of a
given fidelity in visual working memory or not stored at all and
that representations of different items are independent. However,
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this assumption has been challenged. For example, the framework
called hierarchical encoding (Brady et al., 2011) argues for the
idea of structured memory representations; in other words, it
argues that information about the same set of memorized items is
simultaneously stored at several levels of abstraction and, when
recalled, information from a combination of these levels of ab-
straction are used. This idea relaxes the dichotomy between “in-
dependent features” and “bound objects” by suggesting that both
features and objects can be stored in visual working memory at
different levels. For example, feature memory benefits when sev-
eral features belong to the same object rather than different objects,
but increasing the number of to be remembered features within an
object can lead to interference and independent forgetting (Foug-
nie, Asplund, & Marois, 2010; Fougnie, Cormiea, & Alvarez,
2013). In a hierarchical framework, this is because instantiating
new objects at the object-level has some form of capacity con-
straint yet features within objects—at a lower-level of abstrac-
tion—are ultimately stored independently (Brady et al., 2011).

In other studies, it has been shown that hierarchical encoding
goes beyond features and objects. In particular, people seem to
represent higher order structures of many items at one time (Brady
& Alvarez, 2015a, 2015b; Brady & Tenenbaum, 2013; Jiang,
Olson, & Chun, 2000; Morey, Cong, Zheng, Price, & Morey,
2015; Nassar, Helmers, & Frank, 2018; Orhan & Jacobs, 2013;
Son, Oh, Kang, & Chong, 2019). These higher-order structures can
be compared with a long-known concept of “chunks” (Miller,
1994). However, the hierarchical memory structures are proposed
to be simultaneous represented, rather than an all-or-none combi-
nation of low-level features. Thus, whereas chunks are thought to
represent an extended single-level structure (e.g., you can memo-
rize stimuli “C,” “A,” and “T” as the word CAT without neces-
sarily having any information about each individual letter or in-
formation about each individual line in each individual letter:
Cowan, 2001), the hierarchical representation assumes that repre-
sentations of both individual items and of a group of items are held
in memory simultaneously and both are influential at retrieval. For
example, Brady and Alvarez (2011) showed that when asked to
remember the sizes of a set of colored dots, their participants
seemed to rely on a combination of information about the individ-
ual sizes of each dot, as well as the mean size of the set of
same-colored dots and the mean size of the set of all dots. This
resulted in a relatively accurate memory that was nonetheless
biased toward the mean size of all dots with the same color and
toward the mean size of all dots. Brady and Alvarez (2011)
concluded that along with individual size representations, the
observers stored in visual working memory ensemble summary
statistics (for review, see Alvarez, 2011; Haberman & Whitney,
2012; Whitney & Yamanashi Leib, 2018): compressed and, hence,
less memory-demanding descriptions of multiple objects (e.g.,
Ariely, 2001; Chong & Treisman, 2003, 2005) Remarkably, the
results of Brady and Alvarez (2011) revealed at least three hier-
archical levels: individual sizes, ensemble summaries for same-
color subsets, and ensemble summary of all items. In her later
study, Corbett (2017) showed that many basic Gestalt grouping
factors can also give birth to hierarchical representations of this
sort, and these biases have been found in other feature domains as
well (e.g., in memory for faces: Corbin & Crawford, 2018; Grif-
fiths, Rhodes, Jeffery, Palermo, & Neumann, 2018).

The bias toward the mean of sets of items found in previous
studies (Brady & Alvarez, 2011; Corbett, 2017; Corbin & Craw-
ford, 2018; Dubé, Zhou, Kahana, & Sekuler, 2014; Griffiths et al.,
2018) is not the only consequence of hierarchical encoding in
visual working memory. The mean is potentially the best descrip-
tor of multiple items (Alvarez, 2011) but how well it represents the
items depends on the overall feature distribution. The accuracy of
the mean as a summary of the items decreases with more variable
items, and it is known from the ensemble literature that the
accuracy of computing the mean in a visual averaging task also
tends to decrease as a function of the variability of individual
features (Im & Halberda, 2013; Marchant, Simons, & De Fockert,
2013; Maule & Franklin, 2015; Utochkin & Tiurina, 2014). Con-
sequently, if ensemble information is indeed used as a component
of a hierarchical representation then the recalled trace of an indi-
vidual item should also inherit the imprecision from the corre-
sponding ensemble representation. That is, if people do rely on
summaries of the entire set of items in their memory for each
individual item, we predict that the features of an individual item
should be recalled less precisely if all items are variable. By
contrast, if items are fundamentally stored independently, there
should be no effect of the feature values of other items on memory
for any individual item.

To test this prediction, we designed a set of experiments using
continuous recall of orientation (e.g., Bays et al., 2011; Fougnie &
Alvarez, 2011; Fougnie et al., 2010, 2013; Zhang & Luck, 2008).
In the first two experiments, we presented participants with sets of
four items with different orientations and manipulated their vari-
ability (the range of orientations). We asked participants to mem-
orize the orientation of a particular precued triangle or the mean
orientation of all items to obtain baseline parameters for individual
and ensemble representations. In a critical condition, the partici-
pants had to memorize the individual orientations of all four items.
We measured participants’ performance using both nonparametric
methods designed to measure the imprecision of memory and any
bias toward the mean of the set of items, as well as via a mixture
model (Zhang & Luck, 2008). Our primary question was how the
imprecision of memory and any biases in memory were affected
by the variability of the set of items as a whole. If ensemble
information is used to in some way constrain individual item
memories, than the variability of the set should affect how accurate
memory for individual items is; if items are stored independently,
as in many influential models, then the variability of the set should
be relevant for ensemble judgments but not item memory. In a
third experiment, we address how this relates to performance in
standard working memory tasks where the variability of the set is
uncontrolled but varies randomly from trial to trial.

Experiment 1

All experimental materials, raw data, and the results of the
analysis for this and subsequent experiments are available on OSF:
https://osf.io/v7yde/.

Method

Participants. Sixteen students of the Higher School of Eco-
nomics (10 women; age range � 18–21) took part in the experi-
ment for course credit. With this sample size, we could detect
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effect size estimates as small as �2 � .4 and Cohen’s dz � .9,
given the Holm correction (where applicable) for the � � .05 and
a power of .80 (Faul, Erdfelder, Lang, & Buchner, 2007). All
participants reported having normal or corrected-to-normal vision
and no neurological problems. Before the beginning of the exper-
iment, participants gave informed consent.

Apparatus and stimuli. Stimuli were presented using Psy-
choPy (Peirce, 2007) for Linux on a standard VGA monitor (75 Hz
at 1,024 � 728 resolution) on a homogeneous gray field. Partici-
pants sat approximately 47 cm from the monitor. From that dis-
tance, each pixel subtended 0.054° of visual angle.

