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Abstract
Research on best practices in theory assessment highlights that testing theories is challenging because they inherit a new set 
of assumptions as soon as they are linked to a specific methodology. In this article, we integrate and build on this work by 
demonstrating the breadth of these challenges. We show that tracking auxiliary assumptions is difficult because they are made 
at different stages of theory testing and at multiple levels of a theory. We focus on these issues in a reanalysis of a seminal 
study and its replications, both of which use a simple working-memory paradigm and a mainstream computational modeling 
approach. These studies provide the main evidence for “all-or-none” recognition models of visual working memory and are 
still used as the basis for how to measure performance in popular visual working-memory tasks. In our reanalysis, we find 
that core practical auxiliary assumptions were unchecked and violated; the original model comparison metrics and data were 
not diagnostic in several experiments. Furthermore, we find that models were not matched on “theory general” auxiliary 
assumptions, meaning that the set of tested models was restricted, and not matched in theoretical scope. After testing these 
auxiliary assumptions and identifying diagnostic testing conditions, we find evidence for the opposite conclusion. That is, 
continuous resource models outperform all-or-none models. Together, our work demonstrates why tracking and testing 
auxiliary assumptions remains a fundamental challenge, even in prominent studies led by careful, computationally minded 
researchers. Our work also serves as a conceptual guide on how to identify and test the gamut of auxiliary assumptions in 
theory assessment, and we discuss these ideas in the context of contemporary approaches to scientific discovery.

Keywords Metascience · Measurement · Auxiliary assumptions · Memory · Visual working memory limits · K capacity · 
Discrete-slot models · Signal detection models

Introduction

What does it take to falsify a psychological theory? 
Researchers may have a stock response to this question: 
Identify a core prediction of the target theory, formulate 
a competing hypothesis, and design an experiment to test 
between them. If the evidence favors the competing hypoth-
esis, the theory is falsified. Unfortunately, most research-
ers also know that this routine practice can be notoriously 

difficult to implement. As pointed out by Meehl (2004) over 
four decades ago (1978), it can be hard to ‘kill’ a psychologi-
cal theory. This point has been made again recently in dif-
ferent guises following the reported replication crisis in the 
behavioral sciences (e.g., Ioannidis, 2005; Pashler & Harris, 
2012; Simmons et al., 2011; Open Science Collaboration, 
2015), which sparked renewed interest in increasing the 
rigor of theory development and testing in psychology (e.g., 
Davis-Stober, & Regenwetter, 2019; Kellen et al., 2021a, 
2021b; Grahek et al., 2021; Guest & Martin, 2021; Navarro, 
2021; Oberauer & Lewandowsky 2019; Regenwetter & Rob-
inson, 2017; Regenwetter et al., 2022a, 2022b; Wilson et al., 
2022). So, how can the routine practice of scientific inquiry 
fail? What are some major hurdles for theory testing in psy-
chology, and what steps can be taken to overcome them?

Testing theories is deceptively difficult because they 
inherit a new set of assumptions as soon as they are linked to 
a specific experiment (Kellen et al., 2021a, 2021b; Tal, 2013; 
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Trafimow, 2012). These assumptions are typically made at 
the discretion of the researcher because he or she needs to 
determine which predictions are core to a theory and which 
are not, validate methodology, and ensure that analytic meth-
ods are robust against imprecise measurements and noisy 
data (Lakatos, 1976; Strevens, 2020). Most of these assump-
tions are ancillary to the theory – meaning they do not follow 
from it directly – but they are requisite for testing the theory 
in practice. Furthermore, because theories can be linked to 
an experiment in a variety of ways (Scheel et al., 2021; Tal, 
2013), researchers are left with the challenging conceptual 
task of identifying and evaluating auxiliary assumptions 
that are made at different (technical and conceptual) stages 
of theory testing and different (theory-specific and theory-
general) levels of the theory itself. Recent articles by Starns 
et al. (2019) and Dutilh et al. (2019) point to the severity of 
these challenges by demonstrating that cognitive modelers 
can reach completely opposite conclusions even when given 
an opportunity to analyze exactly the same data.

The goal of our exposition is to extend on this line of 
work by focusing on an accessible case study of how to iden-
tify and evaluate auxiliary assumptions. We also build on 
existing metatheoretical literature by providing a concrete 
example on the potentially long-term consequences of fail-
ing to assess auxiliary assumptions on theorizing and meas-
urement within a prominent research domain in cognitive 
psychology. We do this through a conceptual and technical 
reanalysis of an existing, high-profile study on recognition 
models of visual working memory (Rouder et al., 2008) as 
well as its replications (Donkin et al., 2014).

Rouder et al. (2008) reported evidence for a classic “all-
or-none” model of visual working memory, according to 
which memoranda are stored with complete fidelity or not 
at all. More than a decade after the paper’s publication, these 
results continue to be referenced as support for all-or-none 
models as well as the view that visual working memory 
capacity is limited to approximately “three to four” fixed 
representations (e.g., Cowan, 2001; Forsberg et al., 2021; 
Jakubowska et al., 2021; Kardan, et al., 2020; Kvitelashvili 
& Kessler, 2024; Medernach et al., 2023; Pratte & Green, 
2023; Roark et al., 2023; Strzelczyk et al. 2023), which still 
pervades nearly all popular understanding of individual 
differences in visual working memory (e.g., Cowan, 2014; 
Green & Pratte, 2022; Luck & Vogel, 2013; Ngiam et al., 
2023). While alternative approaches to visual working mem-
ory measurement exist (e.g., continuous reproduction tasks), 
many researchers continue to use change detection tasks, 
and, even in the most high-profile situations (e.g., a large-
scale collaboration: Strzelczyk et al., 2023), these research-
ers continue to use measures based primarily on discrete-slot 
models like those supported by Rouder and colleagues.

Importantly, as we review below, the results of Rouder 
et al. (2008) and the study’s replications directly conflict 

with evidence against all-or-none models of visual work-
ing memory found using other methods, like continuous 
reproduction tasks. This raises the key question: Does this 
study reveal a theoretically meaningful difference in how 
people store memory representations across task demands 
(change detection vs. continuous reproduction), or are the 
results an artifact of untested auxiliary assumptions? We 
find support for the latter view. That is, after evaluating key 
auxiliary assumptions, we find evidence for the completely 
opposite conclusion, that is, that continuous resource models 
outperform all-or-none models of visual working memory. 
Together, our reanalysis illustrates that even for mathemati-
cally well-specified models that make qualitatively dis-
tinct predictions, tested by extremely quantitatively savvy 
researchers, it can be a significant challenge to disentangle 
what counts as core and auxiliary. Using these articles as a 
case study, we offer concrete examples on how to identify 
and test auxiliary assumptions at different stages of study 
design and analysis, as well as at different levels of a psy-
chological theory.

We highlight that we focus on the Rouder et al. (2008) 
article and its replications because of its high impact, under-
scoring the seriousness of these issues, and because it fits 
with our expertise on models of memory, giving us an appro-
priate vantage point for critically evaluating it. Furthermore, 
the question of whether working-memory representations are 
fundamentally all-or-none or continuous has been a major 
aspect of working-memory research for over two decades 
(e.g., Bays & Husain, 2008; Luck & Vogel, 1997; Zhang 
& Luck, 2008), and speaks to many larger issues about the 
nature of cognitive architecture. For instance, it relates to 
questions of whether representations are more discrete ver-
sus distributed, which have been a core aspect of cognitive 
science since the 1950s (e.g., Garnelo & Shanahan, 2019; 
Marcus, 1998; Rosenblatt, 1958; Rumelhart et al., 1988). 
However, the issues we overview are in no way unique to 
these articles or this research domain, and we provide other 
examples across psychology in the General discussion. As 
part of this review, we also integrate and build on recent con-
ceptual and technical discussions of best practices in theory 
assessment (e.g., Kellen et al., 2021a; Scheel et al., 2021; 
Zilker, 2022). Together, our article is intended for a broad 
audience, with a range of expertise and interests in meta-
theoretic issues in psychology. In the following section, we 
summarize the relevant background of our case study article 
by Rouder et al. (2008) and Donkin et al.’s (2014) replica-
tion of this work.

Recognition theories of visual working memory

Visual working memory is a fundamental memory system 
that supports our ability to recognize objects (e.g., Emrich 
et al., 2011), maintain a stable sense of the environment 
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across eye movements (e.g., Irwin, 1991), and keep active 
mental representations in the service of goals (e.g., McCants 
et al., 2020). In addition to playing a key role in everyday 
function, visual working memory limits are associated with 
other global markers of cognitive function, such as general 
intelligence (Luck & Vogel, 2013). For these reasons, a 
large body of research focuses on developing theories and 
measures of visual working memory processes and archi-
tecture, and testing these via computational models (e.g., 
Bays et al., 2011; Oberauer & Lin, 2017; Rouder et al., 2008; 
Schurgin et al., 2020; Van den Berg et al., 2014; Zhang & 
Luck, 2008).

One of the most prominent visual working memory 
tasks is the recognition memory, change detection task, 
in which participants respond on the presence or absence 
of a change to a probed item (Fig. 1A). This task was one 
of the first used to measure limits in visual working mem-
ory capacity (Luck & Vogel, 1997; Pashler, 1988), and 
continues to be popular because it provides an easy way 
of probing visual memory as a function of experimental 
conditions or individual differences both in normal (e.g., 
Awh et al., 2007; Fukuda et al., 2010; Xu & Chun, 2006) 
and in clinical populations (e.g., Oudman et al., 2020). 
In light of its prevalence, it is important to find a theory 
that best characterizes change detection performance to 

A.

C.

B.

