
Vol.:(0123456789)1 3

Behavior Research Methods 
https://doi.org/10.3758/s13428-023-02271-6

ORIGINAL MANUSCRIPT

Local but not global graph theoretic measures of semantic networks 
generalize across tasks

Maria M. Robinson1 · Isabella C. DeStefano1 · Edward Vul1 · Timothy F. Brady1

Accepted: 9 October 2023 
© The Psychonomic Society, Inc. 2023

Abstract
“Dogs” are connected to “cats” in our minds, and “backyard” to “outdoors.” Does the structure of this semantic knowledge 
differ across people? Network-based approaches are a popular representational scheme for thinking about how relations 
between different concepts are organized. Recent research uses graph theoretic analyses to examine individual differences 
in semantic networks for simple concepts and how they relate to other higher-level cognitive processes, such as creativity. 
However, it remains ambiguous whether individual differences captured via network analyses reflect true differences in meas-
ures of the structure of semantic knowledge, or differences in how people strategically approach semantic relatedness tasks. 
To test this, we examine the reliability of local and global metrics of semantic networks for simple concepts across different 
semantic relatedness tasks. In four experiments, we find that both weighted and unweighted graph theoretic representations 
reliably capture individual differences in local measures of semantic networks (e.g., how related pot is to pan versus lion). In 
contrast, we find that metrics of global structural properties of semantic networks, such as the average clustering coefficient 
and shortest path length, are less robust across tasks and may not provide reliable individual difference measures of how 
people represent simple concepts. We discuss the implications of these results and offer recommendations for researchers 
who seek to apply graph theoretic analyses in the study of individual differences in semantic memory.

Keywords Semantic networks · Individual differences · Models of memory · Network science · Graph theory

Fundamental to human cognition is the capacity to construct 
and extract meaning from our experience, and there is an 
extensive body of theoretical and computational modeling 
literature aimed at understanding semantic knowledge struc-
tures and how they are acquired and used across a variety 
of tasks (e.g., Borge-Holthoefer & Arenas, 2010; Griffiths 
et al., 2007; Jones et al., 2015; Kemp & Tenenbaum, 2008; 
Kumar, 2021; Kumar et al., 2021; Landauer & Dumais, 
1997; Rogers & McClelland, 2004). Network-based repre-
sentation schemes, where semantic concepts are represented 
as a network of interconnected nodes, are one of the most 
general representations of semantic knowledge structure 
(e.g., Kemp & Tenenbaum, 2008) and have been used for 
decades to represent the structure of semantic memory 
(e.g., Collins & Loftus, 1975). Since graphs are a useful 
representational scheme for understanding human semantic 

knowledge (e.g., Baronchelli, et al., 2013), graph theoretic 
analyses designed to quantify the local and global structure 
of graphs have been applied to model human semantic net-
work structure (Kenett & Hills, 2022; Siew et al., 2019).

Much of the work using graph analytic approaches has 
been applied to aggregate data, for instance, to examine how 
semantic networks vary as a function of different conceptual 
spaces (e.g., Steyvers & Tenenbaum, 2005). More recently, 
however, graph theoretic analyses have been used to model 
individual differences in the properties of semantic networks 
to draw inferences about the relationship between semantic 
memory and higher-level cognition (e.g., Bieth et al., 2021; 
for review see Kenett & Faust, 2019). This line of research 
challenges a caricatured view of semantic memory as a pas-
sive storage system of general verbal and semantic knowl-
edge that is invariant across both individuals and fluctua-
tions in processing (a view that could be inferred from the 
classic work of Tulving, 1972, for example). Indeed, much 
converging evidence indicates that processing of concepts, 
like processing of episodic events, is sensitive to variations 
in external context (e.g., Howard et al., 2011) as well as in 
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the internal states of the agent (e.g., Lin & Murphy, 2001; 
Rayner & Frazier, 1989). The study of individual differences 
in semantic networks, therefore, provides critical insight into 
the flexibility of semantic memory, as well as how higher-
level cognitive processes may interact with semantic repre-
sentations and their organization.

A major unanswered question in current studies that 
examine individual differences in semantic networks con-
cerns the reliability of the basic metrics of semantic network 
structure within individuals. This answer remains unex-
plored because, within each study, only a single method is 
used for collecting semantic relatedness judgments. Given 
that no single method or analytic approach is guaranteed to 
yield a direct and pure measure of latent cognitive processes 
or representations (e.g., Falmagne & Narens, 1983), evi-
dence that performance on a single semantic relatedness task 
predicts performance on tasks designed to measure other 
cognitive processes is inherently ambiguous. This point is 
particularly relevant in the study of individual differences, 
because evidence for reliable effects at the aggregate need 
not entail reliable effects at the level of individuals. A prime 
example of this is in the study of cognitive control, where 
the subtraction method is used to measure executive control 
via “congruency effects” (e.g., the difference in response 
times when people respond to a stimulus that is flanked by 
response-congruent versus response-incongruent stimuli; 
Eriksen & Eriksen, 1974). Recent research demonstrates that 
while congruency effects are reliable at the aggregate, they 
may not be reliable at the level of individuals, presumably 
because reliable group effects entail small interindividual 
differences (Hedge et al., 2018). Likewise, in the study of 
semantic memory, evidence for reliable group-level differ-
ences in semantic network topology (De Deyne et al., 2013; 
Kenett et al., 2017; Kumar et al., 2022; Steyvers & Tenen-
baum, 2005) does not entail reliable variations in network 
topology within individuals. In this context, it is possible 
that existing evidence for individual differences in perfor-
mance on a single semantic relatedness task reflect varia-
tions in how individuals strategically approach the particular 
semantic relatedness tasks, rather than latent differences in 
knowledge representation schemes. For instance, two people 
may have a different response criterion for calling something 
“highly similar” on a given Likert scale, yielding networks 
with different densities, even though their actual knowledge 
representations are identical.

Our goal is to fill this research gap by directly examin-
ing whether robust individual differences exist in concept 
representations across structurally different semantic relat-
edness tasks. To this end, we use two different semantic 
similarity judgment tasks, a Likert similarity judgment 
task and an adaptive version of a spatial arrangement task 
(Kriegeskorte & Mur, 2012). Critically, these two tasks have 
both been validated as measures of semantic relatedness in 

prior work (e.g., Richie et al., 2020), but place different 
demands on participants for reporting on relatedness judg-
ments and involve different methods for translating related-
ness judgments to proximity scores1. As such, if we find 
that these tasks both capture stable individual differences 
in performance, this will provide strong evidence that indi-
vidual differences in semantic judgments are invariant across 
measurement approaches and may reflect true variations in 
semantic memory structure for simple concepts.

To preview our results, we do indeed find that network-
based representations preserve individual differences in con-
cept representation schemes across the two tasks. Specifi-
cally, we find that local metrics, which consider the semantic 
content of specific concepts and their relations within the 
network, are generalizable across semantic relatedness tasks 
(e.g., people who think dogs are similar to cats show evi-
dence of this in both tasks). In contrast, we find that common 
global metrics of network topology that capture the overall 
structure of semantic networks are less reliable across these 
two tasks (e.g., people who seem to think all concepts are 
similar, and thus have a very connected semantic network 
when this network is derived from one task, do not show 
evidence of this same structural property when the other task 
is used). We discuss the broader implications of these results 
for theorizing about and measuring individual differences in 
concept representation schemes.

Prior work on individual differences 
in processing of semantic relatedness

In this section, we review recent work that applies graph 
theoretic approaches to the study of individual differences in 
semantic memory to predict other indices of global function, 
such as creativity (for a more general review on the applica-
tion of graph theoretic approaches to semantic memory see, 
e.g., Kumar et al., 2021; Siew et al., 2019). We focus on 
this seminal work because it provides a major step towards 
integrating network science into the study of individual dif-
ferences in semantic memory structure. Accordingly, our 
goal is to build on this line of research by directly and sys-
tematically examining the reliability of core local and global 
metrics of network topology.

In this domain, analyzing higher-level properties of 
semantic networks involves converting each individual's 
semantic relatedness data into a graph, in which nodes rep-
resent concepts and edges represent the connections between 

1 By proximity scores we mean semantic similarity—where higher 
values indicate greater similarity between concepts, or semantic dis-
tance—where lower values indicate greater similarity between con-
cepts.
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them. In some studies, researchers study individual differ-
ences while analyzing aggregate data by splitting individuals 
into groups based on some characteristic of interest (e.g., 
levels of creativity) and constructing semantic networks 
from each group’s data. Researchers typically apply graph 
theoretic analyses to examine topological properties of these 
graphs, such as the degree to which nodes in the network 
cluster together. These metrics can then be related to per-
formance on other tasks, such as divergent thinking tasks 
to measure creativity. Intuitively, topological metrics might 
reflect general aspects of semantic reasoning by convey-
ing ability to traverse conceptual spaces in such tasks; for 
instance, semantic networks that are more closely connected 
allow for fluid and efficient association between concepts.

As an example of the kind of analyses typically used in 
this literature to make general conclusions about creativity 
and other constructs, consider an influential study by Kenett 
et al. (2014). The authors classified high- and low-creativity 
individuals using a battery of creativity tasks and explored 
whether there were systematic differences in network prop-
erties between the two groups. Semantic networks for high- 
and low- creativity individuals were constructed from aggre-
gate data obtained from a free association task (Rubinsten 
et al., 2005; also see Wulf et al., 2022a). Global properties of 
these networks, such as the degree to which nodes (concepts) 
in the network cluster with one another, were quantified and 
indicated that low-creativity individuals exhibited more con-
nectivity within clusters of concepts, and less connectivity 
across these clusters, as indexed by higher network modular-
ity. Furthermore, concepts within networks of low-creativity 
individuals were reported to be more spread out, as indexed 
by larger average shortest path length.