Memory displays consisted of four white isosceles triangles
with different apex orientations. The bases and altitudes of the
triangles were 2.7° and 3.9°, respectively. The triangles were
centered on an imaginary circle with a radius of 10.8° and occu-
pied cardinal positions corresponding to 45°, 135°, 225°, and 315°
of rotation on that circle; random positional jitter between �10°
and 10° was added to each of the locations.

The orientations of the sample triangles were generated on each
trial according to the following rule. A random angle was chosen

from between 1° and 360° to serve as the mean orientation of all
triangles. The individual orientations were then constrained to a
particular range of orientations around this value, which we varied
across conditions, such that the orientations covered a range of
either 30°, 60°, or 120° (always centered at this mean orientation).
The values were equally spaced in this range and jittered by
�3°. Therefore, for the 30° range, the individual values
were �15°, �5°, 5°, and 15° away from the mean (�jitter); for the
60° range, the individual values were �30°, �10°, 10°, and 30°
away from the mean (�jitter); for the 120° range, the individual
values were �60°, �20°, 20°, and 60° away from the mean
(�jitter). Therefore, the mean orientation was never physically
present as a member of the set. On average, individual items were
10°, 20°, and 40° from the mean orientation in the three conditions.
The individual values were randomly assigned to the four locations
on the sample screen. Examples of a sample display as a function
of the range are given in Figure 1, Panel A. Each of the individual
orientations was equally likely to be probed at test in the tasks
demanding memory for individual triangles (see task descriptions
in the following text).

Figure 1. Methods of the experiment. (Panel A) Example stimuli of different ranges (left to right: ranges of
30°, 60°, and 120°). (Panel B) The time course of a typical trial. Participants first saw a cue indicating whether
they needed to remember one item, four items, or the mean orientation, followed by a brief delay and then the
study display. After a 1,000-ms retention interval, participants were then probed on either an individual item or
the mean orientation, followed by feedback. Cues to which item would be probed (or whether the mean would
be probed) were always 100% valid, and the tasks were done in separate blocks.
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Procedure. The experiment consisted of three visual working
memory tasks. Depending on the task, participants were instructed
to remember and recall (1) the orientation of a single triangle
precued in advance (i.e., the remember one task), (2) the orienta-
tions of all four triangles (i.e., the remember four task), or (3) the
mean orientation of all four triangles (i.e., remember mean task).
The tasks were run in separate blocks of 120 trials. Each task was
presented in two blocks arranged in a mirror order (e.g., Blocks 1
and 6, or 2 and 5, or 3 and 4). The order of tasks within the first
set of three blocks was randomly assigned to each participant.
Each block of 120 trials was preceded by six practice trials that
served as familiarization with the next task.

Trials (see Figure 1B) started with a fixation cross in the center
of a screen for 500 ms. This was followed by a 300-ms cue
informing participants about the memorized attribute. The cue was
a white icon (approximately 9.2° � 9.2°) depicting the four loca-
tions of sample items in a circular arrangement and a central
position for the mean orientation. Depending on the task, certain
circles would be filled indicating the relevant attribute to report. In
the remember one task, one of the randomly chosen circle loca-
tions was cued to indicate which particular triangle was to be
memorized. In the remember four task, all four individual loca-
tions were cued. In the remember mean task, the central circle was
cued. Although cues provided no new information in the remember
four and remember mean tasks (given the blocked design of the
experiment), we used them to make the sequence of events in a
trial the same across all three tasks.

After a 300-ms delay following the cue offset, a sample display
was presented for 300 ms. It was followed by a 1,000-ms retention
interval, and then the test display was presented. In that display, a
single white triangle with an adjustable orientation was presented
either at one of the sample locations randomly assigned for that
trial (remember one or remember four tasks), or in the center of the
screen (remember mean task). The initial orientation of the test
was set randomly. The test triangle was surrounded by a black
orientation wheel with a white slider that could be rotated with the
mouse to make the triangle rotate (see Figure 1B). Participants
were instructed to adjust the orientation of the test triangle to be as
close as possible to the individual orientation or the mean orien-
tation. To confirm their response, participants had to press the
spacebar. Response confirmation was followed by feedback show-
ing the adjusted orientation on the left and a correct orientation on
the right. The feedback remained on the screen until the participant
pressed the spacebar to start the next trial. The feedback screen
could be used by participants to have a break any time they needed.

Design and analysis. The experiment had a 3 (task: remember
one vs. remember four vs. remember mean) � 3 (range: 30° vs.
60° vs. 120°) within-subject design. Within each cell of the design,
a participant was exposed to 80 trials. Therefore, the total number
of trials was 720 per participant (without considering the practice
trials at the beginning of each block).

Error distributions. The principal measure of visual working
memory performance on each trial was the difference in degrees
between the adjusted orientation and the correct answer. Given the
circular nature of orientation and the directional nature of the
triangle stimuli we used, these errors covered a 360° range and
thus fell between �180° and 180°. Traditionally, positive errors
are clockwise and negative errors counterclockwise. However, this
essentially eliminates any capacity to detect a systematic effect of

the ensemble mean, because the direction of such a bias depends
on the position of the item relative to the mean. Thus, for each trial,
we unified the directionality of errors in relation to the mean
orientation: We reversed the sign of the error in trials where tested
items were clockwise relative to the mean. This transformation
was applied only to the remember one and the remember four
tasks. We did not apply this transformation to the remember mean
task. Thus, in the individual item memory tasks, positive error
always indicates errors toward the mean and negative error always
indicates error away from the mean. Importantly, this unitization
changed mostly the sign of the errors but did not strongly affect the
dispersion of data in overall distributions. Obviously, flipping the
sign of some errors would have no effect whatsoever on some
measures of error, like root mean square error, which simply ask
about the magnitude of difference from 0 separately for each error.
However, for the measure we use, the angular deviation, which is
the analogue of the standard deviation in circular data (Berens,
2009; Zar, 1999; equation 26.20), there is a small effect of this
unitization because it impacts the clustering of the errors, which is
what is measured by this index. Nevertheless, angular deviation
did not differ a substantial amount between the unitized and
nonunitized error distributions in all ranges of the remember one
task (M differences �0.6°, ts � 2.3, ps 	 .03, Bonferroni cor-
rected � � .017, dz � .6) and were slightly though consistently
smaller in all ranges of measure of the remember four task (M
differences � 2–3°, ts 	 4.9, ps � .001, Bonferroni corrected � �
.017, dz 	 1.8). Importantly, nonunitized and unitized angular
deviations were very highly correlated in both tasks and all ranges
(rs 	 .95, ps � .001). This suggests that error unitization we used
to be capable of detecting a bias toward or away from the mean did
not strongly distort the rest of the information necessary to judge
other critical distributional parameters. Indeed, as expected from
this strong correlation, in this experiment as well as Experiments
2 and 3, the analyses of precision and how it is affected by item
variability result in the same conclusions using unitized or non-
unitized error distributions.