Fig. 1  (A) An example trial in a change detection task in which par-
ticipants need to remember five colored squares and their spatial 
locations. After a brief delay, participants must indicate whether the 
probed item is the same or different than the item originally pre-
sented at that location. (B) A schematic of all-or-none and continuous 
resource models, as well as their theoretical receiver operating char-
acteristics (ROCs). Classic discrete slot models postulate that mem-
ory fails in an all-or-none way and predicts a linear ROC. Continuous 

resource models postulate that memory representations are continu-
ous and predict curvilinear ROCs. (C). These models make qualita-
tively distinct predictions about the shape of the ROC, but there is 
a portion of ROC space where the models make overlapping predic-
tions (gray-shaded region), making data that falls in this region non-
diagnostic. As shown in the aggregate ROC data, experiments that 
use only a few (e.g., three) base-rate manipulations may generate data 
that falls in this non-diagnostic region
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guide theorizing and measurement in the visual working 
memory domain.

Two major theories of recognition visual working mem-
ory have been relied on for measurement of performance 
in change detection tasks, the all-or-none and continuous 
resource theory (Fig. 1B). All-or-none theories postulate 
that visual working-memory limits are set in terms of a 
discrete number of “slots” that store representations of 
simple or bound features (e.g., Cowan, 2001; Pashler, 
1988; Vogel et al., 2001), whereas continuous resource 
theories postulate that visual working memory limits are 
set in terms of a continuous resource that is distributed 
across features and items (e.g., Alvarez & Cavanagh, 2004; 
Schurgin et al., 2020; Van den Berg et al., 2014; Wilken & 
Ma, 2004). A formal way of distinguishing these two spe-
cific models – which have dominated in change detection 
tasks – is via Receiver Operating Characteristic (ROC) 
analysis, a central modeling approach in the study of rec-
ognition memory (e.g., Wixted, 2007; Yonelinas & Parks, 
2007) in which hits are plotted as a function of false alarm 
rates for different levels of a person’s response bias.

All-or-none and continuous resource models make 
qualitatively different predictions of how hit (“present” 
responses on present trials) and false alarm (“present” 
responses on absent trials) rates vary with changes in 
response bias (propensity to say “present”) in change 
detection tasks (Fig. 1C). All-or-none models postulate 
that there is a fixed probability that an item is or is not in 
memory, and response bias only affects the probability 
of guessing that an item is present. This entails a linear 
change in hits as a function of false alarms since bias is 
considered to affect hits and false alarms via a change 
in a fixed slope. In contrast, traditional resource models 
postulate a Gaussian probability distribution over possible 
memory strengths. This entails that a shift in response bias 
predicts a curvilinear change in hits as a function of false 
alarms. Thus, if data fall within a diagnostic region of 
ROC space (Fig. 1C), these two models can be compared 
by assessing the relative fit of each function to the empiri-
cal ROC. This was the approach taken by Rouder and col-
leagues (2008), who applied ROC analysis and manipu-
lated response bias via a base-rate manipulation by varying 
the proportion of change trials across experimental blocks.

A critical broad takeaway from our summary is that, in 
principle, testing between continuous resource and all-or-
none models should be extremely straightforward because 
both are relatively simple computational models that make 
qualitatively distinct predictions about the shape of ROC 
functions. However, as we show, even such seemingly 
straightforward model comparisons, implemented by com-
putational modeling experts, can be extremely difficult to 
implement rigorously in practice (also see, e.g., Dube & 
Rotello, 2012).

Rouder et al.’s (2008) findings and intended scope 
of current reanalysis

Rouder et al. (2008) reported evidence for all-or-none 
models. These results continue to have a major impact on 
theorizing and measurement in the field of visual work-
ing memory. For instance, they are commonly cited as 
evidence for item-based limits within the visual work-
ing memory literature (Cowan, 2014; Luck & Vogel, 2013; 
Ngiam et al., 2023; Sone et al., 2021). Furthermore, they 
are used to motivate a measure, the “K” metric, that pos-
tulates all-or-none processing in change detection para-
digms (Cowan, 2001; Rouder et al., 2011). Importantly, 
this metric is still commonly used in the study of how 
individual differences in visual working memory limits 
predict other higher-level processes, such as general intel-
ligence (Fukuda, et al., 2010), reading ability (Daneman & 
Carpenter, 1980), and age-related cognitive changes (Jost 
et al., 2011). The continued use of K has major implica-
tions because it can capture some changes in performance 
as latent changes in visual working memory capacity, 
whereas resource model-based metrics capture these as 
changes in response bias (Williams et al., 2022). This 
implies that K may not simply be an imprecise but a biased 
measure of working memory capacity.

Importantly, the implications of our reanalysis and 
findings may not necessarily extend to other tasks; for 
instance, we are agnostic regarding whether our results 
extend to running memory span tasks, which use other 
stimuli (e.g., verbal stimuli) and alternative presentation 
formats (e.g., serial presentation). Furthermore, our results 
may not extend to other variants of item-limit models. In 
particular, many hybrid models and extensions to other 
tasks have been developed, most notably mixture mod-
els that incorporate elements of both slots and resources, 
which were first introduced in the visual working memory 
literature to account for data from continuous reproduc-
tion tasks (Zhang & Luck, 2008). While researchers have 
used ROC analyses to formally evaluate mixture models 
in change detection tasks (Robinson et al., 2020; Yoneli-
nas, 2023; Xie & Zhang, 2017), there are currently no 
mixture-model based metrics of visual working memory 
limits that can be obtained without model fitting. Moreo-
ver, mixture models are conceptually and formally dis-
tinct from the class of all-or-none (“threshold”) models, 
which are supported by the results of Rouder et al. (2008). 
Given that mixture models share assumptions with both 
all-or-none and resource theory by postulating item lim-
its and noisy memory representations, using K metrics 
as a proxy for mixture models does not have a principled 
basis. Nevertheless, the dominant measure of visual work-
ing memory item-limits in change detection tasks is still 
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overwhelmingly analyzed using the classic all-or-none 
model (e.g., “K” values; Forsberg et al., 2021; Jakubowska 
et al., 2021; Kardan et al., 2020; Kvitelashvili & Kessler, 
2024; Pratte & Green, 2023; Roark et al., 2023; Strzelczyk 
et al. 2023). The question of whether memories fail in an 
all-or-none manner in visual working memory, therefore, 
remains critical to theorizing and measurement in the rec-
ognition working memory domain.

To summarize, even though other models now exist for 
continuous reproduction tasks (e.g., Zhang & Luck, 2008), 
choosing between all-or-none and continuous resource met-
rics – which remain the two major ways of conceiving of 
performance in change detection tasks – has major conse-
quences for theorizing and practice because they can yield 
qualitatively different and contradictory conclusions in real 
scenarios (e.g., Brady et al., 2022; Robinson et al., 2020; 
Williams et al., 2022). Furthermore, as we review next, 
although metrics based on discrete, all-or-none slots remain 
widely used in change detection (e.g., Strzelczyk et al., 
2023), they have not received consistent support in other 
studies and paradigms.

An exception in the visual working memory 
modeling literature

Despite their long-lasting impact, the findings of Rouder 
et al. (2008) are puzzling when viewed through the lens of 
contemporary modeling work and theorizing (Bays et al., 
2009). This is because they conflict with modeling results 
from numerous other visual working memory experiments. 
First, these results conflict with evidence from a recent, 
novel critical test developed for change detection para-
digms (Winiger et al., 2022), which was designed to pro-
vide an alternative, formal way of comparing all-or-none and 
resource models in change detection tasks, while obviating 
the limitations of relying on auxiliary assumptions of ROC-
based modeling. This study used a response bias manipula-
tion to examine whether low confidence judgments could be 
systematically biased, a result only consistent with resource 
models where confidence judgements are based on the rela-
tive evidence for one of two responses. This provides conver-
gent evidence for graded rather than all-or-none information 
storage in change detection paradigms.

Second, the Rouder et al. (2008) results conflict with 
evidence from change detection paradigms in which ROCs 
are constructed via measures of confidence rather than 
manipulated via different base rates (Robinson et al., 2020; 
Williams et al., 2022; Wilken & Ma, 2004). Although the 
use of confidence-based ROCs has been criticized because, 
in principle, people can use complex, non-linear strategies 
to map memory states to confidence scales (Malmberg, 

2002), this critique has not received consistent empiri-
cal support (Delay & Wixted, 2021). Moreover, as we 
previewed, ROCs built off base-rate manipulations also 
involve strong auxiliary assumptions, which can yield non-
diagnostic data when violated (Macmillan & Creelman, 
2005). At a minimum, inconsistent results across studies 
that involve basic modifications to task demands, such as 
use of confidence versus base-rate manipulations, signals 
a need to reassess methodological auxiliary assumptions.

Finally, the results of Rouder et al. contradict evidence 
from popular continuous reproduction tasks, in which par-
ticipants use a continuous report, such as a color wheel, 
to make memory judgments (Wilken & Ma, 2004). Such 
continuous reproduction tasks yield distributions of mem-
ory errors, rather than discrete responses, making them 
more sensitive to potential variations in memory fidelity. 
Importantly, evidence from continuous reproduction tasks 
reveals consistent support for the view that visual memory 
representations are not all-or-none, but vary in precision as 
a function of memory load, encoding time and delay (e.g., 
Bays, 2015; Schurgin et al., 2020; Van den Berg et al., 
2014; also see Zhang & Luck, 2008, who find evidence for 
variation in precision, rather than all-or-none memories 
like those compatible with all-or-none models of change 
detection tasks).