Although this work provides provisional support for the 
view that graph theoretic measures can capture important 
individual differences in semantic memory organization, 
it suffers from important limitations, many of which are 
acknowledged by the authors. First, group differences in net-
work modularity and average path length were small in mag-
nitude. Second, networks were not constructed at the level 
of individuals but from aggregate data within each creativity 
group, so it is unclear how consistent these differences are 
at the level of individual subjects within groups; perhaps 
these differences are driven by only a few individuals in 
each sample, or subtle differences at the group level reflect 
aggregation artifacts (e.g., Estes, 1956). Third, networks 
from both groups were constrained to have 96 words from 
the free association task. This approach ensures that meas-
ures of network structure are unaffected by network size, 
however, this constraint may result in the loss of meaningful 
data in individual differences from the free association task.

Cosgrove et al. (2021) applied a similar methodological 
approach and group-level analysis to examine structural dif-
ferences in semantic networks between older and younger 

adults. These authors reported group differences in the clus-
tering coefficient, average path length, and network modu-
larity. Differences between groups in these metrics tended 
to be, again, quite small, and were not reliable across dif-
ferent samples. In addition to some of the limitations listed 
above, the authors highlight another potential problem of 
using free association tasks to construct semantic networks: 
it remains unclear whether these group differences reflect 
differences in semantic network organization or other global 
processes, such as executive function, that may underpin 
recall processes in free association tasks. Together, studies 
using aggregate-based analyses and free association tasks 
to construct networks at the level of groups are limited and 
thus make it difficult to draw strong inferences regarding 
individual differences in network topology.

Several recent papers analyzed semantic networks at the 
level of individuals using semantic relatedness judgments, 
therefore addressing limitations of aggregate analyses and 
retrieval-based semantic tasks. For instance, Benedek et al. 
(2017) examined whether individual differences in semantic 
network structure related to creative thinking while control-
ling for intelligence. Instead of using a free association task 
to construct semantic networks, these researchers used a 
similarity judgment task in which participants were shown 
a pair of words and were instructed to judge their semantic 
relatedness using a continuous slider scale; analyses were 
also conducted at the level of individuals rather than groups. 
However, results in this study depended on how networks 
were constructed. In particular, these researchers examined 
three ways of transforming similarity data into graphs: (1) 
using a fixed edge number approach in which each individual 
had the same number of edges in an unweighted graph, (2) 
using a fixed minimum relatedness approach in which they 
used a fixed similarity cutoff to construct unweighted graphs, 
and (3) constructing weighted graphs from the raw prox-
imity matrix. These authors found statistically significant 
individual differences in graph topology only when using 
the fixed minimum relatedness thresholding approach, and 
not the other two filtering approaches. These results suggest 
that associations between measures of network topology and 
other indices of global function may not be robust across 
different methods for constructing networks.

More broadly, this result highlights that relatedness judg-
ments on a given semantic relatedness task are jointly deter-
mined by individuals’ latent concept representations as well 
as strategic differences in how people approach the similar-
ity relatedness task, and the use of a single semantic related-
ness task confounds individual differences in semantic simi-
larity judgments and task response strategies. This follows 
because individuals may have the same latent representa-
tions of semantic relatedness between concepts but differ in 
how they map their judgments to similarity scales (for rel-
evant critiques in other domains: Liddell & Kruschke, 2018; 
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Malmberg, 2002; Regenwetter et al., 2019). Such differences 
in response policies will affect the edge density of their net-
work, which would also affect each of the reviewed metrics 
of network topology. This critique applies to several other 
recent papers that use only rating-based semantic relatedness 
tasks to examine the relationship between individual differ-
ences in semantic network structure and indices of creativity 
(e.g., Kennet et al., 2019; He et al., 2021; Ovando-Tellez 
et al., 2022a, b). Another limitation of this work, which is 
acknowledged by the authors, is that correlations between 
indices of semantic network structure and other indices of 
global function tend to be low (e.g., Cosgrove, et al., 2023; 
Marko & Riečanský, 2021), some studies use small sample 
sizes (n < 10) to measure individual differences (e.g., Morais 
et al., 2013; Wulff et al., 2022a, b), and these analyses are 
typically uncorrected for a false discovery rate (e.g., Bernard 
et al., 2019).

In short, while these studies have made a major contri-
bution to the study of semantic memory by using network 
science to quantify individual differences and raise critical 
questions about how individual differences in representa-
tions of simple concepts may relate to other cognitive pro-
cesses, they also raise critical measurement questions about 
the reliability of network topology metrics within individu-
als. Accordingly, our goal is to build on this line of research 
by directly examining whether local and global measures 
of individual differences in semantic organization reflect 
latent differences in semantic structure or differences in 
how participants approach semantic relatedness tasks. The 
contribution of this work is to identify any potential bound-
ary conditions in using these measures, and provide recom-
mendations on how these constraints can be used to guide 
methodological and theoretical work in the study of indi-
vidual differences in this domain. Finally, we underscore that 
the limitations we identify in these studies are not unique to 
this research domain, but reflect a deeper challenge faced by 
all behavioral researchers when measuring individual dif-
ferences (e.g., Hedge et al., 2018), as well as unobservable 
constructs, which is validating their choice of measurement 
(for related discussions see literature on “the problem of 
coordination,” e.g., Kellen et al., 2021; Van Fraassen, 2008, 
and “meaningfulness,” e.g., Falmagne & Narens, 1983; Rob-
erts, 1985).

Current work

We approach measurement validation by examining whether 
experimental outcomes are invariant across different meas-
urement instruments that are designed to probe the same 
processes (e.g., Van Fraassen, 2008). Specifically, in four 
separate experiments we examine whether (1) network-
based representations of different kinds preserve individual 

differences in semantic relatedness2 judgments and (2) 
whether graph theoretic metrics of semantic network prop-
erties reliably capture individual differences.

We focus on widely used semantic similarity tasks as 
opposed to free association tasks, because the former pro-
vide an efficient way of collecting semantic relatedness 
judgments and, as reviewed, they do not require recall-
based processes, which may confound semantic organiza-
tion with other processes, such as executive control (e.g., 
Taconnat et al., 2010). To this end, we use two structur-
ally different methods for collecting similarity relatedness 
judgments: (1) a rating similarity task in which participants 
are instructed to judge the semantic similarity of word pairs 
using a numerical rating scale and (2) an adaptive version 
of a spatial multi-arrangement task in which participants 
are instructed to spatially arrange words inside a 2D arena 
based on their semantic relatedness (Kriegeskorte & Mur, 
2012). More precisely, in the spatial multi-arrangement task, 
participants are instructed to place similar (dissimilar) words 
closer together (further apart), such that the spatial physi-
cal distance between words reflects their relative distance in 
semantic space. On each trial of the multi-arrangement task, 
participants are presented with a subset of words, and the 
latent distance structure is inferred on a trial-by-trial basis 
by rescaling the redundant distance information across trials.

Critically, both the pairwise rating task and multi-
arrangement tasks have been validated in prior work as 
measures of semantic relatedness (e.g., Charest, et al., 2014; 
Kriegeskorte & Mur, 2012; Majewska et al., 2021; Richie 
et al., 2020), but provide different response methods for 
measuring semantic proximity judgments, as well as dif-
ferent methods for computing proximity scores. Therefore, 
shared variance across these tasks is less likely to reflect 
strategic differences in how people approach the tasks, such 
as in how people sample ratings on Likert scales, or correla-
tions in nuisance variance such as those related to trial-by-
trial motor errors.

Finally, we examine the robustness of our results across 
different filtering approaches used to construct semantic 
networks, samples of participants (n = 70 in each of four 
experiments), and simple concepts. We also examine 
the effects of scale granularity by varying the number 
of response options on the pairwise rating scale across 
experiments. Specifically, in Experiments 1a and 2a we 
used a six-point Likert scale, whereas in Experiments 1b 
and 2b we used a 100-point slider scale. We considered 
both scales because each has potential strengths and limi-
tations. On the one hand, the six-point Likert scale has 

2 We do not make the traditional distinction between associative and 
semantic relations because their definitions are overlapping, as noted 
in, e.g., Kumar (2021).
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fewer response options, and prior work suggests that this 
may reduce decision noise in subjective rating judgment 
tasks (Benjamin et al., 2013). On the other hand, the fine-
grained 100-point slider scale may provide a more sensi-
tive measure of subtle differences in individual semantic 
relatedness judgments.

Local and global properties of semantic networks

We examine whether local and global measures of seman-
tic networks are stable within a person across tasks. Local 
metrics are sensitive to the content of concepts because 
they are measured from specific semantic units within 
the network, and how related they are to one another. In 
other words, local metrics cannot be abstracted away from 
one domain and applied to another, because they reflect 
relatedness between specific concepts. The most holistic 
measure of local representations is the set of all relations 
between all concepts therein, as characterized by the com-
plete adjacency matrix of the semantic network. It is also 
possible to simplify the content of a semantic network by 
distilling it to the relative importance of all the concepts 
within the network by calculating the eigenvector central-
ity of each concept in the network.

In contrast, global metrics abstract away from the spe-
cific concepts in the network and consider the overall 
topology of the semantic network. We consider two meas-
ures of the global structure of the network: the degree to 
which concepts in the network cluster together (meas-
ured by the average clustering coefficient), and the over-
all interconnectedness of the network (measured by the 
average shortest path length). For each of these measures 
we ask whether it is consistent within an individual across 
semantic relatedness tasks for the same simple stimuli, to 
assess whether that level of description of the semantic 
network captures stable individual differences. Through-
out our analysis, we focus on these basic rather than com-
posite measures of network topology—such as, “small-
worldness” or “Network Portrait Divergence” (Bagrow 
& Bollt, 2019)—in order to isolate which properties of 
network topology are reliable.