Memory performance from error distributions. We applied
two methods of evaluating visual working memory performance
from the error distribution. The first method is nonparametric and
is based on summary statistics: the circular mean as a measure of
bias and the angular deviation as a measure of imprecision. The
angular deviation is a circular analogue of the standard deviation
(Berens, 2009; Zar, 1999) and has been recommended as an ideal
measure because despite being straightforward and nonparametric,
it is closely related to model-based measures of performance like
d= (Schurgin, Wixted, & Brady, 2018). In addition to these non-
parametric methods, we also used a three-parameter mixture model
to estimate visual working memory performance from the error
distributions (Zhang & Luck, 2008) to assess the robustness of the
conclusions using a more common method (although see Schurgin
et al., 2018, who argued that the parameters estimated from this
method do not reflect distinct psychological constructs). The
model fits two distributional components: a von Mises component
(Gaussian-like distribution for circular dimensions) which de-
scribes responses nearby the correct answer as noisy item-based
responses, and a uniform component describing ‘guess’ responses
to elements that are assumed not to be successfully stored. The two
parameters extracted from the von Mises component are the mean
(
) and the standard deviation (SD) reflecting the systematic bias
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and the imprecision of the memory representation. The third pa-
rameter is extracted from the uniform component and is usually
interpreted as the probability of guesses (Pguess), an estimate of
how many of presented items cannot be retrieved. The mixture
models were implemented in MemToolbox (Suchow, Brady,
Fougnie, & Alvarez, 2013). A 3 � 3 repeated-measures analysis of
variance (ANOVA) was used to statistically estimate the effects of
the task and the range on the parameters obtained from these
summaries.

Results

The pattern of errors for each condition and each range of
orientation is plotted in Figure 2. In all plots, the errors are flipped
such that errors toward the mean are plotted as positive and errors
away from the mean are plotted as negative.

Precision. We found strong effects of the task on our non-
parametric estimate of error, F(2, 30) � 63.91, p � .001, �2 � .81,
and on the standard deviation parameter of the mixture models,
F(2, 30) � 199.89, p � .001, �2 � .93, showing that orientation
reports in the remember mean task were overall noisier than in the
remember one task (nonparametric: t[47] � 3.51, p � .001, dz �
.58; mixture model: t[47] � 7.37, p � .001, dz � 1.06), and
orientation reports in the remember four task were noisier than in
the remember mean task (nonparametric: t[47] � 11.62, p � .001,
dz � 1.67; mixture model: t[47] � 7.41, p � .001, dz � 1.07). The
effect of the range was also strong (nonparametric: F[2, 30] �
178.98, p � .001, �2 � .92; mixture model: F[2, 30] � 160.60,
p � .001, �2 � .92), reflecting the overall standard deviation

growth with range. In fact, this growth was task-specific (Task �
Range effect for Nonparametric Error: F[4, 60] � 45.05, p � .001,
�2 � .37; for the mixture model standard deviation: F[4, 60] �
68.36, p � .001, �2 � .82). The nonparametric error or standard
deviation did not differ between ranges in the remember one task
(ts[15] � [0.89, 1.78], ps � .096, dz � [.22, .45]) but grew steadily
with the range in the remember four and the remember mean tasks
(ts[15] � [7.81, 24.29], ps � .001, dz � [1.95, 6.07]); though for
the nonparametric error, there was no substantial growth between
the 30° and the 60° ranges: t(15) � 1.72, p � .11, dz � .43.
Overall, both nonparametric and mixture-model estimates of the
error showed basically same patterns. The strong similarity be-
tween the nonparametric and the mixture model errors can be seen
comparatively in Figures 3A and 3C (remember mean task), and
also in Figures 4A and 5A (remember one and remember four
tasks). In Figure 7 with the aggregated model fits, it can be seen
that all remember one (thin solid lines) representations have ap-
proximately the same width (SD � 11–12°); in contrast, in the
remember four and the remember mean tasks the width of the
distributions tend to increase along with the bias away from zero,
with both increasing with range.

Guess rate. The mixture model claims a dissociation between
precision and guess rate. Thus, whereas the nonparametric error
combines all the data, the mixture model separately estimates the
effect of the manipulation on the central part of the distribution and
the tail of the distribution. Broadly, however, we find the same
effects on guess rate as on precision: In particular, the main effects
of the task and the range on Pguess were strong (task: F[2, 30] �

Figure 2. Results of Experiment 1. Histogram of data from each condition pooled across participants, with all
errors in the two individual-item memory conditions flipped so that errors toward the mean of the set of items
are positive, and errors away from the mean of the set of items are negative. Each column represents a different
task (Report average; Memory: 1 item; Memory: 4 items), and each row represents a different range condition
(all four items within 30°, within 60°, or within 120°). See the online article for the color version of this figure.
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19.36, p � .001, �2 � .57; range: F[2, 30] � 15.95, p � .001,
�2 � .52), though this was largely driven by the large range effect
specific for the remember four task (Task � Range effect: F[4,
60] � 11.31, p � .001, �2 � .43). Indeed, the range had no
effect on Pguess in the remember one task (ts[15] � [1.35, 2.16],
ps � [.05, .20], all p values were larger than Holm corrected �,
dz � [.34, .54]; see Figure 5A) or in the remember mean task

(ts(15) � [.25, 1.65], ps � [.12, .81], dz � [.06, .41]; see Figure
3B). The overall Pguess in these two tasks was within .02-.06 on
average. In the remember four task, Pguess tended to increase
with the range from 0.05 to 0.17 (ts[15] � [2.28, 5.04], ps �
.005, all p values were smaller than Holm corrected �, dz �
[.82, 1.26]; see Figure 5C) such that with higher orientation
variability, not only did imprecision as measured by the mixture
model increase but so did Pguess.

Biases. As the bias relative to the mean was not informative in
the remember mean task, we estimated the effects on bias only
for the remember one and for the remember four tasks. We found
that the task had a strong effect both on the nonparametric bias
measure, F(1, 15) � 136.68, p � .001, �2 � .90, and on the
parametric one extracted from the mixture model, F(1, 15) �
133.11, p � .001, �2 � .90. This is driven by the remember four
task in which the responses were overall substantially biased in the
positive (toward the mean) direction (M � 15° for the nonpara-
metric bias; M � 14° for the parametric bias; one-sample com-
parisons with the null bias: t[47] � [12.10, 12.37], p � .001, dz �
[1.75, 1.79]). By contrast, the remember one task had an extremely
small magnitude of bias, though this bias was systematic (M �
.7°–.8°, t[47] � [3.35, 4.02], p � .001, dz � [.47, .58]). The main
effect of the range also was significant in both nonparametric, F(2,
30) � 12.99, p � .001, �2 � .46, and parametric methods, F(2,
30) � 10.46, p � .001, �2 � .41. In fact, this effect was provided
by a strong range effect within the remember four task that is
supported by the Task � Range interaction, F(2, 30) � [15.10,
17.14], p � .001, �2 � [.50, .53]. In this task, the bias increased
with the range (ts[15] � [2.28, 6.07], ps � .038; all p values are
less than Holm corrected �’s, Cohen’s dz’s � [.57, 1.52]); in the
remember one task, there were no range effect on the bias
(ts[15] � [.18, 1.98], ps � .067, none of the p values are less than
Holm corrected �’s, Cohen’s dz’s � [.04, .50]). The strong simi-