Given evidence against pure all-or-none models of 
visual working memory, what accounts for the continued 
impact of Rouder et al. (2008) and its follow-ups, par-
ticularly in motivating the use of “K” values for change 
detection even in high-profile new experiments? The ongo-
ing influence of Rouder et al. (2008) on theorizing and 
measurement could reflect the erroneous view that all-or-
none models are proxies for hybrid or “mixture” models 
of visual working memory (Zhang & Luck, 2008). Impor-
tantly, as reviewed, this view is incorrect because mixture 
models postulate variations in memory precision and dif-
fer conceptually and formally from all-or-none models of 
memory (for extended discussion of this point, see Robin-
son et al., 2020; Williams et al., 2022). In fact, comparing 
mixture and continuous resource models can be extremely 
difficult because, unlike all-or-none models that make 
qualitatively different predictions than resource models, 
mixture models can also predict curvilinear ROCs. There-
fore, within the broader empirical and theoretical work on 
visual working memory, the high-impact study of Rouder 
et al. (2008) is an exception because it is one of few formal 
modeling studies that provides support for strictly all-or-
none models of visual working memory, and, thus, almost 
single-handedly supports an extremely widespread appli-
cation of all-or-none measures (“K” values) and views on 
the architecture of working-memory (e.g., Cowan, 2001).
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Critical assessment and replications by Donkin et al. 
(2014)

To address why Rouder et al. (2008) found evidence for 
the all-or-none model – despite its lack of support in other 
tasks — Donkin et al. (2014) conducted direct and indirect 
replications of Rouder et al. (2008). Importantly, the repli-
cations and analyses of Donkin et al. (2014) were designed 
to address several of the major methodological and ana-
lytic limitations discussed in this article, most notably 
the use of non-diagnostic data and biased model recovery 
metrics. In their critical follow-up experiments, Donkin 
et al. (2014): (1) reran the Rouder et al. (2008) experiment 
with a nearly identical design and larger sample size (> 90 
participants instead of 23; Experiment 1); (2) ran a high-
powered replication at the level of trials (> 2,000) and 
increased the number of base-rate conditions (from 3 to 5) 
to increase the chance that empirical ROC functions were 
diagnostic for testing the models (Experiment 2); and (3) 
ran an experiment with a larger number of base-rate con-
ditions but a single set size to check the robustness of the 
modeling results (Experiment 3). Critically, the authors 
also assessed the diagnosticity of model comparison met-
rics using model recovery. Donkin et al. (2014) reported 
evidence for all-or-none models in their first two experi-
ments in which they varied memory load (Experiments 1 
and 2), as in the study of Rouder et al. (2008), but not in 
one experiment in which memory load was held constant 
throughout the experimental session (Experiment 3), and 
the authors noted that evidence for either model within and 
across experiments was ambiguous (“Taken together, the 
results of the four experiments provide a rather mixed mes-
sage regarding whether one should prefer the DS or the 
SDT model.” p. 2110). These authors considered several 
explanations for their results, including non-diagnostic 
data and restricted model assessment, and that people stra-
tegically change how they maintain visual memory repre-
sentations based on their expectations about memory load 
(Donkin et al., 2016), encoding whole instead of partial 
item information when memory load is unpredictable.

Some alterantive proposals are also that when visual 
memoranda are stored in memory, there is always some 
noise associated with the representations; however, when 
the changes are salient or “big” (e.g., the change happens 
across rather than within categorically distinct colors) as 
in Rouder et al. (2008), the amount of perceptual noise 
is insufficient to induce a confusion between the original 
item and the (changed) comparison probe, and this, conse-
quently, reduces the contribution of noise on performance 
(Donkin et al., 2013; Nosofsky & Gold, 2016). Although 
these views provide a sophisticated framework for bridging 

inconsistencies across experimental paradigms, they have 
not received consistent empirical support in other change 
detection experiments that use salient changes (Robinson 
et al., 2020; Williams et al., 2022; Winiger et al., 2022), 
nor other forced choice paradigms that use mixed set size 
manipulations (e.g., Schurgin, et al., 2020; Wilken & Ma, 
2004). Through this lens, results of Rouder et al. (2008) 
and Donkin et al. (2014) stand as an exception in the visual 
working memory literature. As discussed, this point is criti-
cal because these studies provide the dominant empirical 
support for all-or-none models and continue to motivate 
prominent measures of visual working memory limits (“K” 
values as a measure of capacity) in the field.

In general, such empirical inconsistencies can signal 
true, theoretically meaningful processing differences across 
paradigms, which may warrant revising core theoretical 
assumptions as part of routine theory development (Mar-
golis, 1987). In the current context, results of Rouder et al. 
(2008) and Donkin et al. (2014) may require postulating that 
the effects of noise on memory representations differ as a 
function of experimental conditions (as proposed by Donkin 
et al., 2013; Nosofsky & Gold, 2016). Alternatively, incon-
sistencies across studies could also indicate that researchers 
failed to identify and test auxiliary assumptions. In this case, 
an empirical anomaly could be an artifact of limited meth-
odology or analytic approaches, such as the methods used 
to construct ROCs and compare models, respectively, and, 
as such, not warrant revising the core theory.

In the remainder of the article, we test between these 
alternatives by directly re-examining auxiliary assumptions 
of Rouder et al. (2008) and building on the critical reanalysis 
of Donkin et al. (2014). We begin by using these studies and 
mainstream ideas from the metascience literature to illustrate 
how assumptions are made at different stages of theory test-
ing, which can be practical or conceptual, and at different 
levels of a theoretical framework, which can be specific to a 
theory or common to each competing theory.

Auxiliary assumptions at different stages of theory 
assessment

The view that auxiliary assumptions play a fundamental 
role across multiple stages of theory assessment has been 
discussed for some time (Duhem, 1954). The central role of 
auxiliary assumptions in theory testing follows from the fact 
that researchers must bridge the “deductive gap” between a 
core theory—such as the view that visual memory represen-
tations are stored in an all-or-none fashion versus continu-
ously— and empirical observations (Suppes, 1966; for an 
in-depth discussion of how auxiliary assumptions bridge the 
“deductive gap,” see Kellen, 2019).
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First, auxiliary assumptions are made on a conceptual 
level because, on their own, basic theoretical propositions 
are underspecified. For instance, researchers must determine 
how to instantiate the view that visual working memory 
consists of “item limits” or “resources” as computational 
models that can be tested via ROC analysis. These compu-
tational models carry their own conceptual and parametric 
assumptions (see right panel of Fig. 2A). Some of these 

model-based auxiliary assumptions are theory-specific, 
meaning they apply uniquely to a particular theory. A popu-
lar example of what is commonly viewed as a theory-spe-
cific auxiliary assumption is that the distribution of memory 
strengths in continuous resource models is Gaussian in form 
(Wickens, 2001), which is instantiated with Gaussian sig-
nal detection models. This is often viewed as an auxiliary 
assumption (e.g., Kellen & Klauer, 2015; Rouder et al., 

A.

B.

Fig. 2  A schematic of assumptions made when testing psychological 
theories. (A) Theory general assumptions (top of Panel A) are those 
that can apply to any of the contending theories and encompass both 
core and auxiliary assumptions. Theory specific assumptions apply 
only to specific theories and encompass core and auxiliary assump-
tions. Auxiliary assumptions are also made at methodological and 
analytic stages of theory testing, and bear on the adequacy of meth-

odology and analyses to discriminate between competing models. (B) 
The full factorial set of all-or-none and continuous resource models 
matched on each of the theory general auxiliary assumptions. Previ-
ous work considered only a subset of these (white cells), while not 
testing the remaining subset of possible models (blue cells), therefore, 
confounding auxiliary assumptions with core ones
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2010) because there are many types of continuous distribu-
tions (e.g., Gaussian, gamma, log-normal, etc.), and reject-
ing one of these does not rule out continuous resource theory 
as a whole.1

In addition to theory-specific auxiliary assumptions, 
there are theory-general auxiliary assumptions, which can 
apply to each of the contending theories. An example of a 
theory-general auxiliary assumption in the context of visual 
memory research is how processes, such as response bias 
and memory capacity, vary as a function of memory load 
in change detection tasks. For instance, one assumption 
made by Rouder et al. (2008) and Donkin et al. (2014) is 
that response bias parameters remain constant as a function 
of memory load, that is, the number of items that people 
must remember. Although this assumption can hold for both 
all-or-none and resource models, it does not follow logically 
from these models and is not core to the central question of 
whether ROC curves are linear or curvilinear.

Furthermore, as we discuss in greater detail below, sig-
nal detection models are compatible with other processing 
assumptions, including the view that people use strength of 
evidence rather than a likelihood ratio rule to make memory 
decisions. This strength of evidence decision rule would 
predict changes in response bias as a function of task dif-
ficulty, and therefore, memory load. This too suggests that 
fixing response bias parameters across memory load condi-
tions may have not provided the best testbed for the signal 
detection model. To summarize, Rouder et al. (2008) and 
Donkin et al. (2014) examined a restricted subset of plausi-
ble all-or-none and continuous resource models and did not 
assess alternatives to each of these theory-general auxiliary 
assumptions. That is, the authors did not test the full set 
of auxiliary assumptions regarding how processes, such as 
response bias and capacity, vary as a function of memory 
load (see unexamined model variants in Fig. 2B). To empha-
size, although none of these theory-general assumptions 
are core predictions of all-or-none and continuous resource 
theories, it is important to consider each of them to ensure 
that auxiliary theoretical assumptions are not conflated with 
core ones.

In addition to theoretical auxiliary assumptions, research-
ers also make practical auxiliary assumptions that bear on 
their choice of methodology (left panel of Fig. 2A). This 
step in theory assessment involves determining whether an 

experiment is likely to yield valid and reliable measures of 
central cognitive processes. In the current context, ROC 
analysis is the dominant modeling approach in the study 
of recognition memory (e.g., Wixted, 2007; Yonelinas & 
Parks, 2007) and involves comparing the relative fit of 
empirical ROCs, obtained with a specific methodology, to 
the theoretical ROCs predicted by each model. Rouder et al. 
(2008) and Donkin et al. (2014) used a base-rate manipula-
tion to construct empirical ROCs, and, therefore, rely on 
the methodological assumption that this manipulation will 
yield ROC data that fall within a diagnostic region of ROC 
space – one that would allow them to discriminate between 
the linear and curvilinear ROC functions predicted by all-
or-none and resource models, respectively (Fig. 1C). This 
assumption is auxiliary because it does not follow logi-
cally from either discrete or continuous resource theories. 
Importantly, previous work suggests that this assumption 
may, in fact, not hold (Dube & Rotello, 2012). That is, as 
pointed out by Donkin et al. (2014), participants may be 
insufficiently sensitive to all levels of a base-rate manipula-
tion and, consequently, empirical ROCs can be noisy and/
or restricted in range such that they are equally compat-
ible with both models (gray region of Fig. 1C), making it 
difficult or impossible to discriminate between the models 
in practice. As such, it is critical to verify the auxiliary 
assumption that the methodology used to link theory to 
empirical observations is sound.