To our knowledge, this analysis is the first to examine 
the robustness of metrics of semantic network structure 
across different empirical measurements of similarity. 
If metrics of network topology are recoverable across 
these tasks, it would indicate that these graph theoretic 
measures may capture substantive variance in semantic 
network content and structure. In contrast, finding that 
we cannot recover (some of) these metrics would high-
light important boundary conditions that can guide future 
research on individual differences in semantic memory.

Weighted and unweighted representations 
of semantic networks

Finally, in order to test the robustness of our results across 
filtering approaches, we consider different ways of construct-
ing semantic networks from human similarity judgments. 
Each of the approaches for constructing networks falls 
within the class of associative network modeling, where con-
cepts (words) and the relations between them are represented 
as semantic units which are connected to each other through 
associative links (Collins & Loftus, 1975). First, we consider 
weighted, fully connected networks which have been ana-
lyzed in prior work (e.g., Benedek, et al., 2017; Kennet et al., 
2019; He et al., 2021). A fully connected semantic network 
using weighted edges assumes that every word is related 
to every other word, but to varying quantitative degrees. 
The resulting network is described by a full, scalar simi-
larity/adjacency matrix obtained directly from the semantic 
relatedness tasks. The weighted semantic network involves 
minimal transformations of raw human behavior and pre-
serves the continuous nature of the similarity judgment data, 
and may thus have an advantage in detecting fine-grained 
individual differences. We also analyze sparse weighted 
networks constructed with the Pathfinder algorithm (Sch-
vaneveldt et al., 1989), which prunes networks by preserving 
only the shortest possible weighted paths between nodes, 
conditioned on the data. A possible advantage of analyzing 
sparse weighted networks is that potential spurious edges are 
removed, which may reduce noise and lead to more robust 
measures of semantic network structure.

Second, we analyze several variants of unweighted, 
binary networks. Such a network is described by a binary 
adjacency matrix which can be obtained by thresholding the 
similarity matrices. Such sparse binary semantic networks 
have been used to model individual differences in semantic 
structure (e.g., Kenett & Faust, 2019), and might also have 
an advantage by discarding nuisance variation in similarity 
judgments to extract just the raw relations. We considered 
several ways of thresholding networks. In one set of analy-
ses, we construct unweighted binary networks with fixed 
edge densities of 33% and 50%. In another set of analyses, 
we construct unweighted binary networks using a similarity 
criterion. Specifically, based on prior work (e.g., Benedek, 
et al., 2017), we use a raw similarity cutoff, where we pre-
serve links between nodes that are above a given similarity 
threshold (e.g., all ratings above “50” on the 100-point slider 
scale).

To summarize, the weighted and unweighted approaches 
differ in how they formalize connections between semantic 
units and can be seen as two extremes of representing the 
granularity of associations between concepts. We examine a 
wide range of approaches towards constructing each of these 
networks, based on existing filtering methods as well as 
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prior work in this research domain. Our goal is to determine 
whether a particular filtering approach leads to more robust 
metrics of similarity across different relatedness tasks, so 
that it can be used in future work on individual differences 
in semantic network properties. We summarize all meth-
ods for constructing networks in further technical detail in 
the Methods section, and, for ease of exposition, we review 
details for computing each measure of network topology in 
the Results section.

Methods

Participants

In each experiment, we collected data until our final sam-
ple size was n = 70. This afforded 80% statistical power to 
detect a low to moderate, directional effect size of at least 
� = 0.3 (Faul et al., 2007). Participants were from the Uni-
versity of California, San Diego community and participated 
in exchange for course credit. Participants were at least 18 
years old and provided informed consent. We excluded 
participants if they did not finish one of the two tasks (12, 
5, 8, and 3 participants in Experiments 1a, 1b, 2a, and 2b, 
respectively). Of the remaining sample, we excluded partici-
pants who, at the end of the study, did not report following 
the instructions when completing the tasks (13, 11, 6, and 
7 participants in Experiments 1a and 2a, respectively) or 
reported that they were non-native and/or non-fluent English 
speakers (8 and 5 participants in Experiments 1a and 2a, 
respectively). Seven and nine participants in Experiments 
1 and 2 chose to opt out of prescreening, respectively. The 
study was completed online through the university’s Sona 
system and was approved by the institutional review board. 
All data and analytic code are available on the Open Science 
Framework repository at https:// osf. io/ 26wku/.

Procedure and materials

Participants completed an online version of the adaptive spa-
tial multi-arrangement task (Kriegeskorte & Mur, 2012) and 
a six-point Likert semantic similarity judgment task (Exper-
iments 1a and 2a) or 100-point slider semantic similarity 
judgment task (Experiments 1b and 2b).We include example 
instructions in Appendix 4. Experiments 1a and 1b used the 
same set of 20 words, and Experiments 2a and 2b used a dif-
ferent set of 20 words. Thus, the four experiments use four 
different independent samples and examined the effects of 
stimuli (Experiment 1 versus 2) and scale granularity in the 
pairwise rating task (Experiment a versus b).

All tasks were presented on a computer screen with the 
restriction that participants could not complete the experi-
ment on a mobile device and that the browser window size 

was at least 800 × 775 pixels. After completing the experi-
ment, participants were given a quality check prompt, which 
asked them to report whether they had followed instructions 
when completing both tasks. On average, it took participants 
50 minutes to complete both tasks. Experiments were pro-
grammed in HTML/CSS/JavaScript. Code for the adaptive 
multi-arrangement task algorithm was cross-checked with 
MATLAB code provided by Kriegeskorte and Mur.

Spatial arrangement task (all experiments)

Figure 1A shows an example experimental trial on the adap-
tive spatial multi-arrangement task (Kriegeskorte & Mur, 
2012; Majewska et al., 2021). On each trial, participants 
were shown a subset of words and instructed to use the entire 
circular arena to arrange words based on their semantic simi-
larity, placing similar words closer together and dissimilar 
words further apart. The adaptive algorithm ensures repeated 
sampling of word pairs that are placed in close spatial prox-
imity. This sampling procedure is based on the assumption 
that placement error is constant across trials and that the 
signal-to-noise ratio for semantic proximity judgments is 
proportional to the onscreen distance (because fine-grained 
differences in similarity may be indistinguishable from 
placement error for highly similar concepts). Therefore, 
words that are placed close to one another on a given trial 
will have a low signal-to-noise ratio. The algorithm “zooms 
in” on such word pairs on subsequent trials, permitting par-
ticipants to make high-resolution similarity judgments for 
highly similar concepts. For instance, in the left panel of 
Fig. 1A, the three words in the lower left quadrant of the 
arena PICTURE, FRAME, and DOORWAY are relatively 
close to one another. Accordingly, on a subsequent trial, the 
algorithm zooms in on these words, meaning that the partici-
pant may only be shown these three words and be instructed 
to use the full circular arena to arrange them based on their 
similarity.

These repeated placements of specific word pairs are 
combined into a single rescaled distance matrix that ignores 
the onscreen distance of placements on specific trials. The 
adaptive version of the algorithm can be implemented until 
a criterion is reached, or until the experiment times out. In 
our experiment, participants were given a maximum of 35 
minutes to complete the task. A major potential advantage 
of this method and analysis is that homing in on subsets 
of similar concepts has the potential to recover the high-
dimensional structure of the similarity data (Kriegeskorte 
& Mur, 2012). For our purposes, another major advantage 
of using this method is that it places different processing 
demands than a Likert similarity task for making similarity 
judgments and involves different analysis and transforma-
tions of the similarity data than a Likert similarity task. We 
provide a full technical description of the algorithm in the 

https://osf.io/26wku/
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Appendix. In-depth technical details on and validation of 
the experimental procedure and algorithm are reported in 
Kriegeskorte and Mur (2012).

Six‑point Likert pairwise similarity rating task 
(Experiments 1a and 2a)

Figure 1B shows an example trial on the Likert similar-
ity judgment task. On each trial, participants were shown 
a word pair in the center of the screen. Participants were 
instructed to judge the similarity between the two words 
and use the number keypad to make one of six ratings: (1) 
extremely dissimilar, (2) dissimilar, (3) somewhat dissimilar, 
(4) somewhat similar, (5) similar, or (6) extremely similar. 
Participants self-advanced to the next trial by pressing the 
spacebar. Participants made judgments for all pairwise com-
binations of 20 words, yielding a total of 190 trials. All word 
pairs were presented randomly across trials.

100‑Point slider pairwise similarity rating task 
(Experiments 1b and 2b)

Figure 1C shows an example trial on the 100-point slider 
similarity judgment task. On each trial, participants were 
shown a word pair in the center of the screen along with 
a 100-point slider scale which was anchored at the center. 
Participants were instructed to judge the similarity between 
the two words and use a continuous slider number keypad to 

make one of 100 similarity judgments ranging from “maxi-
mally different” (1) to “identical” (100). Participants self-
advanced to the next trial by pressing the spacebar. Partici-
pants made judgments for all pairwise combinations of 20 
words, yielding a total of 190 trials. All word pairs were 
presented randomly across trials.

Stimuli

All words were taken from the Nelson et al. (2004) word 
association norms database. The database was constructed 
using data from over 6000 participants; it consists of 5019 
words and their associates obtained using a free association 
task. For each experiment, we selected 20 words. Experi-
ments 1a and 1b used the same set of words, which were 
all simple nouns. We sampled words such that each had 
a matching, semantically related word. Specifically, one 
of the words was a cue word and the second word was its 
associate. Experiment 1 had the following words: BAL-
LET, BANANA, CALL, COFFEE, CONTEST, DANCE, 
FRUIT, INDOOR, LION, MEAT, NOISE, PAN, PHONE, 
POT, OUTDOOR, SOUND, STEAK, TEA, TIGER, WIN-
NER. To examine the generality of our results, in Experi-
ments 2a and 2b we used a distinct set of 20 words from 
the Nelson et al. norms database. In these experiments we 
used simple nouns and verbs, and not all words on the list 
were cue–associate pairs. Experiment 2 had the follow-
ing words: BLOCK, BOARD, CALENDAR, COLLEGE, 

A.  Adaptive spatial multi-arrangement task

B. 6-point Likert rating task

C. 100-point slider rating task

Example displays from semantic relatedness tasks

Fig. 1  Example experimental trials from the adaptive spatial multi-arrangement (A), Likert rating (B), and slider rating (C) tasks. The sample 
trial for the spatial multi-arrangement task shows a simulated arrangement of ten words
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DATE, DESK, DOORWAY, EXAMINE, FRAME, HOURS, 
LIBRARY, NOTES, PICTURE, READ, ROOM, SCHED-
ULE, SENTENCE, STRU CTU RE, STUDY, SUBJECT.