Figure 3. Performance at the ensemble (report the average orientation)
task. (Panel A) Performance assessed using a nonparametric measure of
error, the angular deviation, shows that performance is much better when
the range is small than when the range is large. (Panel B) Similar results are
obtained using the mixture model, which shows very few lapses (Pguess)
and (Panel C) represents a similar effect to the nonparametric analyses in
terms of the standard deviation (SD) of the von Mises distribution com-
ponent of the mixture model. Error bars denote �1 standard error of the
mean. See the online article for the color version of this figure.

Figure 4. Performance at the individual item memory task measured
nonparametrically. (Panel A) Nonparametric measures of error show that
despite the task being to report memory for a single item, increases in the
range of all of the items resulted in large changes in error, particularly at
set size four. (Panel B) Nonparametric measures of bias (the circular mean
of the error distribution) showed a reliable bias for participants to report
items as closer to the mean than they really were at set size four. In absolute
terms, this bias increased as a function of the range of the items, though
relative to the actual location of the mean of the items
(�10°, �20°, �40°), it decreased with range (see also simulation results).
See the online article for the color version of this figure.

Figure 5. Performance at the individual item memory task measured via
a mixture model. (Panel A) Pguess and standard deviation (SD), a measure
of imprecision, at set size one and four. (Panel B) Bias of the von Mises
distribution component at set sizes one and four. Error bars denote �1
standard error of the mean. See the online article for the color version of
this figure.
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larity between the nonparametric and the mixture model biases are
shown comparatively in Figures 4B and 5B.

Overall, then, we find that contrary to the assumption of inde-
pendent representation, not only do judgments of the mean orien-
tation become less precise with increasing range, but memory for
individual items, particularly at set size four, also become less
precise with increasing range. In addition, memory for individual
items is reliably biased toward the mean orientation.

Simulation 1: Simulation of Responding Based Only
on the Mean

What would participants’ errors in the individual item task look
like if they relied solely on the mean orientation rather than any
information about individuals? Although it is unlikely participants
used this strategy per se, given the results of Experiment 1,
understanding this can help contextualize the extent to which
participants used individual information versus relied on informa-
tion about the mean orientation in the remember four condition. In
particular, because the items are similar to each other, particularly
at the smallest range, participants could in theory have chosen to
simply report the mean orientation in both the remember mean and
remember four task rather than making an effort to remember
individual item information in the remember four task. Visualizing
what the results of such a strategy would look like can help us
think more clearly about the results we did observe.

To assess what performance would look like if participants
relied solely on their knowledge of the mean orientation, we
compared errors in the remember four task with those found in the
remember mean task. In particular, we asked what errors for an
individual item would look like if participants relied solely on their
knowledge of the mean orientation, as assessed in the remember
mean task. To assess this, we (1) took the average distance be-
tween the actually tested orientation and the mean orientation and
(2) perturbed this by the error values obtained in the remember
mean task, which reflect how accurately participants know the
mean. This transformation was applied individually for each range
condition in each participant to simulate what the remember four
condition would look like if people only used information about
the mean orientation (i.e., simulated from mean only).

We then compared the remember four responses (see Figure 6)
with the simulated from mean only responses (see Figure 6). As is
shown in Figure 6, even at the smallest range, which shows a
proportionally large bias toward the mean, the simulation resulted
in error distributions that underestimated the number of responses
near the individual item (near 0) and overestimated the number of
responses near the mean.

Thus, as expected, comparing the bias predicted from the sim-
ulated from mean only responses to the actual remember four
biases in the three ranges (2 � 3 repeated-measure ANOVA)
reveals that the biases in the actual data are substantially smaller

Figure 6. Simulation of data if people reported only based on their (measured) knowledge of the mean. Left
panel: Data from the “Remember Four” condition. Middle panel: Data pattern expected if participants solely
used their knowledge of the mean (assessed via the “Remember Mean” condition) to respond in the “Remember
Four” condition. Right panel: Residual of this model (e.g., Column 1 minus Column 2). Clearly, responses based
solely on the mean would be too biased and contain too few responses near 0 (e.g., near the correct individual
item answer) if they were based solely on the mean. See the online article for the color version of this figure.
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than the simulated from mean only prediction, F(1, 15) � 37.81,
p � .001, �2 � .716. We also found a strong Task � Range effect,
F(1, 15) � 21.00, p � .001, �2 � .583, reflecting the increasing
divergence between the transformed remember mean and remem-
ber four with range.

Specifically, in the 30° range the biases were similar between
these two tasks (M � 10° in the simulated from mean only vs. M �
9° in the remember four comparison: t(15) � 1.82, p � .089, dz �
.45), but the difference substantially increased in the 60° range
(M � 21° vs. 14°, respectively; comparison: t[15] � 4.07, p �
.001, dz � 1.02) and especially in the 120° range (M � 38° vs. 20°,
respectively; comparison: t[15] � 5.78, p � .001, dz � 1.44).

The intermediate value of these biases—not 0, but not all the
way to the mean—are also visualized in Figure 7, which depicts
the distribution fits aggregated across participants and aligned
along a scale having an individual tested item as reference point
(Error � 0): It can be seen that the peaks of remember four
distributions (thick solid lines) in the 60° and the 120° ranges are
shifted to the right from remember one distributions (thin solid
lines) and to the left from the corresponding simulated from mean
only distributions (thin dashed lines).

Simulation 2: Location-Based Confusions With
Other Items

Is it possible that people do not use the range or mean of the
display at all but have simply a fixed rate of “swaps”? Mistakenly
reporting incorrect items would be expected to introduce greater
error at larger ranges, consistent with the direction of our results,
and models based on swaps are popular in the literature on visual
working memory (e.g., Bays et al., 2009).