Finally, researchers make practical auxiliary assumptions 
when they choose how to analyze data and what metrics 
to use to draw inference. In the computational modeling 
domain researchers’ inferences are based on model com-
parison, and each model comparison approach rests on its 
own auxiliary assumptions that require validation (Lee et al., 
2019). Rouder et al. (2008) and Donkin et al. (2014) apply a 
mainstream approach that involves comparing models based 
on their fit to data, using Akaike Information Criteria (AIC) 
and Bayesian Information Criteria (BIC) model comparison 
metrics. These metrics capture the goodness of a model’s fit 
to data, while penalizing its flexibility based on its number 
of parameters. Importantly, as also pointed out by Donkin 
et al. (2014), these model comparison metrics have been 
criticized because model flexibility is jointly determined by 
a model’s number of parameters and its functional form, 
and, therefore, penalizing a model solely based on its num-
ber of parameters may not always be appropriate (Myung 
et al., 2009). (To address this problem, Donkin et al., (2014) 
used landscaping analyses, though, as pointed out by the 
authors, these also showed ambiguous support for both mod-
els and, as also pointed out by these authors, model compari-
sons were not implemented when models were matched on 
their ‘theory general’ auxiliary assumptions.) Accordingly, 
it is critical to verify that AIC and BIC can be used to draw 
inferences from the data and reliably recover each of the 

1 We note that a Gaussian distribution can have a principled theoreti-
cal basis through the lens of Central Limit Theorem (Green & Swets, 
1966), which is consistent with recent work showing that people pool 
sensory evidence to construct Gaussian visual memory-strength rep-
resentations (Robinson et al., 2023). We revisit this point in the Gen-
eral discussion, where we discuss how, under some conditions, theo-
retical auxiliary assumptions can become core assumptions as part of 
theory development.



555Psychonomic Bulletin & Review (2025) 32:547–569 

generative models given the models and characteristics of 
the Rouder et al. and Donkin et al. data and methodology 
(Lee et al., 2019). 

Reanalysis

In the following sections, we apply these ideas to re-evaluate 
the results of Rouder et al. (2008) and Donkin et al. (2014). 
For ease of exposition, we divide our reanalysis into three 
“steps,” which can be adapted by researchers in their assess-
ment of their own or others’ work. The first step involves 
testing methodological and analytic auxiliary assumptions. 
We approach this problem via model recovery analysis, a 
well-known simulation-based approach that provides insight 
into whether a set of models could be recovered in prac-
tice given characteristics of the data (Lee et al., 2019). This 
model recovery analysis provides insight into whether the 
methodology yields diagnostic data and whether the model 
comparison metrics are well calibrated to recover each of the 
models. To preview, we find that these practical assumptions 
were violated in the original studies.

In the second step of our reanalysis, we examine whether 
diagnostic hypothesis-testing conditions can be found by 
considering the full set of theory-general auxiliary assump-
tions, matching all-or-none and continuous models on these 
assumptions, and implementing model recovery analysis to 
compare how recoverable each model is given the data and 
model comparison metrics. The final step involves testing 
the central hypothesis and drawing inference under these 
diagnostic testing conditions. We highlight that, while the 
details of our reanalysis are specific to these visual rec-
ognition memory studies, the analytic tools we use, such 
as model recovery simulations as well as our conceptual 
reanalysis of theoretical auxiliary assumptions, generalize 
across research domains.

Step 1: Reassess auxiliary assumptions from original 
studies

We begin our assessment of Rouder et al. (2008) and Donkin 
et al. (2014) by examining whether there are signs that key 
auxiliary assumptions are violated in the original analysis. 
To this end, we implemented model recovery analysis to 
determine whether the data in each experiment of Rouder 
et al. (2008) and Donkin et al. (2014) as well as model com-
parison metrics could allow us to correctly recover the two 
best performing all-or-none and continuous resource models 
if they were the true generative models. We also reanalyzed 
the original data by assessing how models fit to data at the 

level of individuals, instead of the aggregate, to check the 
robustness of the modeling results.

Description of models

The two best performing models in Rouder et al. (2008) – and 
the two models assessed by Donkin et al. (2014) – were the 
all-or-none model with the attention lapse parameter, in which 
capacity, attention lapse, and response bias parameters were 
fixed across set sizes, and the equal variance likelihood ratio 
rule signal detection model, in which the resource parameter 
(d’) was free to vary across set sizes and response bias param-
eters were fixed across set sizes. The predicted hits and false 
alarms (FA) for the attention lapse, all-or-none model are 
shown in Eqs. 1a and 1b:

where the probability of a hit is the joint probability that 
people are paying attention to the display with probability 
a and the probed item is in memory with probability K∕Ni 
– where K denotes memory capacity and Ni denotes the total 
number of items in condition i and if an item is not in mem-
ory (1 − K∕Ni) and people correctly guess with probability 
gj in base-rate condition j that the probed item changed. A 
hit can also occur if people are not paying attention to the 
display on a given trial (1 − a) and correctly guess that the 
probed item changed. The probability of a false alarm is the 
probability that people are paying attention ( a ) to the display 
but the item is not in memory and they incorrectly guess that 
the probed item changed (1 − K∕Ni)gj or the probability that 
they are not paying attention to the display and incorrectly 
guess that the probed item changed (1 − a)gj.

The equal variance likelihood ratio rule signal detection 
model postulates that distribution of memory strengths gen-
erated on signal (change) trials is normally distributed with 
unit variance and mean d′ , and the distribution of memory 
strengths generated on noise (no change) trials is normally 
distributed with unit variance and mean zero. Furthermore, the 
model postulates that people infer the probability of a change 
based on the likelihood ratio between these two distributions, 
given an observed memory strength signal x . The decision 
rule for this model as well as the derivations for the prob-
ability of hits and false alarms is shown in Eqs. 2a, 2b and 2c, 
respectively:

(1a)p(Hit) = a(K∕Ni + (1 − K∕Ni)gj) + (1 − a)gj

(1b)p(FA) = a(1 − K∕Ni)gj + (1 − a)gj

(2a)𝜙(x − d�
i
)∕𝜙(x) > 𝛽j

(2b)p(Hit) = Φ(d�
i
∕2 − log(�j)∕d

�
i
)
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where � and Φ is the probability density and cumulative den-
sity of the normal distribution, respectively, d′

i
 is the mean 

of memory strength signals in set size condition i , and �j 
is the decision criterion for responding change in base-rate 
condition j.

Details of analysis

We used model recovery analysis to assess whether either 
of the two model comparison metrics (AIC or BIC) could 
correctly recover each of these two models if they had in 
fact generated the data, given characteristics of data from 
Rouder et al. (2008) and Donkin et al. (2014). Model recov-
ery is recognized as a fundamental part of best practices in 
computational modeling because it provides an independ-
ent way of verifying whether each of the competing models 
would be correctly identified as a winning model under the 
hypothetical scenario that it is the generative model (Heath-
cote, et al., 2015; Lee et al., 2019; Wagenmakers et al., 2004; 
Zilker, 2022). As shown in Fig. 3A, model recovery analy-
sis involves simulating data directly from the model equa-
tions, fitting the generative and each competing model to 
the simulated data, and evaluating which model is the best 
performing model with each metric of model fit (Heathcote, 
et al., 2015; Lee et al., 2019; Wagenmakers et al., 2004). 
Diagnostic metrics of model fit will correctly recover the 
true data-generating model, whereas non-diagnostic metrics 
will incorrectly favor a model that did not actually generate 
the data. In the context of our reanalysis, model recovery 
analysis provides insight into whether BIC or AIC could 
reliably recover both all-or-none and continuous resource 
models had they generated the data.

When validating model performance metrics via model 
recovery simulations, it is important to do so while replicat-
ing key aspects of the study design. For instance, models 
might be recoverable in the limit but not with noisy samples 
of data; therefore, simulated samples of data should have 
the same number of observations as the original samples. 
Likewise, the relative fit of the model will vary depending on 
the estimated parameter values; therefore, when implement-
ing model recovery, it is important to ensure that genera-
tive models are recoverable given the best fitting parameter 
estimates within a given data set. As highlighted by Donkin 
et al. (2014), this approach helps address the question of 
whether metrics of model fit are diagnostic given the spe-
cific methodological and analytic approach chosen by the 
researcher. 

All modeling and analyses used data from Rouder et al. 
(2008) and Donkin et al. (2014), and were implemented 
in Matlab (for code see the Open Science Framework 
at: https:// osf. io/ mg63r/). Models were fit to data using 

(2c)p(FA) = Φ(−d�
i
∕2 − log(�j)∕d

�
i
) Maximum Likelihood Estimation, by minimizing the nega-

tive log likelihood using the fmincon minimization algo-
rithm. For the model recovery analysis, we simulated data 
100 times from each model using parameter estimates from 
each of the participants in the three studies (a total of 27,600 
simulations across participants and studies). We quantified 
model recovery reliability for each model by calculating 
the probability of recovering the correct generative model 
based on AIC or BIC across these simulations. For example, 
p(RecDS) = 1 and p(RecCR) = 1 means that the probability 
of recovering the all-or-none discrete-slot and continuous 
resource models, respectively, with a given metric is highly 
reliable for a participant within a given experiment. Rela-
tively lower scores for one of the models indicate that the 
model was not recovered as reliably. 