Analysis

The overall approach for our analyses is to evaluate whether 
measures of the semantic network obtained from one person 
are consistent across tasks. To do so, we first extract the 
semantic similarity matrix across all tested concepts from 
each task, and then construct semantic graphs from these 
similarity matrices. We assess the consistency of various 
properties of the semantic graphs across tasks, within par-
ticipants, by comparing these consistency scores to a null 
distribution obtained by permuting data across subjects.

Similarity matrices

All analyses start by calculating a semantic similarity 
matrix, measuring the apparent similarity of each pair of 
words. For both the six-point Likert and 100-point slider 
similarity ratings, we calculated the pairwise similarity rat-
ings by min–max normalizing the raw rating scores because, 
on both scales, larger values indicate greater perceived simi-
larity. For spatial multi-arrangement ratings, we calculated 
similarity matrices by min–max normalizing the negated 
distance matrices obtained from the spatial arrangement 
judgments (the calculation of the distance matrix for this 
task is explained in Appendix 1). Note that min–max nor-
malization was used for convenience such that the similarity 
scales on the two tasks fell in the same range (0 to 1) and 
did not affect the results. Within each experiment, for each 
subject we thus obtain two semantic similarity matrices aris-
ing from the two (rating versus spatial arrangement) tasks.

Relatedness data averaged across participants For com-
pleteness and to demonstrate that we replicate findings from 
prior work (e.g., Richie et al., 2020) we begin by report-
ing descriptive statistics and associations between semantic 
relatedness data across the two tasks for all words when 
data are averaged across participants. In Experiment 1a, the 
average distance score was .07 (σ = .015; range: .017–.086) 
on the spatial arrangement task, the average similarity rating 
was 2.7 (σ = 1.17; range: 1.34–5.7) on the six-point Likert 
scale, and the correlation between these unconverted rat-
ings across participants for all words was (r(68) = −0.86, 
p < .001)3. In Experiment 1b, the average distance score 

was .07 (σ = .015; range: .016–.084) on the spatial arrange-
ment task, the average similarity rating was 35.4 (σ = 23.3; 
6.5–93.2) on the 100-point slider scale, and the correlation 
between these ratings across participants was (r(68) = −0.85, 
p < .001). In Experiment 2a, the average distance score was 
.069 (σ = .014; range: .029–.088) on the spatial arrangement 
task, the average similarity rating was 3.23 (σ = 1.07; range: 
1.36–5.54) on the six-point Likert scale, and the correlation 
between these ratings across participants was (r(68) = −.90, 
p < .001). In Experiment 2b, the average distance score was 
.069 (σ = .013; range: .034 - .09) on the spatial arrangement 
task, the average similarity rating was 44 (σ = 19.1) on the 
100-point slider scale, and the correlation between these rat-
ings across participants was (r(68) = −0.89, p < .001).

Constructing graphs from similarity matrices

For illustration, Fig. 2 shows the similarity matrices obtained 
from the Likert and spatial arrangement tasks for two par-
ticipants in Experiment 1a, which are equivalent to the adja-
cency matrices of the weighted semantic graph. Figure 2 
also shows the unweighted (binary) graph constructed with 
an edge density threshold of 33% for the two tasks. Appen-
dix Figs. 7, 8, 9 and 10 shows example binarized graphs 
and adjacency matrices constructed from the aggregate data.

To construct fully connected weighted semantic graphs, 
we treat the similarity matrices directly as adjacency matri-
ces; thus, the similarity matrices shown in the left panel 
of Fig. 2 correspond to the adjacency matrices of the fully 
connected weighted graphs they define. To construct sparse 
weighted semantic graphs, we used the Pathfinder algorithm 
(Schvaneveldt, 2023), which preserves only the shortest path 
between nodes and discards remaining links. As discussed, 
weighted sparse graphs may help eliminate spurious node 
links and provide more robust measures of semantic network 
structure.

We constructed unweighted (binarized) graphs using 
two filtering approaches with different thresholds. The first 
approach transforms the similarity matrices into binary adja-
cency matrices by finding a similarity threshold that would 
achieve a desired edge density, resulting in the sparsely con-
nected binary graphs. Specifically, we chose thresholds for 
similarities to achieve a fixed proportion of edges across 
participants and tasks. We evaluated both 33% and 50% 
edge densities to examine whether our results were reliable 
across different thresholding criteria. Given the 190 possible 
edges (n(n − 1))∕2 between the 20 words in our sample, this 
yielded thresholds of 64 and 95 total edges, respectively. 
Because the six-point Likert task used a coarse measure of 
similarity, we could not meet this fixed criterion exactly for 
each individual in the Likert task, so we chose individuals’ 
thresholds such that the number of edges was as close as 
possible to 64 or 95. In Experiment 1a the average edge 

3 Correlations are expected to be negative in the raw data because the 
spatial arrangement task measures semantic relatedness in terms of 
distance, and the rating tasks measure semantic relatedness in terms 
of similarity.
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density across participants was 64 (σ = 17; range: 25–164) 
with a 33% edge density threshold and 87 (σ = 21; range: 
25–164) with a 50% edge density threshold. In Experi-
ment 1b the average edge density across participants was 
63 (σ = 4; range: 38–68) with a 33% edge density threshold 

and 92 (σ = 11; range: 46–109) with a 50% edge density 
threshold. In Experiment 2a the average edge density across 
participants was 63 (σ = 11; range: 37–92) with a 33% edge 
density threshold and 92 (σ = 13; range: 62–117) with a 50% 
edge density threshold. In Experiment 2b the average edge 

Example representations of semantic networks

Likert task Spatial multi-arrangement

1tnapicitra
P

2tnapicitra
P

1tnapicitra
P

2tnapicitra
P

Experiment 2a: Binarized (33% edge density) 

Experiment 1a: Weighted (full) 

Likert task Spatial multi-arrangement

Fig. 2  Example similarity matrices, and thus weighted-graph adja-
cency matrices, obtained for two example participants from the Likert 
and spatial arrangement tasks (left), and the sparse unweighted graph 

that arises from thresholding these adjacency matrices to 33% edge 
density for unweighted graph analyses (right)
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density across participants was 62 (σ = 5; range: 32–67) with 
a 33% edge density threshold and 96 (σ = 12; range: 75–142) 
with a 50% edge density threshold. Note that graphs con-
structed using the 33% and 50% edge density thresholds are 
overlapping within participants for the same words, with the 
exception that graphs constructed using the 50% criterion 
are more interconnected graphs on average.

We then thresholded the continuous similarity data from 
the spatial arrangement task such that we obtained the same 
number of edges in the adjacency matrices from the spatial 
arrangement task as we had in the Likert task for each par-
ticipant. This procedure ensured that the number of edges 
was the same within each individual across the two tasks 
and, accordingly, that individual differences in graph proper-
ties were not obfuscated due to differences in scale granu-
larity in Experiments 1a and 2a. For permutation analyses, 
we randomly paired the Likert data from one subject with 
the spatial arrangement task data from another subject, and 
we repeated this procedure for each “synthetic subject” to 
ensure that the permutation analysis also had matched edge 
densities for the two tasks.

The second filtering approach for constructing binarized 
networks transforms the similarity matrices into binary adja-
cency matrices by using a similarity instead of a link-density 
threshold. Based on prior work (Benedek, et al., 2017) we 
used a mid-scale cutoff from each task’s (dis)similarity 
scales. For data from slider and Likert pairwise similar-
ity tasks, we linked nodes for word pairs that participants 
assigned a similarity rating greater than “50” or “3,” respec-
tively. From data from the spatial multi-arrangement task, 
we linked all word pairs that were below the average of the 
median scores of each participant within each experiment.

Permutation analyses

For any measure of the similarity of semantic structure 
within individuals, across tasks, we must construct a null 
hypothesis corresponding to an absence of stable individual 
differences, but which respects the possibility of consist-
ent semantics for the whole group. To test for the presence 
of individual differences in semantic network structure, we 
used permutation analyses by pairing the data of one subject 
from the Likert (Experiments 1a and 2a) or slider pairwise 
similarity task (Experiments 1b and 2b) with the spatial 
arrangement task data from another subject. For instance, 
Tim's adjacency matrix on the Likert task might be paired 
with Isabella’s adjacency matrix on the spatial arrangement 
task, while Tim’s spatial arrangement data and Isabella’s 
Likert data are paired with other subjects. On each permu-
tation, all the subject–task measurements are used exactly 
once, but paired with the corresponding task of another sub-
ject, yielding the same number of synthetic subjects that we 
had in the unpermuted data.

Any across-task similarity measures we calculate on such 
synthetic subjects correspond to samples of the null hypoth-
esis wherein there are no stable individual differences in 
semantic structure across participants. We repeated this pro-
cedure 10,000 times with different permutations of the data 
to construct a null distribution. We can then obtain a p-value 
against this null hypothesis by evaluating what proportion 
of null samples obtained via permutation showed similarity 
across tasks equal to or greater than the unpermuted data, 
thus asking whether the consistency of a particular property 
of the semantic graph is more consistent within individual, 
across tasks, than we would expect by chance. Effectively, 
this analysis gets at the following question: Is semantic net-
work structure more similar across tasks when using the 
same person’s data versus when using a different person’s 
data?