When items are tightly clustered, as in our displays, it is quite
difficult to use the pattern of errors in any condition alone to
distinguish the most general form of swap model from a model

based on a mixture of mean-based and item-based responding (i.e.,
hierarchical encoding). However, the more general proposal of
swaps can be instantiated in various forms, and there are at least
two (dissociable) theoretical accounts that can be thought of as
swapping: one is the original proposal of Bays et al. (2009), where
swaps are largely based on spatial confusions about which location
is being probed, which is consistently the version of swapping
found in data with randomly generated displays (e.g., Emrich &
Ferber, 2012; Oberauer & Lin, 2017). In this account, since spatial
distance to the probed item was unrelated to the range and unre-
lated to the similarity to the target and mean, the swap rate should
be the same for items across all ranges and for items that are
similar or dissimilar to the target. The other kind of swap model is
quite different, and effectively another way of saying people take
into account the distribution of the features of the other items in
making their responses: In particular, one possible response strat-
egy that participants could use—an ensemble-based strategy—
would be to simply limit the responses to be within the plausible
range of the display, which is similar to a swap-based account but
based on an efficient encoding strategy, rather than an error from
location noise. Under this account, we would predict different rates
of estimated swaps to items close and far from the mean, and
different rates on displays with different ranges.

To tell these apart, we asked whether a model (Bays et al., 2009)
that estimates swap rate—assuming all errors arise from either
correct responses, guesses or swaps, with no role for direct repre-
sentations of the display mean or range—finds a fixed swap rate
across ranges. If this swapping did not take into account the range
or distribution of other items on the display at all, as in the case
where it arose primarily from location uncertainty, we would
expect this swap rate to be very similar across all ranges. If instead
it reflects some form of strategic responding based on the ensem-
ble of the display, then we would expect this swap rate to be higher
when the items are more clustered in feature space. In this way we
can distinguish whether ensemble-based responding is occurring
without directly attempting to distinguish between ensemble mean
and item-based responding or a more swap-based version of an
ensemble strategy.

Consistent with the ensemble-based account, we find that the
swap rate estimates are much higher for displays where the items
are more tightly clustered in orientation (e.g., smaller ranges): At
range 30°, 60°, and 120°, respectively, the estimated swap rates are
56.8% (SEM 3.2%), 47.1% (SEM 3.6%), and 33.0% (SEM 4.2%),
a significant difference, F(2, 30) � 17.2, p � .0001, and each
larger range has a significantly lower swap rate than the tighter
range (e.g., 30° vs. 60°: t[15] � 3.28, p � .005, dz � 0.82; 60° vs.
120°: t[15] � 3.27, p � .005, dz � 0.82). Furthermore, the
precision estimates, even after partialing out such a huge number
of putative swaps, are still less precise at larger ranges even in this
mixture model: (M � 12.4°, 14.4°, 26.0°; F[2, 30] � 18.7, p �
.0001). Thus, even if we assume no direct effect of the ensemble
mean of the display, but simply reports of other items, we find that
the range of items on the display must mediate how likely observ-
ers are to rely on other items in their reports.

Importantly, the swap rate estimates we find are also much
larger than would be expected from a general swapping account
that was not augmented by an ensemble-based strategy. In general,
with only four items previous studies have found extremely low
swap rates (�10%; e.g., Bays et al., 2009, 2011), and in our data,

Figure 7. Distribution fits of the mixture models centered on individual
tested orientations averaged across participants. The “Remember Mean”
task reflects the fits from the “Simulated-From-Mean-Only” (e.g., what
errors would be found for the tasks if participants solely used their
knowledge of the mean to respond). Colors are used for different orienta-
tion ranges; line types are used for different tasks. Importantly, even in the
“Remember Four” condition, participants are far less biased than expected
from a strategy of relying solely on the mean. See the online article for the
color version of this figure.
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with long encoding times and fixed, substantially distinct posi-
tions, we would expect these rates to be even lower. In addition,
while the model based solely on swaps can account for some
aspects of the data if allowed to propose different swap rates for
displays with different ranges of orientations, this model does still
have systematic residuals (see Figure 8). In particular, the data has
far more responses relatively near the mean than the swap model
predicts, and fewer responses to distractor items that happen to be
in the direction away from the mean orientation of the display (see
the left in Figure 8) or far from the mean (see the far right in Figure
8) than is predicted by the swap account. This seems broadly
consistent with the idea that the putative swaps recovered by the
swap model are only a rough proxy for how participants use the
ensemble properties of the display to limit their responding to
items within the general range of items on the display.

Thus, overall, we conclude that in some sense the data here
could be thought of as arising from swaps: People do respond
selectively near the other items’ orientations. However, this may
be an artifact of relying on the display mean and range to limit

responding. However, regardless of the cause, this is nevertheless
a form of ensemble-based responding, because participants make
such responses because they are aware of the feature distribution
of the items, rather than as an artifact based on location confusion.

Experiment 2

In Experiment 1, we tested how memory both for individual
orientations and for the mean orientation changed with the overall
range. This allowed us to directly establish their resemblance:
participants were more accurate in item memory when they had a
more accurate estimate of the mean. This did not appear to arise
from location-based swaps or from solely relying on the mean, but
instead seemed to reflect a kind of hierarchical encoding where
participants made use of both item information and ensemble
information. However, using both a working memory task and an
ensemble task in one experiment with the same group of partici-
pants (although in separate blocks) could have biased the observers
to strategically use ensemble information for remembering indi-
viduals more than they would normally use it. That is, the expe-
rience of performing the remember mean task could be transferred
to the remember four task, that is relying more on the mean
orientation instead of trying their best to memorize four items.
Thus, in Experiment 2, we eliminated the remember mean task and
tested our participants only in the remember four task with the
three ranges of orientations, as in Experiment 1. Moreover, in
order to encourage remembering individual objects we added filler
trials with range of 360° where no “averageable” ensemble infor-
mation is available, to further discourage any ensemble-based
strategy on the critical fixed range trials.

Method

Participants. Sixteen students of the Higher School of Eco-
nomics (10 women; age range � 18–21) took part in the experi-
ment for course credit. None of them took part in Experiment 1.
All participants reported having normal or corrected-to-normal
vision and no neurological problems. Before the beginning of the
experiment, participants gave informed consent.

Apparatus and stimuli. Apparatus and stimuli were the same
as those used in Experiment 1. The only addition included displays
with orientations spanning the full 360°-range with a step size
between items of 90° � 3°. Such displays have no orientation
ensemble as they have no defined mean orientation.

Procedure. The experiment consisted of a single block with
the remember four task, as described in Experiment 1. Trials with
four orientation ranges (30°, 60°, 120°, and 360°) were randomly
mixed. There were 80 trials per range resulting in 320 trials in the
whole block. It was preceded by 16 practice trials.

Design and analysis. The experiment had a within-subject
design with three range conditions (30°, 60°, and 120°). The
360°-range trials were considered to be fillers and were not in-
cluded in analysis because they provide no information about bias
toward the mean (because there was no ensemble mean in the 360°
range), and so no analysis comparable with the rest of the range
conditions could be applied to these trials. As in Experiment 1, we
estimated memory performance based on both nonparametric sta-
tistics and mixture model. A one-way repeated-measures ANOVA
was applied to the obtained measures of performance.