To ease interpretability, we show the results of model 
fits and model recovery analyses graphically in Fig. 3B. For 
completion, we also list all values of model fit and best fit-
ting parameter estimates that were used for model recovery 
in Table 1 and show the values of the model recovery met-
rics for each model comparison in Table 2. We found that 
the continuous resource model was essentially unrecover-
able across the three studies when BIC was used to compare 
models. The version of the resource model tested by these 
authors has more parameters than the all-or-none model, so 
these results with BIC align with prior work in which BIC 
was incorrectly biased towards models with fewer param-
eters (e.g., Robinson et al., 2021; van den Berg et al., 2014). 
We also found that AIC failed to reliably recover the con-
tinuous resource model in the Rouder et al. (2008) study and 
in Experiment 1 of Donkin et al. (2014). The only exception 
was in Experiment 2 of Donkin et al. (2014), in which both 
models were recovered with equal reliability.

Next, we evaluated results from fitting this set of models 
to the real data at the level of individual participants. Our 
reanalysis of the original data revealed, surprisingly, that 
neither model received strong support (Fig. 3C) at the level 
of individual participants (a result also noted by Donkin 
et al., 2014). Although BIC favored the all-or-none model, 
which has fewer parameters, AIC did not statistically favor 
either model at the level of individual participants. There-
fore, even though BIC favored the all-or-none model in the 
data, these results are inconclusive because model recovery 
shows that BIC tends to favor the all-or-none model even if 
the continuous resource model generated the data, that is, it 
could not recover this resource model in principle.

Together, we found that the original results are ambigu-
ous as to which is the best performing model. This follows 
because we do not know how all-or-none and continuous 
resource models would compare if metrics of model fit could 
recover each of these models with equal reliability, and if 
we had considered the full scope of theory-general auxil-
iary assumptions when comparing models. Therefore, this 

https://osf.io/mg63r/
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reanalysis indicates that, in fact, basic methodological and 
analytic auxiliary assumptions in Rouder et al. (2008) and 
Donkin et al.’s (2014) Experiment 1 were violated. Model 

recovery shows that the data and/or model metrics in these 
studies were not well calibrated to compare all-or-none and 
continuous resource models and, furthermore, the original 

A.

B.

Fig. 3  (A) Schematic of model recovery analyses, which can be used 
to assess diagnosticity of model recovery metrics and data in for-
mal model comparison. (B) Results of model recovery reanalysis of 
Rouder et  al. (2008) and Donkin et  al. (2014) experiments with the 
original restricted set of all-or-none and continuous resource mod-
els. Model recovery results are quantified as the difference between 
p(RecDS) and p(RecCR) ; scores close to zero indicate that each 
model was recovered comparably, and scores closer to 1 (-1) indicate 
the continuous resource (all-or-none) model was not recovered as 
reliably as the all-or-none (continuous resource) model (see Results 

for further technical details).  Circles and stars denote medians. (C) 
Results of model fits to original data. Note that when model recovery 
results are significant (denoted with white star in Panel B), this means 
that metrics of model fit are biased, or non-diagnostic and cannot 
be used to discriminate between the competing models. To empha-
size this, model fit symbols (circle, star, and evidence bar) are coded 
in gray and green when results of model fit are uninterpretable and 
interpretable, respectively. Circles and stars denote total summed evi-
dence
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Table 1  Models fit and best-fitting parameters. Summary of results of 
model fits from the Rouder et al. (2008) study (R08) and Experiments 
1 (E1), 2 (E2), and 3 (E3) from Donkin et al. (2014) (D14). The sum-
mary includes results from a comprehensive set of model variants 

where all parameters were fixed across memory load conditions, cri-
teria were free to vary and capacity/resource parameters were fixed 
and vice versa, and all parameters were free to vary across memory 
load conditions

Experiment.

Number of set 

sizes, base rates, 

trials and

participants

Which parameters 

vary across set sizes

and total number of 

parameters

Model

Averages over participants

Fit statistics Parameter estimates

NLL AIC BIC K/d’ Lapse/

Exponent
Response bias

R08

3 set sizes

3 base rates

540 trials

23 subjects

All �ixed

5 parameters

RAoN 207.5 424.9 446.4 K=3.3 a=.85 g=.47, .63, .76

PEVSDL 207.6 425.3 446.7 d’=6.5 α=.83 β=1.04, .76, .55

Fixed criteria

Free K/d’
6 parameters

AoN 206.9 425.1 451.5 K=1.7; 2.9; 2.8 g=.47, .63, .76

EVSDL 206.5 425.7 450.8 d’= 3.4, 1.8, 1.1 β=1.04, .77, .56

Free criteria

Fixed K/d’
11 parameters

RAoN 204.2 430.3 477.5 K=3.4 a=.85 g2;5;8=.32, .57, .68; .49 .65, .76; .48, .62, .76

PEVSD 204.3 430.7 477.9 d’=6.9 α=.88 c2;5;8=2.13, 1.73, 1.5; .90, .62, .36; .64, .36, .0

All free

12 parameters

AoN 203.2 430.4 481.9 K=1.7, 2.9, 2.8 g2;5;8=.32, .57, .67; .49, .65, .77; .48, .61, .76

EVSD 203.1 430.2 481.7 d’= 4.5, 1.8, 1.0 c2;5;8=2.6, 2.0, 1.6; .94, .68, .43; .60, .31, -.06

D14 E1

3 set sizes

3 base rates

540 trials

97 subjects

All �ixed

5 parameters

RAoN 212.8 435.5 457 K=3.5 a=.75 g=.47, .60, .70

PEVSDL 212.5 435.0 456.4 d’=9.8 α=1.13 β=1.14, .84, .69

Fixed criteria

Free K/d’
6 parameters

AoN 211.6 435.1 460.9 K=2.3, 2.6, 2.4 g=.46, .60, .70

EVSDL 211.6 435.3 461 d’=2.64, 1.53, .91 β=1.14, .84, .69

Free criteria

Fixed K/d’
11 parameters

RAoN 209.1 440.1 487.3 K=3.5 a=.75 g3;5;8=.44, .59, .71; .51, .59, .71; .47, .61, .69

PEVSD 208.6 439.2 486.5 d’=8.6 α=1.1 c3;5;8=1.47, 1.2, .96; .86, .60, .34; .66, .27, .02

All free

12 parameters

AoN 207.9 439.9 491.3 K=2.3, 2.6, 2.4 g3;5;8=.45, .59, .71; .51, .59, .71; .46, .61, .69

EVSD 208.6 441.2 492.7 d’=2.9, 1.6, .84 c3;5;8= 1.57, 1.28, 1; .87, .62, .36; .88, .22, -.04

D14 E2

3 set sizes

5 base rates

2,400 trials

20 subjects

All �ixed

7 parameters

RAoN 751.7 1518 1558 K=2.9 a=.83 g=.22, .36, .61, .80, .90

PEVSDL 751.4 1517 1557 d’=5.9 α=.85 β=2.05, 1.34, .81, .53, .32

Fixed criteria

Free K/d’
8 parameters

AoN 748.7 1513 1560 K=1.7, 2.4, 2.2 g=.22, .36, .61, .80, .90

EVSDL 749.2 1514 1561 d’=3.2, 1.6, .99 β=2.02, 1.33, .82, .54, .33

Free criteria

Fixed K/d’
17 parameters

RAoN 740.5 1515 1613 K=2.9 a=.85
g2;5;8=.21,.29,.63,.72,.86;.28,.4,.64,.82,.89;

.2,.36,.58,.78,.91

PEVSD 737.2 1508 1607 d’=6.8 α=1.01
c2;5;8=2.2,1.9,1.6,1.3,.96;1.2,.93,.5,.08,-.32;

1.2,.77,.32,-.18,-.74

All free

18 parameters

AoN 738 1512 1616 K=1.7, 2.4,2.2
g2;5;8=.22,.32,.63,.71,.86;.27,.39,.64,.82,.89; 

.19,.36,.58,.79,.91

EVSD 735.5 1507 1611 d’=3.3,1.6,.85
c2;5;8=2.2,1.9,1.6,1.3, .94;1.3,.97,.55,.15,-.24; 

1.2,.74,.28,-.24,-.82

D14 E3

1 set size

5 base rates

500 trials

44 subjects

All �ixed

6 parameters

AoN 196.6 N/A N/A K=2.6 g=.35, .48, .63, .78, .84

EVSD 195.9 N/A N/A d’=1.3 c=1.48, 1.08, .79, .54, .43

RAoN refers to the Rouder version of the all-or-none visual working-memory (VWM) model (with an attention parameter), AoN refers to the 
standard all-or-none VWM model. PEVSD and PEVSDL refers to the power law version of the signal detection model where d’ is constrained to 
vary across memory load conditions via a power law, with the strength of evidence and likelihood ratio rule, respectively, EVSDL refers to the 
likelihood ratio rule signal detection model where d’ is free to vary across memory load conditions and response criteria are fixed, and EVSD 
refers to the classic signal detection model where all parameters are free to vary across experimental conditions. Rows shaded in gray denote the 
models that were reported as best performing models in the original studies, and cells shaded in orange denote models that were recoverable and 
best performing in the current reanalysis
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data did not reliably favor either model across participants. 
To summarize, the goal of our first reanalysis was to assess 
these studies for signs that key untested auxiliary assump-
tions were violated, and we found that they were.

Step 2: Find diagnostic testing conditions

In our second reanalysis, we directly assess which auxiliary 
assumptions are violated, and look for conditions that pro-
vide a diagnostic testbed for these models. To this end, we 
considered the full factorial set of all-or-none and continu-
ous resource model variants, instead of the restricted subset 
considered by Rouder et al. (2008) and Donkin et al. (2014). 
That is, we consider model recovery and fitting results when 
all-or-none and continuous resource models are matched on 
each of their theory-general auxiliary assumptions. In this 
context, each of the all-or-none and resource models has 
four variants, which reflects the full set of models crossed on 
their auxiliary assumptions regarding how response criteria 
and capacity or resources behave with changes in memory 
load (Fig. 2B).