Results

For both weighted and unweighted semantic graphs we test 
for stable individual differences in the content of the seman-
tic network, as well as the structure of the semantic network. 
The full content of the semantic network amounts to the 
overall pattern of relations among words, as captured by the 
full 20 × 20 adjacency matrix describing the full network. 
The semantic content of the network may be roughly sum-
marized by considering just the relative importance of all 20 
nodes, characterized by a vector of all their node centrali-
ties. Both content-based measures of the semantic structure 
evaluate whether individual differences in semantic related-
ness judgements are robust across the two tasks.

In contrast, measures of the structure of the semantic net-
work abstract away from the specific nodes (concepts) over 
which the network is defined and extract overall measures 
of network connectivity. We focus on two such structural 
measures: the degree to which concepts are clustered (clus-
tering coefficient), and the efficiency of conceptual inter-
connections (as measured by average path length between 
concepts). Both of these structural measures disregard the 
specific nodes but seek to characterize some more general 
property of an individual’s semantic network, which might 
capture some higher-level property of an individual’s high-
level semantics.

All reported p-values from our permutation tests are cor-
rected to control for multiple comparisons using a Bonfer-
roni correction. To increase our ability to detect individual 
differences, we define family-wise comparisons by counting 
the number of tests within each filtering method for con-
structing graphs, which results in four tests. In addition to 
permutation p-values, we report descriptive statistics from 
the permutation analyses (denoted with the “Perm” sub-
script) and the absolute value of the z-score standardized 



Behavior Research Methods 

1 3

effect size from the permutation analyses (denoted as |dPerm|
).

Consistency of local metrics of semantic networks

We examine whether local metrics of semantic networks 
capture individual differences that are consistent across 
tasks. We evaluate two measures: (1) the overall set of node 
relations, as characterized by the full n × n adjacency matrix, 
and (2) the relative semantic importance of nodes, as cap-
tured by the n-unit vector of node centralities. Insofar as 
these measures are consistent across (6- or 100-point) rat-
ing and spatial arrangement tasks, it indicates that there are 
individual differences in the semantic structure among these 
concepts that are stable across tasks.

Overall: Complete adjacency matrix

First, we ask whether the overall semantic similarity struc-
ture as captured in the full adjacency matrix was consistent 
for a given individual across the rating and spatial arrange-
ment tasks. We quantified the consistency of the links across 
networks by measuring the Euclidean distance between their 
adjacency matrices. In each experiment there are 20 words, 
and each 20 × 20 similarity/adjacency matrix can be treated 
as a 1 × 190 similarity vector. Below, we represent the adja-
cency matrix in vector form for convenience because the 
upper and lower triangular matrices of adjacency matrices 
for undirected graphs are redundant. Equation 1 shows the 
formula for the Euclidean distance ( d ) between the simi-
larity vector obtained from the Likert rating task ( R ) and 
similarity vector from the spatial multi-arrangement task ( S),

Smaller distances between adjacency matrices indicate 
greater consistency of the two matrices.

Weighted graphs The overall structure of semantic relations 
was more similar across tasks from the same subject than 
for randomly paired subjects in all experiments for both full 
weighted graphs and sparse weighted graphs. In Experi-
ment 1a, the average distance between Likert and spatial 
arrangement task adjacency matrices was 4.32 and 4.56 for 
full weighted and sparse weighted matrices, respectively. 
For full ( X

Perm
= 4.66 ) and sparse ( X

Perm
= 4.93 ) weighted 

matrices, these distances were significantly smaller within 
subjects than in the permuted sample ( |dPerm| = 8.0 and 
|dPerm| = 10.7 , respectively; ps < .001). In Experiment 1b, the 
average distance between slider and spatial arrangement task 
adjacency matrices was 4.11 and 4.15 for full weighted and 
sparse weighted matrices, respectively. For full ( X

Perm
= 4.5 ) 

(1)dLT =

√
∑190

i=1
(Ri − Si)

2
.

and sparse ( X
Perm

= 4.54 ) weighted matrices, these distances 
were significantly smaller within subjects than in the per-
muted sample ( |dPerm| = 7.4 and |dPerm| = 12.3 , respectively; 
ps < .001). In Experiment 2a, the average distance between 
Likert and spatial arrangement task adjacency matrices was 
4.32 and 5.43 for full weighted and sparse weighted matri-
ces, respectively. Again, for full ( X

Perm
= 4.79 ) and sparse 

( X
Perm

= 6.04 ) weighted matrices, these distances were sig-
nificantly smaller within subjects than in the permuted sam-
ple ( |dPerm| = 7.9 and |dPerm| = 11.9 , ps < .001). Finally, in 
Experiment 2b, the average distance between slider and spa-
tial arrangement task adjacency matrices was 4.3 and 5.38 
for full weighted and sparse weighted matrices, respectively. 
For full ( X

Perm
= 4.55 ) and sparse ( X

Perm
= 5.74 ) weighted 

matrices, these distances were significantly smaller within 
subjects than in the permuted sample ( |dPerm| = 5.2 and 
|dPerm| = 9.75 , respectively; ps < .001).

Binarized graphs We also found that the structure of 
semantic relations was more similar across tasks from the 
same subject than for randomly paired subjects in all four 
experiments for unweighted graphs with both 33% and 
50% edge densities, and unweighted graphs with a fixed 
mid-scale threshold. In Experiment 1a, the average dis-
tance between unweighted graph matrices was 7.02 with 
edge density of 33% ( X

Perm
= 7.4 ), 7.76 with edge density 

of 50% ( X
Perm

= 8.09 ), and 8.15 with a fixed mid-scale 
threshold ( X

Perm
= 8.54 ). Each of these distances within 

subjects was significantly smaller than in the permuted 
sample ( |dPerm| = 7.97, |dPerm| = 6.62, and |dPerm| = 8.66 , 
respectively; ps < .001). We found the same pattern of results 
in Experiment 1b, where the average distance between 
unweighted graph matrices within the same subject was 7.07 
when edge density was 33% ( X

Perm
= 7.54 ), was 7.97 when 

edge density was 50% ( X
Perm

= 8.34 ), and 8.14 when we 
used a fixed mid-scale threshold ( X

Perm
= 8.51 ). Again, each 

of these distances within subjects was significantly smaller 
than in the permuted sample ( |dPerm| = 10.96, |dPerm| = 8.46, 
and |dPerm| = 8.42 , respectively; ps < .001). Likewise, in 
Experiment 2a, the average distance between unweighted 
graph matrices was 6.99 within the same subject when 
edge density was 33% ( X

Perm
= 7.56 ), 7.90 within the 

same subject when edge density was 50% ( X
Perm

= 8.37 ), 
and 7.88 when we used a fixed mid-scale threshold 
( X

Perm
= 8.31 ). For each threshold, these distances were 

significantly smaller within subjects than in the permuted 
sample ( |dPerm| = 12.88, |dPerm| = 10.14, and |dPerm| = 8.98 , 
respectively; ps < .001). Finally, in Experiment 2b, the aver-
age distance between unweighted graph matrices was 7.3 
when edge density was 33% ( X

Perm
= 7.69 ), 8.18 when 

edge density was 50% ( X
Perm

= 8.49 ), and 8.19 when we 
used a fixed mid-scale threshold ( X

Perm
= 8.57 ). Again, for 

each threshold these average distances were significantly 
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smaller within subjects than in the permuted sample 
( |dPerm| = 9.5, |dPerm| = 7.42, and |dPerm| = 8.01 , respec-
tively; ps < .001).

Summary Figure 3 shows results of all permutation analy-
ses. Altogether, across all four experiments, and regardless 
of whether semantic network was represented as a weighted 
or binary graph, regardless of what filtering procedure we 
used to construct graphs, and regardless of how we collected 
data in the pairwise semantic relatedness task and which 
stimuli we used, the distance between adjacency matrices 
was significantly smaller when comparisons were made 
within the same individual than when made across individu-
als. These results were consistent when we used the Pearson 

correlation instead of Euclidean distance to quantify related-
ness between matrices. This indicates that there are stable 
individual differences in local metrics of semantic networks 
that generalize across tasks.

Node importance: Eigenvector centrality

Next, we examine the consistency of local metrics of seman-
tic networks across tasks in terms of the relative node impor-
tance by calculating “eigenvector centrality” for each node 
(as in Bieth et al., 2021). This measure collapses the 20 × 20 
adjacency matrix onto a vector of length 20, and thus sum-
marizes the full semantic content of the network in terms 
of a single scalar property of each concept: how important 

Fig. 3  Permutation results for comparison of distances between 
adjacency matrices constructed from the two relatedness tasks. The 
distribution (black) shows z-scored means obtained from permuting 
adjacency matrices of each task across 70 participants and averaging 
the obtained distance scores across the permuted sample. This proce-
dure was repeated 10,000 times to obtain a null distribution of sample 

means. The line is the z-scored mean of distances between matrices 
in the unpermuted sample where the correspondence between partici-
pants is preserved across tasks. Blue indicates that the unpermuted 
mean of distances was statistically smaller than in the null distribu-
tion
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is it compared to the other concepts? Eigenvector centrality 
of a given concept within a semantic network captures the 
degree to which a given concept is related to other intercon-
nected concepts: nodes are more central when they are more 
heavily connected to other nodes, and when they are heavily 
connected to other heavily connected nodes. For directed 
graphs, the eigenvector centrality is related to the PageRank 
algorithm, which can be used to characterize the relative 
importance of websites given their link structure (Page et al., 
1997), or words, given free association data like the Nelson 
norms (e.g., Griffiths et al., 2007). Nodes with higher cen-
trality scores have more importance because they are linked 
to more sources of information (other semantic units) and 
can be reached with greater efficiency within the network.