Figure 8. Residual of swap model fits to the data. A model based solely
on swaps can account for some aspects of the data, if it allowed to propose
different swap rates for displays with different ranges of orientations.
However, even such a model has quite systematic residuals: In particular,
the data has far more responses relatively near the mean than the swap
model predicts, and fewer responses to distractor items away from the
mean or far from the mean than is predicted by the swap account. See the
online article for the color version of this figure.
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Results

Precision. The raw error distributions broken down by range
are shown in Figure 9. Our nonparametric estimate of error showed
strong growth as a function of the range, F(2, 30) � 79.46, p �
.001, �2 � .47, which was mirrored by the standard deviation
parameter of the mixture models, F(2, 30) � 18.33, p � .001,
�2 � .47. This growth was steady, with each range bringing
significantly greater standard deviation than a previous one
(ts[15] � [3.14, 10.53], ps � .007, all values were smaller than
Holm corrected �, dz � [.78, 2.63]; see Figure 10). This pattern
replicates the pattern found in the remember four task in Experi-
ment 1.

Guess rate. We found the strong effect of the range on Pguess

extracted from the mixture model, F(2, 30) � 22.17, p � .001,
�2 � .19. Specifically, we found that Pguess in the 120° range was
greater than in the 30° and 60° ranges (ts[15] � [5.02, 5.77], ps �
.001, all values were smaller than Holm corrected �, dz � [1.26,
1.44]; see Figure 10B). This pattern basically repeats the pattern of
SD changes. Importantly, it also replicates the pattern of Pguess

changes in the remember four task of Experiment 1, although the
absolute guess rates are overall higher in Experiment 2.

Biases. The error distributions were substantially biased to-
ward the mean in all range conditions (see Figure 10C), as shown
by both nonparametric (M � 9°–16°) and mixture model (M �
9°–14°) bias measures (one-sample comparisons with the null bias:
ts[15] � [3.54, 23.13], p � .003, dz � [.89, 5.78]). This finding
replicates the results of Experiment 1. However, in contrast with
Experiment 1, evidence for a range effect on the bias was incon-
sistent across the measures: The nonparametric bias measure grew
with the range, as in Experiment 1, F(2, 30) � 4.13, p � .026,
�2 � .15, whereas the mixture model bias measure showed no
evidence for such a growth, F(2, 30) � 1.59, p � .22, �2 � .05.
The distributions in Figure 9 make clear why this is, in particular
why the mixture model bias parameter is so low at range 120°:
There are a substantially larger number of responses on the side
toward the mean, but they largely occur in the tail of the distribu-
tion, not in the central part, so the mixture model discounts them
as part of its guessing parameter, which is not allowed to be
asymmetric (given the way this model is specified; see Figure 11
for a plot of the model fit to see this). Thus, the mixture model
provides a poor fit to this particular distribution and does not

capture the shift in responses toward the mean. In general, then,
although we replicated the robust absolute bias toward the mean
orientation, and the nonparametric bias measure showed this
changed with range, this effect may not have been as strong as in
Experiment 1.

Overall, the results of Experiment 2 rather closely replicate the
results of Experiment 1, remember four task. To summarize, we
found that error distributions became wider as the physical range
increased, which can be interpreted as growing imperfection of
the retrieved representation (whether coming from the noisy trace
or random guesses); we also found the systematic error bias toward
the mean. As our participants were performing only the remember
four task in this experiment, we can conclude that the observed
pattern was not explicitly informed by their experience of doing an
averaging task. Rather, the use of ensemble information in retriev-
ing individual features in working memory appears to be more
mandatory.

Experiment 3

In a third experiment, we used completely randomly generated
displays of sets of three orientations to probe the effect of the range
of the display when there were no constraints on the displays at all
and no suggestion of ensemble coding. Following Brady and
Alvarez (2015a), we showed each display to 300 participants and
asked participants to do whole-report of all three orientations from
each display. This allowed us to estimate how precisely items were
remembered on a display-by-display basis, as a function of the
range of the orientations on the display, yet with all items ran-
domly generated as in a typical working memory study.

Method

Participants. Participants were 300 people recruited from
Amazon’s Mechanical Turk. All participants reported having nor-
mal or corrected-to-normal vision. Before the beginning of the
experiment, participants gave informed consent. Four participants’
data were lost, or failed to save, leaving a final sample of 296
participants.

Apparatus and stimuli. Participants saw displays of three
black triangles arranged around an invisible circle, each at a
randomly and independently chosen orientation. We used set size

Figure 9. Results of Experiment 2. Histogram of data from each condition pooled across participants, with all
errors flipped so that errors toward the mean of the set of items are positive and errors away from the mean of
the set of items are negative. Each column represents a different range condition (all four items within 30°,
within 60°, or within 120°). See the online article for the color version of this figure.
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three rather than set size four because randomly generating four
orientations nearly always results in a range 	120° (only 15% of
displays have a range �120°), whereas at set size three, nearly
34% of displays have a range �120°. This allows us a higher
powered test of how the range of the display impacts performance.

A set of 48 displays was randomly generated once and these
same displays—with the exact same items in them—was shown to

each participant. This allowed us to look at performance as a
function of each individual display.

Procedure. The experiment consisted of a single block of
48 trials. On each trial, participants saw the three triangles for
1,000 ms, and then had a 1,000-ms interstimulus interval (ISI).
After this ISI, they were probed on the orientation of each of the
three triangles in a random order. For each item, they had to
adjust the triangle orientation and then click to lock in their
answer. Once they locked it in, they were probed on another
item until they had reported their remember orientation for all
three items. This allowed us to estimate not only their accuracy
at a single item but also their accuracy with reproducing the
entire display. Although each participant saw the same displays,
each participant saw the displays in a different randomized
order and were probed on items from the display in a random
order.

Design and analysis. Our main question was whether the
variation in items in the display predicts the accuracy of perfor-
mance. Thus, we took the range of the items in the randomly
generated displays and compared this using a correlation with our
nonparametric index of performance—the angular deviation of
responses averaged across all items in the display.

In addition, we compare the bias toward the mean with the range
of the display, both as an absolute bias and as a proportion of
distance to the mean. This is because in displays with items tightly
clustered and also in displays with no ensemble structure, we
would predict little absolute bias, but proportionally we expect a
large bias in the first case but none in the second case. Thus, using

Figure 10. Performance at the memory task in Experiment 2. (Panel A) Nonparametric measures of error show
that despite the task being to report memory for a single item, increases in the range of all of the items resulted
in large changes in error. (Panel B) Performance at the individual item memory task measured via a mixture
model, Pguess and standard deviation (SD), a measure of imprecision. (Panel C) Nonparametric measures of bias
(the circular mean of the error distribution) and the bias of the von Mises distribution showed a reliable bias for
participants to report items as closer to the mean than they really were. Error bars denote �1 standard error of
the mean. See the online article for the color version of this figure.