This reanalysis has two advantages. First, it lets us test 
the auxiliary methodological assumption that these studies 
yielded diagnostic data (left panel of Fig. 2A). We do so by 
using model recovery and examining whether we can reli-
ably identify a winning model under conditions where all-or-
none and continuous are matched on their number of param-
eters. Second, it meets the conceptual criterion of comparing 
each model when they are matched on their theory-general 

auxiliary assumption and, therefore, their scope (right panel 
of Fig. 2A).

Description of models

In addition to the all-or-none model (Eq. 1a and 1b) and con-
tinuous resource model (Eq. 2a, 2b, and 2c) tested by Rouder 
et al. and Donkin et al., we include the following model vari-
ants. First, we test versions of the original models in which 
response bias parameters are free to vary across set sizes. 
This auxiliary assumption was untested by Rouder et al. 
(2008) and Donkin et al. (2014) (although Donkin et al. pro-
posed this as a further follow-up), but warrants assessment 
for two reasons. The first reason is because the question of 
whether ROCs are linear (in line with all-or-none models) 
or curvilinear (in line with continuous resource models) is 
independent of whether response bias parameters are free to 
vary across memory load sizes or not. The second reason is 
that fixing response bias in the signal detection model only 
makes sense through the lens of a very specific assumption, 
which is that people use the likelihood ratio between signal 
and noise distributions rather than strength of evidence to 
make decisions in recognition memory tasks. This assump-
tion is also ancillary in the context of comparing how people 
store information in visual working memory. Furthermore, 
a recent study provides evidence against the likelihood ratio 
signal detection rule (see Hu et al., 2023), indicating that 
evaluating alternative decision rules is tenable.

Importantly, prior work indicates that if people use a 
strength of evidence instead of likelihood ratio decision rule, 

Table 2  Results from model recovery for AIC and BIC with the restricted set of models used by Rouder et al. (R08) and Donkin et al. (E3)

Experiment Model

Probability of recovering 

generative model 

AIC BIC

R08
RAoN .80 .97

EVSDL .62 .26

D14 E1
RAoN .77 .97

EVSDL .63 .29

D14 E2
RAoN .92 .99

EVSDL .90 .69

D14 E3
RAoN .63

EVSDL .66

Proportions denote the average number of times a given model was recovered out of 100 simulations per each model and participant. Values 
closer to 1 indicate that a given model was recovered perfectly across 100 simulations, and values closer to zero indicate that a given metric 
was biased towards the alternative model. Cells shaded in blue denote instances where metrics of model fit were significantly biased towards a 
given model based on paired t-test comparisons across participants (ps < .001). To summarize, in this set of model recovery analyses, AIC and 
BIC were significantly biased towards the Rouder et al. all-or-none model in the original Rouder et al. study as well as Donkin et al.’s Experi-
ment 1, and BIC was biased towards the Rouder et al. all-or-none model in Donkin et al.’s Experiment 2. AIC and NLL were not biased towards 
either model in Donkin et al.’s Experiment 2 and Experiment 3, respectively; however, in these experiments metrics of model fit provided either 
ambiguous support or favored the resource model (see main text for details on model comparisons)
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they are more likely to set a conservative response crite-
rion with increasing task difficulty (e.g., Benjamin & Bawa, 
2004; Brown et al., 2007; Robinson et al., 2020). In the cur-
rent context, this view predicts that people become more 
conservative in responding “no change” when memory load 
increases (a pattern we also found in these data). Together, 
there are principled reasons to consider variants of models in 
which criteria are allowed to vary freely across experimental 
conditions.

In addition, we assess two additional versions of the 
all-or-none model in which capacity is free to vary across 
set size, both with free and fixed response bias parameters 
across set sizes. The equation for this model is equivalent 
to the standard all-or-none model for single probe change 
detection tasks, and its predicted hits and false alarms are 
shown in Eqs. 3a and 3b, with notation identical to that used 
in Eqs. 1a and 1b:

Finally, we also tested variants of a signal detection 
model where the resource parameter ( d′ ) was constrained to 
vary across set sizes, with both free and fixed response bias 
parameters across memory load conditions. These variants 
of the signal detection model were motivated by previous 
evidence that resources may change via a power law as a 
function of set size (e.g., Schurgin et al., 2020). Including 
this model allowed us to test a wider range of signal detec-
tion models as well as explore how signal detection models 

(3a)p(Hit) = Ki∕Ni + (1 − Ki∕Ni)gj

(3b)p(FA) = (1 − Ki∕Ni)gj

compare to all-or-none models under conditions where both 
theories predict that visual working memory limits are con-
strained to vary in a principled way across set sizes (via the 
power law and attention lapse parameter, respectively). The 
Equation of the power law signal detection model is identi-
cal to that shown in Eqs. 2a–2c, with the caveat that the d′ is 
fixed across set sizes and is weighted by the number of items 
in a given memory load conditions ( N ), which is raised to a 
power � , an additional parameter that is fixed across memory 
load conditions ( d�N−�).

Details of analysis

The analytic approach for implementing model recovery and 
assessment of model fit was the same as the one used in Step 
1. The main critical difference is that our model recovery 
analysis and assessment of model performance was focused 
on pairs of models that were matched on their theory-general 
assumptions and number of parameters.

Results

For simplicity, we report the negative log likelihood for all 
model comparisons because the matched models have the 
same number of parameters, and identical conclusions would 
be drawn with AIC and BIC. Table 3 summarizes results 
from model recovery analysis for each model, and Fig. 4A 
shows results of model fits and recovery graphically. Using 
model recovery, we found that each variant of the all-or-none 
and resource model was generally recovered with equal reli-
ability when it was tested against its matched counterpart 

Table 3  Results from model recovery using negative log likelihood (NLL), where all-or-none and resource models are matched on their theory-
general auxiliary assumptions and number of parameters

Experiment Model

Probability of recovering generative model (NLL)

Fixed criteria.

Fixed K/d’
Fixed criteria.

Freed K/d’
Free criteria.

Fixed K/d’
Free criteria.

Free K/d’

R08
AoN .72 .66 .65 .52

EVSD .76 .69 .70 .66

D14 E1
AoN .68 .65 .57 .60

EVSD .71 .66 .70 .56

D14 E2
AoN .95 .91 .91 .85

EVSD .95 .90 .89 .83

Proportions denote the average number of times that a given model was correctly recovered out of 100 simulations per each model and par-
ticipant. Values closer to 1 indicate that a given model was recovered perfectly across 100 simulations, and values closer to zero indicate that 
a given metric was biased towards the alternative model. Cells shaded in blue denote instances where metrics of model fit were significantly 
biased towards a given model based on paired t-test comparisons across participants (ps < .05). To summarize, NLL was biased towards the 
all-or-none model in Donkin et al.’s Experiment 1 when all parameters were free to vary across set sizes, and towards the resource model when 
resource capacity parameters were fixed across set sizes. Metrics of model fit showed comparable support for both models in the original Rouder 
et al. study and Donkin et al.’s Experiment 1, indicating that these data cannot be used to draw inferences about which is the best performing 
model. Model recovery analyses with Donkin et al.’s Experiment 2, however, showed no model bias and NLL showed support for the resource 
model when comparing models with real data
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A.

B.

Fig. 4  (A) Results of model fit and recovery with the full factorial 
set of all-or-none and continuous resource models when these are 
matched on their theory-general auxiliary assumptions. Comparisons 
are made only between “matched” pairs of all-or-none and continu-
ous resource models; these have the same number of parameters and 
are compared with the negative log likelihood (NLL). When models 
are matched on theory-general auxiliary assumptions, they all fit the 
data equally well, except in Donkin et  al. (2014; Exp 2), where the 
unconstrained resource model outperforms the unconstrained all-or-
none model. (B) Top: Results of comparing the best fitting resource 

model to all variants of the classic  discrete slot model in Experi-
ments 2 of Donkin et al. (2014), where empirical receiver operating 
characteristics (ROCs) span a wider range of ROC space. We find 
evidence for the continuous resource model using AIC, which is the 
only well-calibrated (unbiased) model comparison metric, as shown 
by the model recovery simulations (bottom). Circles and stars in 
model recovery denote medians. Circle and stars in model fits denote 
total summed evidence and are green and gray, when model recovery 
shows that model comparison metrics are diagnostic and non-diag-
nostic, respectively
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in all experiments. This means that we can use metrics of 
model fit to compare each of the model pairs and draw infer-
ences about which is the best performing model. Critically, 
in these model comparisons we found that both in Rouder 
et al.’s (2008) study and Donkin et al.’s (2014) Experiment 
1, all-or-none and continuous resource models fit the data 
equally well. That is, there was no statistically significant 
evidence for a best-performing model in these studies.

Together, these results indicate that data in the Rouder 
et al. study and Experiment 1 of Donkin et al. were not diag-
nostic for discriminating between all-or-none and continuous 
resource models. That is, each model can be recovered with 
equal reliability, but each model also fits the data as well as 
its competitor, meaning that these data could not be used to 
test between this set of matched all-or-none and resources 
models in principle.

These data may be non-diagnostic because the data fall 
within a restricted section of ROC space, in which the cur-
vature predicted by the continuous resource model is nearly 
linear and overlaps with the linear ROCs of the all-or-none 
model (Fig. 1C). Notably, this region of overlap may be 
wider when only three points are used to construct ROCs 
with noisy empirical data and may be exacerbated if partici-
pants are not sufficiently sensitive to all levels of the base-
rate manipulation (Dube & Rotello, 2012; Krantz, 1969). 
Ultimately, this reanalysis with the full factorial set of mod-
els reveals that both models fit the Rouder et al. (2008) and 
Donkin et al. (2014) Experiment 1 data comparably, indicat-
ing that the empirical ROCs were non-diagnostic.