Eigenvector centrality ( cE ) is related to the eigenvector 
decomposition of the adjacency matrix of the graph (Latora 
et al., 2017):

where A is the similarity adjacency matrix for the seman-
tic graph, and � and cE are its (largest) eigenvalue and the 
absolute value of its corresponding eigenvector, respectively. 
Technically, the eigenvector centrality score of each node is 
proportional to the sum of the centralities of its neighboring 
nodes.

As in the other analyses, to evaluate the consistency of 
the centralities of all concepts across tasks, we calculated the 
correlation between eigenvector centrality scores of the 20 
words from the two tasks for each participant, and then aver-
aged these correlations across subjects. We compared this 
average correlation to the distribution of average correlations 
obtained from 10,000 permutation iterations.

Weighted graphs For all experiments we found that cor-
relations of centralities across tasks were greater within 
subjects than in the permuted samples. In Experiment 1a, 
the average correlation across participants between node 
centrality scores from the Likert and spatial arrangement 
tasks for the same subject was rAvg = .21 for the full weighted 
matrix ( rAvg,Perm = 07) and rAvg  = .13 for the sparse matrix 
( rAvg,Perm = −.015). In both cases, averaged correlations 
were higher within subjects than in the permuted samples 
( |dPerm| = 4.87, and |dPerm| = 3.29 , respectively; ps < .002). 
In Experiment 1b, the average correlation between node cen-
trality scores from the slider and spatial arrangement tasks 
for the same subject was rAvg  = .26 for the full weighted 
matrix ( rAvg,Perm = .055) and rAvg  = .18 for the sparse matrix 
( rAvg,Perm = .004). Again, these average correlations were 
significantly higher within subjects than in the permuted 
samples ( |dPerm| = 6.39, and |dPerm| = 4.26 , respectively; 
ps < .001). In Experiment 2a, the average correlation 
between node centrality scores from the Likert and spatial 

(2)AcE = �cE,

arrangement tasks for the same subject was rAvg  = .58 for 
the full weighted matrix ( rAvg,Perm = .46) and rAvg  = .57 for 
the sparse matrix ( rAvg,Perm = .46). These average correla-
tions were higher with participants than in the permuted 
samples ( |dPerm| = 8.01, and |dPerm| = 5.94 , respectively; 
ps < .001). Finally, in Experiment 2b, the average correlation 
between node centrality scores from the slider and spatial 
arrangement for the same subject was rAvg  = .58 for the full 
weighted matrix ( rAvg,Perm = .49) and rAvg  = .59 for the sparse 
matrix ( rAvg,Perm = .50). Again, these average correlations 
were higher within subjects than in the permuted samples 
( |dPerm| = 6.31, and |dPerm| = 5.84 , respectively; ps < .001).

Binarized graphs We also found that node centrality scores 
were more consistent across tasks from the same subject 
than for randomly paired subjects in all four experiments 
for unweighted graphs with both 33% and 50% edge den-
sities, and unweighted graphs with a mid-scale threshold. 
In Experiment 1a, the average node centrality score cor-
relation between the two semantic relatedness tasks was 
rAvg  = .16 when edge density was 33% ( rAvg,Perm = .037), 
rAvg  = .21 when edge density was 50% ( rAvg,Perm = .08), 
and rAvg  = .22 when we used a fixed mid-scale threshold 
( rAvg,Perm = .07). For all three thresholds, these average cor-
relations were larger within subjects than in the permuted 
samples ( |dPerm||= 3.2, |dPerm|| = 3.98 and |dPerm| = 4.62 , 
respectively; ps < .001). We found the same pattern of results 
in Experiment 1b, where the average correlation in node 
centrality scores across the two semantic relatedness tasks 
was rAvg  = .21 when edge density was 33% ( rAvg,Perm = .01), 
rAvg  = .22 when edge density was 50% ( rAvg,Perm = .07), and 
rAvg  = .17 for the same subject when we used a fixed mid-
scale threshold ( rAvg,Perm = .05). For all three thresholds, 
these average correlations were larger within subjects than 
in the permuted samples ( |dPerm||= 5.0, |dPerm|| = 5.01 and 
|dPerm| = 3.68 , respectively; ps < .001). Likewise, in Experi-
ment 2a, the average correlation of node centrality scores 
was rAvg  = .6 when edge density was 33% ( rAvg,Perm = .49), 
rAvg  = .54 when edge density was 50% ( rAvg,Perm = .43), 
and rAvg  = .24 when we used a fixed mid-scale threshold 
( rAvg,Perm = .07). For all three thresholds, these average cor-
relations were larger within subjects than in the permuted 
samples ( |dPerm||= 6.42, |dPerm|| = 6.58 and |dPerm| = 4.97 , 
respectively; ps < .001). Finally, in Experiment 2b, the 
average correlation of node centrality scores was rAvg  = .59 
when edge density was 33% ( rAvg,Perm = .497), rAvg  = .51 
when edge density was 50% ( rAvg,Perm = .45), and rAvg  = .52 
when we used a fixed mid-scale threshold ( rAvg,Perm = .45). 
For all three thresholds, these average correlations were 
larger within subjects than in the permuted samples 
( |dPerm||= 5.83, |dPerm|| = 3.66 and |dPerm| = 4.55 , respec-
tively; ps < .001).
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Summary Figure 4 shows results of all permutation analy-
ses. Once again, across all four experiments, regardless of 
whether semantic network was represented as a weighted or 
binary graph, regardless of what filtering procedure we used 
to construct graphs, and regardless of how we collected data 
in the pairwise semantic relatedness task and which stimuli 
we used, node centrality scores across the two semantic 
relatedness tasks were more robust when comparisons were 
made within the same individual than when made across 
individuals. This provides converging evidence that there 
are stable individual differences in local metrics of semantic 
networks that generalize across tasks.

Consistency of global metrics of semantic 
networks

So far, our analyses suggest that there are reliable indi-
vidual differences in local metrics of semantic networks, 
indicating that people have consistent idiosyncrasies to 
their semantics that show up across tasks. As reviewed in 
the introduction, however, researchers often are interested 
not in individual differences in the semantic associations 
of the set of stimuli investigated, but seek to characterize 
individual differences in some global topological property 

Fig. 4  Permutation results for comparison of correlations in central-
ity scores for 20 words obtained from the two relatedness tasks. The 
distribution (black) shows z-scored average correlation coefficients 
obtained from permuting centrality scores of each task across 70 par-
ticipants and averaging the obtained correlations across the permuted 
sample. This procedure was repeated 10,000 times to obtain a null 

distribution of sample average correlations. The line is the z-scored 
mean correlation between centrality scores obtained in the unper-
muted sample, where the correspondence between participants is 
preserved across tasks. Blue indicates that the unpermuted mean was 
statistically greater than the null distribution
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of the semantic space. For instance, perhaps some people 
have greater separation in their semantic representation 
between different content domains, yielding an overall 
greater tendency for concepts to cluster. Or perhaps oth-
ers have a greater degree of interconnection among all 
concepts. Insofar as there are stable individual differences 
in such global properties of the overall structure of the 
semantic network, they might be used to predict individual 
differences in a broad range of tasks beyond the specific 
concepts whose similarity had been measured, like creativ-
ity (Benedek, et al., 2017).

We focused on two global properties that characterize 
distinct aspects of the semantic network and have previ-
ously been used to characterize the structure of semantic 
networks: (1) the extent to which concepts are clustered, as 
measured by the average clustering coefficient, and (2) the 
interconnectedness of the semantic network, as measured by 
the average shortest path length (e.g., Benedek et al., 2017; 
Griffiths et al., 2007).

Before presenting our findings, we point out that meas-
ures of average clustering coefficients and average path 
length are correlated with the number of edges in a graph. 
This poses a potential problem for analyzing binary graphs 
with an edge density threshold that were constructed from 
the Likert pairwise semantic relatedness tasks, because this 
scale is coarse and not all participants can meet an exact 
cutoff of 33% or 50% edge densities. To correct for this in 
Experiments 1a and 2a, we quantified the associations for 
average shortest path length and clustering coefficient using 
the partial correlation coefficient, controlling for individual 
differences in the number of edges across people’s graphs. 
This provides an indirect way of examining whether these 
measures capture individual differences in network topology 
that are not due to potential differences in response poli-
cies. For each comparison, we report the significance of this 
partial correlation coefficient. Under conditions where the 
partial correlation coefficient is statistically significant, we 
also report the results of the permutation test, which tells 
us whether the measure preserves individual differences in 
the data.

Clustering: Average clustering coefficient

The average clustering coefficient captures the degree to 
which concepts are closely connected within clusters with 
more distant connections between clusters. The local clus-
tering coefficient ( Cj ) of a particular node j quantifies the 
degree to which that node’s neighbors (adjacent nodes) 
are connected to one another and can be defined so long 
as the target node has two or more neighbors. Insofar as 
concepts are clustered, then neighbors of a node will be 
more heavily interconnected. In an unweighted graph, the 

local clustering coefficient for a node j is given by the 
formula (Watts & Strogatz, 1998)

where the numerator vj is the total number of edges present 
between the nj neighbors of node j, and the expression in 
the denominator is the maximum number of possible edges 
between those neighbors. If a node has fewer than two neigh-
bors, nj< 2, the denominator is 0, and the local clustering 
coefficient is undefined. For weighted graphs, the local clus-
tering coefficient is given by the formula

where the numerator is triads of nodes (constructed with 
respect to node j) weighted by the strength of connections 
between nodes within the triad, and the denominator is the 
sum of node–pair connections with respect to node j (within 
the triad), which sets the upper bound on the product of triad 
weights in the numerator (Kalna & Higham, 2006; Zhang & 
Horvath, 2005). More intuitively, this formula describes the 
weighted average connection strength between two neigh-
bors of a node, weighted by the product of the node’s con-
nection to those two neighbors. This has the property that 
as edge weights approach the unweighted, binary limits of 
1 and 0, the weighted clustering coefficient approaches the 
unweighted clustering coefficient. The average clustering 
coefficient is the average of the local clustering coefficients 
across all nodes in the graph.