Figure 11. Distribution fits of the mixture models centered on individual
tested orientations averaged across participants in Experiment 2. Colors are
used for different orientation ranges. See the online article for the color
version of this figure.
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the bias as a proportion of distance to the mean allows us to make
a monotonic prediction.

Results

Precision. We found that even in randomly generated dis-
plays, there was a significant relationship between how accurately
participants could remember the orientations of the items in the
display and how clustered the orientations-to-be-remembered
were. Rather than analyze data per participant, we instead analyze
the data per display: thus, we collapsed across all �300 partici-
pants and asked how accurately participants could remember each
display (see Brady & Alvarez, 2015a; Brady & Tenenbaum, 2013
for similar logic). Consistent with our main claim, we found that
displays where the orientations were more similar resulted in better
performance (r � .72, p � .001; Figure 12).

Note that in this task, participants reported all items. Thus, it is
possible they could have relied more on the clustering in the
display for second and third responses, where they had less indi-
vidual item information. However, we find no evidence for this:
examining only the first response each participant gave revealed a
similar relationship between orientation similarity and perfor-
mance (r � .68, p � .001).

Bias. What bias toward the mean would we expect in ran-
domly generated displays? In Experiments 1 and 2, we considered
only displays that have a coherent average orientation. However, at
some range of variation between items, the items orientations must
become so inconsistent that there is no bias possible: for some
displays, the mean itself even becomes undefined if the items all
point in contradictory directions. Thus, the prediction of an

ensemble-based account is somewhat complicated when consid-
ered as raw bias, because we expect a small absolute bias when
items are very similar (because they are all close to the mean), and
a small absolute bias when items are completely distinct (because
there is no ensemble structure to be biased toward), but a greater
absolute bias for intermediate values. In previous experiments, we
never tested displays that have no ensemble structure at all, and so
simply found that the absolute bias increased as a function of the
range of the displays (Experiment 1). However, proportionally this
bias decreased substantially with range: In Experiment 1, the
responses are biased �9/10 toward the mean in the 30° range,
�2/3 toward the mean in the 60° range, and �1/2 toward the mean
in the 120° range. The same was found in Experiment 2: The
responses are biased �1 toward the mean in the 30° range, �2/3
toward the mean in the 60° range, and �1/4 toward the mean in the
120° range. Our account predicts this proportionally smaller bias
would continue with increased range.

Thus, our main analysis of bias in this experiment considers how
large the bias is as a proportion of distance to the mean, where zero
is completely unbiased and one is what we would expect if people
only reported the mean, with no influence of the actual shown
item. In this case, the predictions are relatively straightforward:
Proportionally, participants should be more biased when the items
are more tightly clustered. We find this is true, as in the previous
experiments, even for randomly generated displays (r � �0.61,
p � .001; Figure 13).

Thus, together with Experiment 2, these results demonstrate that
the effects we observe under carefully controlled display condi-
tions in Experiment 1 are generalizable to normal visual working

Figure 12. (Panel A) There was a high correlation, in randomly generated displays, between how clustered the
items were (in terms of their orientations; e.g., the range) and how accurately participants could reproduce the
orientations of the items on the displays. (Panel B) Examples of the error distributions and average error from
the smallest range, median range and largest range displays. Note that at the smallest range, the items almost
form a single coherent perceptual group, suggesting that the ensemble-based effects we observe at the much
more common intermediate levels of variation between stimuli may be continuous with all-or-none perceptual
grouping that occurs with identical or near-identical stimuli.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

469ENSEMBLES CONSTRAIN INDIVIDUAL MEMORIES



memory experiments where no attention is drawn to ensemble
properties of the display.

General Discussion

We tested how information about the set of objects stored in
visual working memory influences what people remember about
individual objects. We directly compared the memory for individ-
ual objects with memory for the ensemble average of the entire set
of memorized objects. We replicated findings from previous stud-
ies that participants memory for individual objects was biased
toward the mean of all of the objects (Brady & Alvarez, 2011;
Corbett, 2017; Corbin & Crawford, 2018; Dubé et al., 2014;
Griffiths et al., 2018), even with only three or four items needing
to be remembered. In addition, we found that the bias is not the
only parameter that depends on the feature distribution of the
whole set of items. Instead, inconsistent with models that suggest
items are stored independently, we found that the accuracy of
memory—quantified either in terms of angular deviation or with
mixture models—also strongly depend on the statistical structure
of the whole set.

In Experiment 1, we used remember one and remember mean
tasks as baseline conditions to assess working memory for either
the individual-level alone or the ensemble-level alone. We found
that remembering the orientation of a single precued item was not
affected by other items that had been present but required no
memorization. The reports were always precise (comparable or
even slightly better than in other studies using continuous report
for orientation, e.g., Bays et al., 2011; Fougnie & Alvarez, 2011;
Fougnie et al., 2010; Zhang & Luck, 2009) and unbiased regard-
less of the other object orientations (that is, unaffected by ensem-
ble properties). In the remember mean task, the critical finding was
imprecision (the nonparametric deviation or the mixture-model
standard deviation) growing with the physical range, which was
previously documented in averaging tasks in various sensory do-

mains (e.g., Corbett, Wurnitsch, Schwartz, & Whitney, 2012;
Dakin, 2001; Fouriezos, Rubenfeld, & Capstick, 2008; Im &
Halberda, 2013; Marchant et al., 2013; Maule & Franklin, 2015;
Solomon, Morgan, & Chubb, 2011; Sweeny, Haroz, & Whitney,
2013; Utochkin & Tiurina, 2014). Most interestingly, this range-
related imprecision turned out to be reflected by reports in our
critical memory condition, remember four, where a greater range
of items overall led to greater error for individual items despite that
participants were being tested only a single item. Taken together,
these findings suggest an overall degradation of information about
individual objects that has to do with the quality of ensemble
representation.

In Experiments 2 and 3, we showed that less accurate memory
when the items are more dispersed in feature space occurs even
when participants are never probed on the average orientation of
the display, and even in completely randomly generated displays.
This suggests that even in standard working memory situations,
items are not represented independently but the accuracy of mem-
ory for an item depends not only on its own feature value but also
the distribution of all feature values in a display.

The combination of biases and changes in memory strength can
give us useful insights about how observers might utilize individ-
ual and ensemble information during encoding and retrieval. We
suggest that the relative contribution of an individual or an ensem-
ble component to visual working memory strongly depends on the
quality of the latter component. The smallest orientation range
(30° in our experiment) yields the most precise representation of
the mean; at the same time, the distribution of individual responses
in the remember 4 condition at this range is proportionally ex-
tremely biased, such that the distribution is shifted nearly as far as
would be predicted from responses based on the mean alone. This
suggests that the very strong and reliable average representation
has a strong influence on memory for an individual item (Alvarez,
2011) whose representation can be rather noisy and ambiguous
when competing with other individual representations (Bays,
2014, 2015; Bays et al., 2009; Wilken & Ma, 2004).