Importantly, in Donkin et al.’s Experiment 2, we also 
found that all models were generally recovered equally well 
and robustly across participants, indicating that these met-
rics were not systematically biased to favor either model. 
Critically, in this experiment we find that no variant of the 
all-or-none model outperformed resources models, but two 
variants of the resource model – untested by Rouder et al. 
(2008) or Donkin et al. (2014) – outperformed their all-or-
none counterparts (Fig. 4A).

Collectively, these analyses and results illuminate which 
untested methodological and theoretical auxiliary assump-
tions were violated. Data from two experiments, including 
the study of Rouder et al. (2008), were non-diagnostic for 
testing between all-or-none and continuous resource models. 
This follows because model recovery results indicate that 
metrics of model fit (LL) can recover each model with equal 
reliability, however, when fitting models to real data, there is 
no “winning” model. In contrast, data from Donkin et al.’s 
(2014) Experiment 2 reveal provisional support for two 
variants of resource models, at least when these are tested 
against all-or-none models that are matched on their theory-
general auxiliary assumptions and have the same number 
of parameters. Together, at a minimum, the results of this 
reanalysis indicate that these studies provide no support for 

all-or-none models of visual working memory and provi-
sional support for the continuous resource model.

Step 3: Test central hypothesis and draw inference

So far, we found that in the original Rouder et al. (2008) and 
Experiment 1 of Donkin et al. (2014), all-or-none and con-
tinuous resource models provide comparable fits to the data, 
indicating that data in these experiments were not diagnostic 
and could not be used to tell these models apart. We also 
found that in Donkin et al.’s (2014) Experiment 2, variants 
of the continuous resource model outperformed all-or-none 
models when these models were matched on their theory-
general assumptions. Having identified a potentially diag-
nostic sample of data, and considered the full scope of all 
models, we can now ask: Is there a variant of the continuous 
resource model that is the best performing model overall?

Description of models

In the following section we examine whether the continu-
ous resource model is the best performing model overall 
when comparing it across all theory-general auxiliary 
assumptions. To this end, we collapse across the full set of 
theory-general auxiliary assumptions and compare the best 
performing variant of the continuous resource model— in 
which the resource and response bias parameters vary free 
across memory load conditions— to all variants of the all-
or-none model. We underscore that, while the best perform-
ing resource model has more parameters than some of its 
all-or-none counterparts, as before, we directly assess if and 
which metric of model fit can recover the generative model 
given this difference in parameters. That is, before making 
inferences from model comparisons, we use model recovery 
analysis to assess ancillary assumptions about the diagnos-
ticity of data and model comparison metrics.

Details of analysis

The general analytic approach for implementing model 
recovery and assessment of model fit was the same as the 
one used in Steps 1 and 2. The critical difference is that 
this reanalysis focuses on Donkin et al.’s (2014) Experiment 
2 data because results of model recovery and fit revealed 
that these were the only diagnostic data in experiments 
where memory load was manipulated.2 As discussed, we 
also focused our model recovery analysis and assessment of 
model fit on the best performing continuous resource model 

2 Donkin et  al.’s Experiment 3 does not manipulate memory load 
and, as reported by the authors, this experiment also provides support 
for the continuous resource model.
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and all variants of the all-or-none model to examine whether 
the resource model was the best performing overall.

Results

Table  4 summarizes results from model recovery and 
Fig. 4B shows modeling results graphically. When using 
BIC we found that it favored the all-or-none model in two 
instances in which these models had fewer parameters than 
the resource model, but we also found that BIC was biased 
towards these all-or-none models based on model recovery. 
Therefore, BIC does not provide a non-biased measure of 
model comparison in this context. Importantly, however, 
using model recovery we found that AIC was not biased 
towards the best-performing resource model (top panel 
of Fig. 4B) and when fitting the models to real data using 
AIC, we found that the resource model outperformed each 
of the all-or-none models in Experiment 2 of Donkin et al. 
(2014). Together, our assessment using AIC indicates that 
the superior performance of the best performing resource 
model does not reflect poorly calibrated metrics of model fit, 
or non-diagnostic data, but that it provides a better account 
of the data than its all-or-none counterparts (bottom panel 
of Fig. 4B).

Collectively, our modeling results align with those of 
Donkin et al.’s (2014) Experiment 3, in which they also used 
five base-rate manipulations but held memory load constant 
across the experimental session. Our results further indicate 
that there is no need to postulate different strategies across 
visual working memory paradigms or conditions. The con-
tinuous resource model outperforms the all-or-none models 
when considering the full set of auxiliary assumptions and 
analyzing diagnostic data. It is likely that a critical aspect 
of Donkin et al.’s Experiment 3 is that the authors used a 
sufficient number of base-rate manipulations (five) to obtain 
diagnostic data, and— because the experiment only had a 

single memory load condition— the compared models were 
already matched on their number of parameters and theoreti-
cal scope. More broadly, these results show that once we 
identify diagnostic testing conditions, we find evidence for 
the completely opposite theoretical conclusion.

General discussion

Implications for theory and measurement 
in the working memory literature

We begin by discussing the implications of our results for 
research on visual working memory. Our results corrobo-
rate the view that continuous resource rather than classic 
all-or-none models best capture working memory processes 
in change detection. This finding is consistent with results 
obtained in visual continuous reproduction paradigms, 
which no longer consider the classic all-or-none model of 
memory as a plausible model of visual working memory 
(van den Berg et al., 2014; Zhang & Luck, 2008). Support 
for continuous resource models of visual working memory 
also corroborates results from a recent minimal assump-
tions critical test (Winiger et al., 2022), recent ROC analyses 
using confidence-based judgments (Robinson et al., 2020; 
Williams et al., 2022), and novel unifying framework of 
memory (Schurgin et al., 2020).

Our findings also indicate that the popular metric of 
performance ( K ) is not appropriate for measuring work-
ing memory processing in change detection tasks, because 
this model assumes linear ROCs (and no variation in “pre-
cision” or “strength”). More recent work by Williams 
et al. (2022) demonstrates that using this metric can lead 
to drastically different conclusions than metrics based on 
resource models and, therefore, the choice between them 
can have significant implications for researchers who use 

Table 4  Results from model recovery for AIC and BIC when comparing the best performing signal detection model with parameters free to vary 
across memory load conditions to all variants of the all-or-none model

Experiment Model

Probability of recovering generative model (NLL)

Fixed criteria. 

Fixed K (RAoN)

Fixed criteria. 

Free K

Free criteria.

Fixed K
(RAoN)

Free criteria.

Free K

AIC BIC AIC BIC AIC BIC NLL

D14 E2
AoN .97 1 .98 1 .90 .99 .85

EVSD .85 .03 .84 .02 .87 .63 .83

Proportions are the average number of times each model was recovered out of 100 simulations per each model and participant. Values closer to 
1 indicate that a given model was recovered perfectly across 100 simulations, and values closer to zero indicate that a given metric was biased 
towards the alternative model. Cells shaded in blue denote instances where metrics of model fit were significantly biased towards a given model 
based on paired t-test comparisons across participants (ps < .05). To summarize, BIC was significantly biased towards the all-or-none model 
variants, however, AIC generally showed no bias. Model comparisons showed that the resource model outperformed all variants of the all-or-
none model based on AIC. Together these results provide support for the continuous resource model
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change detection tasks to quantify visual working memory 
limits. Collectively, our data fit with the more parsimonious 
view that there is no need to postulate different processing 
assumptions across experimental paradigms or experimen-
tal conditions. That is, classic all-or-none models are sim-
ply not supported in visual working memory at all. More 
broadly, our results underscore the point that measurement 
and theory mutually constrain each other (e.g., Kellen et al., 
2021a), that the development of both proceeds in an iterative 
fashion (Chang, 2004), and that an important next step in the 
field is to focus on building robust theories of visual working 
memory while integrating new knowledge in a theory-driven 
manner (Brady et al., 2022; also see visual working memory 
“theory map” in Ngiam, 2024).

Finally, we note that throughout our reanalysis we used 
a restricted set of possible analytic approaches, particularly, 
maximum likelihood estimation to estimate best fitting 
parameters and AIC and BIC to compare models. We used 
these tools because, after matching models on their theory-
general auxiliary assumptions, the modeling results were 
consistent across participants, indicating that there was no 
need to model individual differences (e.g., via hierarchical 
Bayesian modeling) (Lee et al., 2019). Furthermore, this 
analysis provides insight into whether we could replicate 
the results of Rouder et al. (2008) and Donkin et al. (2014) 
while keeping as true to the original analytic approaches 
as possible. Finally, we vetted these metrics with model 
recovery, which provides insight into whether model com-
parison metrics are diagnostic. That is, analytic tools that 
robustly recover the correct model in simulated data can be 
used to draw inference when they are fit to real data, and 
ones that do not correctly recover the data-generating model 
cannot. Through this lens, model recovery can be used to 
guide inference by providing a ground truth on whether a 
given analytic approach can recover the generative model 
in principle (e.g., Heathcote et al., 2015; Lee et al., 2019; 
Wagenmakers et al., 2004; Zilker, 2022).

Theory assessment practices beyond visual working 
memory

In this section we connect our case study to other examples 
outside of the visual working memory domain to the broader 
literature on best practices in theory assessment. First, as 
previewed in the Introduction, Starns and colleagues (2019) 
illustrated the central role of auxiliary assumption in shaping 
inference by showing that researchers can reach fundamen-
tally different conclusions even when analyzing the same 
set of data. These authors used a blind-inference procedure 
in which a group of recognition memory researchers were 
blinded to key independent variables in recognition memory 
studies and had to infer them using their preferred analytic 
techniques. Critically, these authors found that only slightly 

more than half of researchers reliably drew correct infer-
ences from the same data. Similar findings were reported in 
the response-time modeling literature by Dutilh et al. (2019). 
Together, these articles indicate that researchers may vary 
significantly in the (tacit) auxiliary assumptions they make 
in basic stages of data analysis and inference, and these aux-
iliary decisions can drive qualitative differences in research-
ers’ conclusions.