Weighted graphs In Experiment 1a, the average clustering 
coefficient for full weighted graphs was .45 and .44 in the 
Likert task and spatial arrangement task, respectively, and 
the average clustering coefficient for sparse weighted graphs 
was .39 and .43 in the Likert task and spatial arrangement 
task, respectively. The correlation between clustering coef-
ficients across tasks was not statistically significant in the 
unpermuted sample for full weighted graphs (r(68) = .208, 
p = 0.084) or for sparse weighted graphs (r(68) = .103, p 
=.39). In Experiment 1b, the average clustering coefficient 
for full weighted graphs was .45 and .44 in the slider task 
and spatial arrangement task, respectively, and the aver-
age clustering coefficient for sparse weighted graphs was 
.34 and .45 in the slider task and spatial arrangement task, 
respectively. The correlation between clustering coefficients 
across tasks was statistically significant for full weighted 
graphs (r(68) = .301, p = .011) and statistically more robust 
within the same subject than in the permuted sample 
( rPerm = −.004;||dPerm|| = 2.54; p = .024). The correlation 
between clustering coefficients across tasks in Experiment 
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1b was not statistically significant for sparse weighted 
graphs (r(68) = .053, p = .663). Likewise, in Experiment 2a, 
the average clustering coefficient for full weighted graphs 
was .52 and .52 in the Likert task and spatial arrangement 
task, respectively, and the average clustering coefficient for 
sparse weighted graphs was .44 and .46 in the Likert task 
and spatial arrangement task, respectively. The correlation 
between clustering coefficients across tasks was statistically 
significant for full weighted graphs (r(68) = .243, p = 0.043), 
but it was not statistically more consistent within subjects 
than in the permuted sample after correcting for multiple 
comparisons ( rPerm = −.02;||dPerm|| = 2.018; p = .084). The 
correlation between clustering coefficients across tasks 
in Experiment 2a was statistically significant for sparse 
weighted graphs (r(68) = .472, p < .001) and was signifi-
cantly more consistent within subjects than in the permuted 
sample ( rPerm = −.01;||dPerm|| = 3.99; p < .001). Finally, in 
Experiment 2b, the average clustering coefficient for full 
weighted graphs was .51 and .54 in the slider task and spatial 
arrangement task, respectively, and the average clustering 
coefficient for sparse weighted graphs was .34 and .45 in 
the slider task and spatial arrangement task, respectively. 
The correlation between clustering coefficients across tasks 
was not statistically significant for full weighted graphs 
(r(68) = −.011, p = .92) or for sparse weighted graphs 
(r(68) = .167, p = .17).

Binarized graphs In Experiment 1a, the average unweighted 
clustering coefficient was .54 and .62 when using the 33% 
edge density thresholding criterion in the Likert task and 
spatial arrangement task, respectively; was .61 and .64 
when using the 50% edge density thresholding criterion 
in the Likert and spatial arrangement task, respectively; 
and was .58 and .65 in the Likert and spatial arrangement 
task when using a fixed mid-scale threshold, respectively. 
The partial correlation coefficient between clustering coef-
ficients across tasks was significant in the 33% edge den-
sity threshold ( rP (68) = .31, p = .011) and was significantly 
more robust within people than in the permuted sample 
( rP,Perm = .035;||dPerm|| = 2.25; p = .0452). The partial cor-
relation between clustering coefficients was not signifi-
cant with the 50% edge density thresholding criterion ( rP 
(68) = .23, p = .06), and the correlation was not significant 
with the fixed mid-point criterion (r(68) = .10, p = .4). In 
Experiment 1b, the average unweighted clustering coef-
ficient was .53 and .61 when using the 33% edge density 
thresholding criterion in the slider task and spatial arrange-
ment task, respectively; was .63 and .65 when using the 50% 
edge density thresholding criterion in the slider and spa-
tial arrangement task, respectively; and was .59 and .65 in 
the Likert and spatial arrangement task when using a fixed 
mid-scale threshold, respectively. The correlation between 
clustering coefficients across tasks was not significant in 

the 33% edge density threshold (r(68) = .12, p = .18). The 
correlation between clustering coefficients was significant 
with the 50% edge density threshold (r(68) = .28, p = .021) 
and was more robust within people than in the permuted 
sample ( rPerm = −.004;||dPerm|| = 2.27; p = .046). The cor-
relation between clustering coefficients was not significant 
with the fixed mid-point criterion (r(68) = .07, p = .57). In 
Experiment 2a, the average clustering coefficient was .53 
and .63 when using the 33% thresholding criterion in the 
Likert task and spatial arrangement task, respectively; was 
.61 and .67 when using the 50% thresholding criterion in the 
Likert and spatial arrangement task, respectively; and was 
.58 and .64 with the fixed mid-point criterion, respectively. 
The partial correlation between clustering coefficients across 
tasks was significant in the unpermuted sample for both the 
33% ( rP (68) = .47, p < .001; rP,Perm = −.01 ) and 50% ( rP 
68) = .61, p < .001; rP,Perm = −.02 ) thresholding criteria. 
For both thresholds, partial correlations were more robust 
within people than in the permuted sample ( ||dPerm|| = 3.96 
and ||dPerm|| = 4.89 , respectively; ps < .001). The correlation 
between clustering coefficients was not significant when 
using a fixed mid-point threshold (r(68) = .092, p = .45). 
Finally, in Experiment 2b, the average clustering coefficient 
was .51 and .61 when using the 33% thresholding criterion 
in the slider task and spatial arrangement task, respectively; 
was .62 and .66 when using the 50% thresholding criterion 
in the slider and spatial arrangement task, respectively; and 
was .58 and .66 with the fixed mid-point criterion, respec-
tively. The correlation between clustering coefficients across 
tasks was not significant with the 33% edge density thresh-
old (r(68) = −.004, p = .97). The correlation was significant 
with a 50% edge density threshold (r(68) = .28, p = .019) 
and was more consistent within people than in the permuted 
sample ( rPerm = −.01;||dPerm|| = 2.30 ; p = .04). The correla-
tion between clustering coefficients was not significant when 
using a fixed mid-point threshold (r(68) = −.115, p = .35).

Summary Figure 5 shows results of all permutation analy-
ses. Together, we do not find robust evidence that measures 
of semantic network clustering reliably capture individual 
differences across the two semantic relatedness tasks. While 
we do find some statistically significant effects in some 
experiments (e.g., Experiment 2a), the associations tend 
to be low to moderate and are not robust across each of 
the filtering criteria. More importantly, we do not replicate 
these with small variations in experimental design, such as 
change in stimuli or change in the granularity of the pairwise 
semantic relatedness task.

Interconnectedness: Average shortest path length

The efficiency and interconnectedness of a graph corre-
sponds to how easily one can traverse from one node to 
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another. While there are several possible measures of this 
efficiency, the simplest is the average shortest path length. 
In an unweighted, sparse graph, the shortest path length 
between nodes i and j refers to the minimum number of links 
that need to be traversed from node j to reach node i (Bara-
basi, 2016). The average shortest path length is computed by 
averaging the shortest path length over all n*(n − 1)/2 pairs 
of nodes, yielding one number corresponding to the overall 
interconnectedness of the network that captures how spread 
out semantic units are within the network or, conversely, 
how “efficiently” information traverses the network. Is this 

measure of overall semantic network connectivity stable 
across tasks for a given subject?

The average shortest path length ( L ) is given in Eq. 5,

where di,j is the shortest distance between nodes i and j , N is 
the number of distinct nodes in the network, and the expres-
sion in the denominator is the number of unique node pairs 
in an undirected graph.

(5)L =
1

(
N(N−1)

2
)

∑
i≠j

di,j

Fig. 5  Permutation results for comparison of correlation clustering 
coefficients of graphs across participants. The distribution (black) 
shows z-scored correlation coefficients obtained from permuting 
clustering coefficients computed from graphs of each task across 70 
participants. This procedure was repeated 10,000 times to obtain a 
null distribution of sample correlations. The line is the z-scored cor-

relation between clustering coefficients obtained in the unpermuted 
sample, where the correspondence between participants is preserved 
across tasks. Blue and red lines indicate that the unpermuted mean 
was either statistically greater than or not statistically different from 
the null distribution, respectively
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For unweighted, binary graphs, the distance of a particu-
lar path between two nodes is defined as the total number of 
edges along that path. Thus, the shortest path between two 
nodes ( dij ) is the number of edges in the path between nodes 
i and j that has the fewest edges. For some tasks and partici-
pants in our sample, semantic networks were disconnected, 
so the shortest path was undefined for some node pairs; we 
excluded these node pairs from that person’s average.

For weighted graphs, all nodes are connected, but 
with edges of varying weight. We adopt the conventional 
approach of defining distance for a weighted edge to be 1/
weight, and thus the length of a path is defined as the sum 
of the distances along that path. The shortest path between 
nodes i and j ( dij ) is defined as the path with the smallest sum 
of distances. Note that in our case, edge weights are given by 
scaled similarities, and thus edge distances are proportional 
to the semantic proximity between word pairs.