When the range increases, the precision of the average repre-
sentation decreases, making the mean orientation less reliably
estimated and less precise as a summary of the items, but still an
influential aspect of memory. One consequence of it is that al-
though the biases numerically increased with greater range, the gap
between the reported individual orientation and the mean orienta-
tion became proportionally greater with increasing range. For
example, if we put the distance between the correct answer and the
mean as 1, then in Experiment 1, the responses are biased �9/10
toward the mean in the 30° range, �2/3 toward the mean in the 60°
range, and �1/2 toward the mean in the 120° range (see Figure 7).
A similar picture was found in Experiment 2 where errors in large
ranges were even less biased toward the mean than in Experiment
1 (see Figure 11), and Experiment 3 showed this proportional
decrease in bias toward the mean held across a very wide set of
orientation ranges. Therefore, despite the observation that the
increased orientation range creates stronger biases in individual
representations along the absolute scale, it is in fact less affected
by the mean proportionally. The intermediate bias between the
correct response and the mean suggest that participants rely on a
mixture of individual and ensemble information (Brady & Alvarez,
2011; Corbett, 2017). The growing role of individual representa-
tions can also explain why overall error for individual items

Figure 13. (Panel A) Bias toward the mean as a function of how clustered
the items are. The prediction for randomly generated displays is somewhat
complicated when considered as raw bias, since we expect a small absolute
bias when items are very similar (since they are all close to the mean), and
a small absolute bias when items are completely distinct (since there is no
real ensemble structure), but a greater absolute bias for intermediate values.
(Panel B) In terms of how far the bias takes average reports toward the
mean (0 � unbiased; 1 � report the mean with no item influence),
however, the predictions are relatively straightforward: Proportionally,
participants should be more biased when the items are more tightly clus-
tered. We find this is true, as in the previous experiments.
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increases with the range. At small ranges, if observers rely more on
the average as an approximate of all items in memory then their
effective visual working memory set size tends to one and, hence,
can be encoded almost for sure. Conversely, when observers rely
on their individual representations more the effective set size tends
to increase, and some items may not be encoded or retrieved well
or may be subject to greater noise.

If the increasing range makes observers rely on individual
features more, then why does it also cause the growth of impre-
cision? We suggest that this can be explained by an interaction
between individual memory and ensemble representation. Several
models of this are possible. For example, if the same individual
item information is combined as in Bayesian cue combination,
then with less precise information from the ensemble there will be
greater imprecision in responses (e.g., Brady & Alvarez, 2011).
Similarly, if the perceived range is used to give a coarse impres-
sion of “alignment” around the mean orientation, this impression
could affect how broad a deviation of an individual orientation is
tolerated within this limit of alignment. As an extreme case, having
only ensemble memory, an observer could choose a random ori-
entation around the mean within a reasonable corridor set by the
perceived ensemble range and be relatively accurate at the narrow
range (30°); but this coarse information would provide much less
help at the broader ranges (e.g., 120°). Broadly, then, it appears
that in many cases observers have some coarse memory represen-
tation from the ensemble information, which they somehow use to
constrain their individual item responses (either by Bayesian com-
bination or by restricting their responses to the range defined by
the ensemble, or some other ensemble-based strategy). A similar
mechanism of Bayesian cue combination between imprecise indi-
vidual representation and prior feature distribution in a category
was previously suggested for how newly learned category infor-
mation affects the representation of items over short durations
(Huttenlocher, Hedges, & Vevea, 2000) and in long-term memory
(Brady, Schacter, & Alvarez, 2018). Here, we show that an instan-
taneous impression of an ensemble in a single display can be used
as such a prior, affecting the precision with which participants can
recall imperfect individuals from working memory.

Might our results reflect so-called swap errors, without any
ensemble representation at all? (See, e.g., Bays et al., 2009).
Mistakenly reporting incorrect items would be expected to intro-
duce greater error at larger ranges, consistent with the direction of
our results. However, as shown in Simulation 2, the effects we find
are much larger than would be expected from a general swapping
account that was not augmented by an ensemble-based strategy. In
general, with only four items previous studies have found ex-
tremely low swap rates (�10%; e.g., Bays et al., 2009, 2011), and
the swaps that are present in such data appear to be largely based
on spatial confusions (e.g., Emrich & Ferber, 2012; Oberauer &
Lin, 2017). This was an important reason why we designed our
experiment to minimize the possibility of location-based swap
errors by presenting items in reliable spatial locations that are the
same on each trial and are maximally different given the limits of
the display (e.g., in different corners). Thus, spatial uncertainty—
and accompanying location-based confusions—are unlikely to
play any role in our results, suggesting that the pure swap rate is
likely to be near 0. However, this does not mean people may not
be responding selectively near the other items but simply that they
are doing so because they are aware of the feature distribution of

the items, rather than as an artifact based on location confusion. In
particular, one possible response strategy that participants could
use—an ensemble-based strategy—would be to simply limit the
responses to be within the plausible range of the display, which is
similar to a swap-based account but based on an efficient use of
hierarchical encoding, rather than an error from location noise. As
shown in Simulation 2, if we fit a simple swap model to the data,
the so-called swap rate needs to depend on how clustered in feature
space the items are—it is not fixed, as would be expected of
something like location noise, and even so, this model underesti-
mates the reliance on the mean of the display (overpredicting
errors away from the mean and underpredicting responses near the
mean). Thus, rather than simply reports of items that happened to
be in nearby locations, we find that when the items are more
similar, participants tend to cluster their responses near the mean
and/or range of items on the display, which can be thought of as a
kind of swapping but only if the structure of the display is taken
into account.

Overall, our results demonstrate that visual working memory for
separate objects is strongly modulated by ensemble properties of
the set, suggesting observers use representations stored at different
levels of abstraction (i.e., item-based and ensemble-based). This is
the essential statement of a framework called elsewhere hierarchi-
cal encoding (Brady & Alvarez, 2011; Brady et al., 2011). Criti-
cally, hierarchical encoding suggests that an item is not stored (or
forgotten) as a single record in visual working memory but can be
present in several different forms. These forms can be used to-
gether or interchangeably to reconstruct the item with an approx-
imation allowed by the quality of the information conveyed by
each set of these forms. The adaptive nature of such hierarchical
representations is easy to see: A single representation of an indi-
vidual object is precise, but several of them strongly interfere with
each other in visual working memory leading to loss in precision
or to forgetting. On the other hand, an ensemble representation is
only a rough approximation of the individuals, but it is less
sensitive to limited capacity issues. That is, considering the en-
semble representation can allow people to compensate for the loss
of individual information. Our data shows that combining individ-
ual and ensemble information is a flexible process which depends
on their validity as an estimate of an individual item. Both the
hierarchical character of visual working memory representations
and the flexibility caused by hierarchical storage should be con-
sidered for future theorizing about visual working memory.
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