Kellen et al. (2021b) provide one specific example of 
how researchers can introduce bias when comparing theo-
ries by considering a restricted set of theory-specific aux-
iliary assumptions. For instance, in the long-term memory 
domain researchers may test only a single parametric variant 
(e.g., Gaussian) of many possible signal detection models 
and generalize inferences from this test to signal detection 
theory as a whole. This practice can bias theory development 
and assessment because it ignores the full scope of the core 
theory and because researchers may have different priors on 
which auxiliary assumptions are tenable.

An important caveat to the Kellen et al. (2021b) exam-
ple is recent evidence that the Gaussian parameterization 
of signal detection models can have a principled theoretical 
basis. Robinson et al. (2023) (see also Thompson & Singh, 
1967) point out that, by Central Limit Theorem, the Gauss-
ian distribution implies that people pool sensory evidence 
via averaging or summation to construct memory represen-
tations. These authors tested this prediction in the visual 
working memory domain and found converging evidence 
for the Gaussian (as opposed to Gumbel) signal detection 
model. Together, these articles highlight that what counts 
as auxiliary in one context may not carry over to another. 
One obvious reason for this is that debates spawn theoreti-
cal questions that can form novel, complimentary lines of 
inquiry. For instance, the question of how to construe the 
architecture of visual working memory can generate new 
questions regarding how – through the lens of resource the-
ory – memory representations are “built-up” from sensory 
evidence. Such questions may only be testable through spe-
cific parameterizations of computational models.

The view that what counts as a core versus auxiliary 
may not be a static property of a theory raises the ques-
tion whether it makes sense to distinguish between core and 
auxiliary assumptions at all. This issue was discussed in the 
decision-making domain by Zilker (2022), who used model 
recovery simulations to demonstrate that specific choice 
rules, which connect latent preferences to observed choices, 
can impact researchers’ ability to diagnostically compare 
mainstream decision theories, such as Expected Utility and 
Cumulative Prospect Theory as examples. More precisely, 
Zilker found that Expected Utility and Cumulative Prospect 
theory could not be identified when deterministic (and trem-
bling hand), rather than variants of probabilistic (logit and 
probit) choice rules are used for decision problems that make 
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quantitatively rather than qualitatively different predictions 
for the two theories. This result follows because determinis-
tic trembling hand choice rules can capture qualitative differ-
ences between choices, but not graded differences between 
them. Based on these findings Zilker concludes: “...assump-
tions that are conventionally considered auxiliary can shape 
predictions and inferences to a similar or even higher degree 
than assumptions that are conventionally thought to con-
stitute the core of formal models. These insights cast doubt 
upon the conventional division between core assumptions 
and auxiliary assumptions in computational modeling and 
emphasize the potential pitfalls.”

Zilker’s systematic reanalysis illustrates the important 
role of auxiliary assumptions in shaping inference, though 
we believe that, rather than providing a   challenge to the 
distinction between core and auxiliary assumptions, this 
analysis highlights the need for using diagnostic method-
ologies and stimuli (Broomell & Bhatia, 2014; Regenwetter 
& Robinson, 2017). The fact that some decision problems 
do not provide diagnostic testing grounds across a range 
of auxiliary assumptions calls for a need to use tests that 
can (Mayo, 2018), just like, by analogy, our finding that 
some base-rate manipulations may not yield diagnostic test-
ing conditions for all-or-none and resource models requires 
identifying more sensitive testing conditions. Developing 
such critical tests hinges on distinguishing between what 
counts as core and ancillary to the theory.

More broadly, evidence that a theory is limited in scope 
because it outperforms competing theories under a restricted 
set of conditions may signal that the core theory requires 
revision. This point may also not challenge the distinction 
between core and auxiliary assumptions per se, but under-
score the view that theory development is an inherently 
dynamic practice (Box, 1976), where new insights generate 
novel research questions that can reshape what counts as 
core and auxiliary. For instance, it may make sense for deci-
sion researchers to focus on which decision rules – deter-
ministic or probabilistic – best characterize how people 
map latent preferences to responses, just like it may make 
sense for memory researchers to ask how people construct 
memory representations from sensory evidence. Provided 
researchers are transparent about their research goals (Sim-
mons et al., 2011) through tools such as preregistration (e.g., 
Wagenmakers et al., 2012), this is a routine part of theory 
development.

Next, we consider recent work that promotes substitut-
ing or supplementing theory-driven approaches with “bot-
tom-up” tools for scientific discovery. Dubova et al. (2023) 
used agent-based modeling to simulate the consequences 
of using theory-motivated versus random experimentation. 
In this work, artificial agents could either choose how to 
sample existing distributions of data based on theory-moti-
vated reasons, such as the goal of confirming or falsifying 

a theory-based hypothesis, or sampled data at random or in 
exploratory fashion. Critically, the authors found that ran-
dom and exploratory sampling yielded a better characteriza-
tion of the data-generating distribution overall. This suggests 
that theory driven as opposed to random experimentation 
can lead to biased data sampling that distorts subsequent 
theory development and, moreover, that researchers may 
remain unaware of these consequences. In the current con-
text, this work raises the question of whether, instead of 
increasing the rigor of theory assessment, a better move is 
to simply replace theory-driven approaches with bottom-up, 
data-driven approaches.

We believe that while bottom-up theory assessment tools 
can help significantly improve theory assessment, they can-
not replace it. First, as pointed out by Dubova et al. (2023), 
these simulations do not provide a clear proxy for scientific 
experimentation because agents do not need to design the 
experiments themselves. Critically, neither experimental 
design nor measurement in psychology can proceed without 
theory. This is because in order to determine how to measure 
or manipulate processes such as “memory,” researchers must 
use theory to postulate the hypothetical construct itself (Kel-
len et al., 2021a, 2021b; van Fraassen, 2008), make assump-
tions about which and how a given independent variable 
might affect it, and which metrics provide the best approxi-
mation of it (Brady et al., 2022; Rotello et al., 2015). As 
such, theory is built into experimentation and measurement 
in psychology. Arguably, this point applies to most scientific 
disciplines: researchers will rely on theory as long as there is 
a need to provide an overarching explanation or description 
for phenomena (Devezer, 2023; Newell, 2012).

Furthermore, there are important examples of how the-
ory-driven approaches have generalized beyond the labora-
tory. For instance, the application of signal detection theory 
in psychology has helped improve measurement practices 
in real-world eyewitness memory tasks (e.g., Wixted et al., 
2018). At this stage, it is unclear how purely data-driven, 
atheoretical approaches could yield similar insights. Finally, 
as noted by Dubova et al. (2023), there may be critical, 
unexamined tradeoffs between bias and resource efficiency 
when using theory-based versus random approaches to 
experimentation.

Despite these potential limitations, we strongly agree 
that automatization (e.g., Yarkoni et al., 2021), randomized 
methods in experimentation and analysis (Baribault et al., 
2018; Davis-Stober et al., 2024), and data-driven and sim-
ulation-based approaches (e.g., Peterson et al., 2021; Cav-
agnaro et al., 2010) might provide essential, supplementary 
tools for countering researcher’s biases in theory assessment. 
Our core message is that scientists should go beyond polariz-
ing theory-based versus bottom-up approaches and focus on 
how to optimally integrate them (for related discussions, see 
Devezer, 2023; van Rooij et al., 2023). In addition to these 
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tools, along with others, we believe that formal modeling 
can improve the rigor of psychological theories because 
its application forces researchers to be explicit and precise 
about the assumptions of their model and its basis theory 
(e.g., Grahek et al., 2021; Guest & Martin, 2021; Navarro, 
2021; Oberauer & Lewandowsky 2019). Relatedly, assessing 
models based on their ability to generalize to new domains, 
rather than solely fit a sample of data, may help improve 
theory assessment by curbing post hoc theorizing (Buse-
meyer & Wang, 2000; Popov, 2023; Newell, 2012; Robinson 
& Steyvers, 2023; for recent applications of this approach in 
the visual working memory domain, see Robinson & Brady, 
2023; Schurgin et al., 2020).

Importantly, as our case study illustrates, computational 
modeling studies should still be supplemented with a care-
ful conceptual analysis that disentangles core and auxiliary 
assumptions. On the methodological and analytic side, like 
others, we promote that model recovery should be a standard 
practice in model comparison (Heathcote, et al., 2015; Lee 
et al., 2019; Wagenmakers et al., 2004; Zilker, 2022), even 
with models that are vetted in prior work.

Conclusion

To summarize, a failure to identify and separate auxiliary 
from core theoretical assumptions can lead to the spurious 
rejection of a model and theory (Kellen et al., 2021a). As we 
show in the context of recognition theories of working mem-
ory, this can have profound and long-lasting effects on an 
entire research domain. Along with others, we believe that a 
major step towards improving theory testing is for social sci-
entists to become more aware of the auxiliary assumptions 
they make at different phases of scientific inquiry, including 
measurement (e.g., Brady et al., 2022; Kellen et al., 2021b; 
Guest & Martin, 2021; Regenwetter et al., 2022a; Rotello 
et al., 2015; Williams et al., 2022), analysis (e.g., Dutilh 
et al., 2019; Starns et al., 2019), and conceptual theory 
assessment (e.g., Kellen et al., 2021b; Regenwetter et al., 
2022b; van Rooij & Baggio, 2021). In this context, our arti-
cle integrates these ideas and provides an illustrative guide 
for how researchers can identify and test auxiliary assump-
tions at different levels of theory assessment and stage of 
study design. We believe that increased focus on this prac-
tice – particularly if supplemented by feedback from action 
editors and reviewers – is a major step towards increasing 
the rigor of theory testing in psychology.
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