Weighted graphs In Experiment 1a, the average shortest 
path length for full weighted graphs was .73 and 1.07 in the 
Likert task and spatial arrangement task, respectively, and 
the averaging shortest path length score for sparse weighted 
graphs was .82 and .69 in the Likert task and spatial arrange-
ment task, respectively. The correlation between average 
shortest path length scores across tasks was not statisti-
cally significant in the unpermuted sample for full weighted 
graphs (r(68) = .11, p = 0.37) or for sparse weighted graphs 
(r(68) = .204, p =.09). In Experiment 1b, the average short-
est path length for full weighted graphs was .36 and .52 in 
the slider task and spatial arrangement task, respectively, 
and the average shortest path length for sparse weighted 
graphs was .57 and .69 in the slider and spatial arrangement 
task, respectively. The correlation between average shortest 
path length across tasks was not statistically significant for 
full weighted graphs (r(68) = .23, p = .06), but it was signifi-
cant for sparse weighted graphs (r(68) = .53, p < .001), and 
was more robust within people than in the permuted sample 
( rPerm = −.01;||dPerm|| = 4.46 ; p < .001). In Experiment 2a the 
shortest path length for full weighted graphs was .5 and .88 
in the Likert task and spatial arrangement task, respectively, 
and the averaging shortest path length for sparse weighted 
graphs was .67 and .54 in the Likert task and spatial arrange-
ment task, respectively. The correlation between average 
shortest path length across the two tasks was not statistically 
significant for full weighted graphs (r(68) = .14, p = 0.26) or 
for sparse weighted graphs (r(68) = −.032, p = 0.79). Finally, 
in Experiment 2b the average shortest path length for full 
weighted graphs was .29 and .41 in the slider and spatial 
arrangement task, respectively, and the average shortest 
path length for sparse weighted graphs was .44 and .51 in 
the slider task and spatial arrangement task, respectively. 
The correlation between average shortest path length scores 
across tasks was not statistically significant for full weighted 

graphs (r(68) = −.014, p = .9) or for sparse weighted graphs 
(r(68) = −.076, p = .54).

Binarized graphs In Experiment 1a, the average shortest 
path length was 3.61 and 3.75 when using the 33% thresh-
olding criterion in the Likert task and spatial arrangement 
task, respectively; was 3.12 and 3.16 when using the 50% 
edge density thresholding criterion in the Likert and spa-
tial arrangement task, respectively; and was 1.65 and 1.53 
in the Likert and spatial arrangement task when using a 
fixed mid-scale threshold, respectively. The partial correla-
tion coefficient between average path length scores across 
tasks was significant with the 33% edge density threshold 
( rP (68) = .305, p = .01), but not more robust within people 
than in the permuted sample after correcting for multiple 
comparisons ( rP,Perm =.13; ||dPerm|| = .65; p = 1). The partial 
correlation between average path length across the two tasks 
was not significant in the right direction with a 50% edge 
density threshold (r(68) = −.256, p =.03). The correlation 
in average path length was not significant with a fixed mid-
point threshold (r(68) = −.155, p = .2). In Experiment 1b, 
the average path length was 1.83 and 1.91 when using the 
33% edge density thresholding criterion in the slider and 
spatial arrangement task, respectively; was 1.55 and 1.56 
when using the 50% edge density thresholding criterion in 
the slider and spatial arrangement task, respectively; and 
was 1.73 and 1.53 in the slider and spatial arrangement 
task when using a fixed mid-scale threshold, respectively. 
The correlation between average path length scores across 
tasks was not significant in the 33% edge density thresh-
old (r(68) = .08, p = .51). The correlation between average 
path length scores was significant with the 50% edge density 
threshold (r(68) = .478, p < .001) but was not more robust 
within people than in the permuted sample ( rPerm =.40; 
||dPerm|| = .33; p = 1). The correlation between average short-
est path length scores was not significant with the fixed mid-
point criterion (r(68) = .055, p = .65). In Experiment 2a, the 
average shortest path length was 3.65 and 3.76 when using 
the 33% thresholding criterion in the Likert task and spa-
tial arrangement task, respectively; was 3.07 and 3.11 when 
using the 50% thresholding criterion in the Likert and spatial 
arrangement task, respectively; and was 1.65 and 1.59 with 
the fixed mid-point criterion, respectively. The partial cor-
relation between average path length scores across tasks was 
not significant in the unpermuted sample with the 33% edge 
density threshold (r(68) = .16, p = .19), was not significant 
with the 50% edge density threshold (r(68) = .19, p =.11), 
and was not significant when using a fixed mid-point thresh-
old (r(68) = .043, p = .72). Finally, in Experiment 2b, the 
average shortest path length was 1.89 and 1.91 when using 
the 33% thresholding criterion in the slider task and spa-
tial arrangement task, respectively; was 1.51 and 1.53 when 
using the 50% thresholding criterion in the slider and spatial 
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arrangement task, respectively; and was 1.64 and 1.57 with 
the fixed mid-point criterion, respectively. The partial corre-
lation between average path length scores was not significant 
with the 33% edge density threshold (r(68) = .209, p = .083) 
or the 50% edge density threshold (r(68) = .067, p = .58), 
or with a fixed mid-point threshold (r(68) = −.16, p = .183).

Summary Figure 6 shows results of all permutation analy-
ses. Together, once again, we do not find robust evidence 
that a measure of semantic network efficiency (average path 
length) reliably captures individual differences across the 
two semantic relatedness tasks. In general, associations of 
this metric across tasks tend to be low to moderate and are 
not robust across each of the filtering criteria. We also fail to 

replicate these with small variations in experimental design, 
such as change in stimuli or change in the granularity of the 
pairwise semantic relatedness task.

Summary across experiments and analyses The collective 
set of results is summarized in Table 1. Together, these anal-
yses suggest that, unlike metrics of semantic network con-
tent, metrics of network structure are not as reliable across 
different experiments and ways of representing the data. 
With weighted and binarized graphs we did not find a reli-
able association in the average clustering of graphs or aver-
age shortest path length across experiments, or thresholding 
criteria. Furthermore, we found that associations between 
these metrics across the two semantic relatedness tasks were 

Fig. 6  Permutation results for comparison of correlations in average 
path length of graphs across participants. The distribution (black) 
shows z-scored correlations obtained from permuting average path 
length scores of each task across 70 participants. This procedure was 
repeated 10,000 times to obtain a null distribution of sample corre-
lations. The line is the z-scored correlation of average path length 

across tasks obtained in the unpermuted sample, where the corre-
spondence between participants is preserved across tasks. Blue and 
red lines indicate that the unpermuted mean was either statistically 
greater than or not statistically different from the null distribution, 
respectively



 Behavior Research Methods

1 3

Table 1  Summary of core findings from all experiments. Descriptive 
statistics are given from within sample analyses. XD denotes the mean 
Euclidean distance between similarity matrices in the unpermuted sam-
ple, r denotes the Pearson correlation coefficient across tasks for the 
same stimuli and participants, and rAvg denotes the average of correla-
tion coefficients within participants (see Results section for additional 
details). All p-values are from the permutation analysis and are cor-
rected with Bonferroni correction for multiple (four) comparisons. Blue 

boxes denote significant p-values. In the Summary column, ✓ indicates 
that a given measure reliably captures individual differences in semantic 
network properties across each of the filtering criteria, — indicates that 
a given metric captured individual differences, but not reliably across fil-
tering criteria, and ✗ indicates that the metrics did not capture individual 
differences for any of the thresholding criteria. As can be seen, content-
based but not structure-based metrics tended to be reliable across tasks, 
filtering methods, and network representation structures
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in the low to moderate range. We discuss the implications 
of these results in greater detail in the general discussion.

Summary of core findings from all experiments.  Descrip-
tive statistics are given from within sample analyses. XD 
denotes the mean Euclidean distance between similarity 
matrices in the unpermuted sample, r denotes the Pearson 
correlation coefficient across tasks for the same stimuli and 
participants, and rAvg denotes the average of correlation coef-
ficients within participants (see Results section for additional 
details). All p-values are from the permutation analysis and 
are corrected with Bonferroni correction for multiple (four) 
comparisons. Blue boxes denote significant p-values. In the 
Summary column, ✓ indicates that a given measure reliably 
captures individual differences in semantic network proper-
ties across each of the filtering criteria, — indicates that a 
given metric captured individual differences, but not reliably 
across filtering criteria, and ✗ indicates that the metrics did 
not capture individual differences for any of the thresholding 
criteria. As can be seen, content-based but not structure-
based metrics tended to be reliable across tasks, filtering 
methods, and network representation structures

General discussion

The goal of this study was to directly test whether there are 
individual differences in concept representation schemes by 
examining whether individual differences in semantic relat-
edness judgments are invariant across different measurement 
approaches. Across four experiments with different stimuli, 
methods for collecting semantic relatedness judgments, and 
samples of participants, we found evidence for such individual 
differences. We found that we could predict some individual 
differences in the properties of semantic networks across 
structurally different semantic relatedness tasks using simple 
concepts. Our work has both theoretical and methodological 
implications for conceptualizing and measuring individual 
differences in semantic representation schemes. In particular, 
we lay the groundwork for conducting studies of individual 
differences in semantic representations by demonstrating that 
individual differences in some properties of semantic network 
structure  are not simply driven by how individuals approach 
the tasks. Our research also highlights important measurement 
issues and boundary conditions for this research, which we 
discuss next.

Quantifying individual differences in semantic 
networks

Local properties of semantic networks

We found that we could detect individual differences in 
the semantic relatedness between pairs of words across 

qualitatively different semantic similarity tasks using both 
binarized and weighted representations of the semantic 
graph. This finding is important because binarizing the data 
involves potentially losing meaningful information about 
individuals’ semantic judgments, which may be otherwise 
preserved in the continuous data. Our finding that binarizing 
the data does not hurt predictive accuracy, therefore, indi-
cates that substantive variation is preserved under this type 
of transformation. We underscore that these results cannot 
be driven by choice of a thresholding criterion, because we 
used the same thresholding criterion for each of the two 
tasks in both our unpermuted and permuted sample. More 
broadly, our results support the view that there are robust 
individual differences in semantic relatedness, and that these 
can be reliably captured with different network-based repre-
sentation schemes.

Furthermore, we find that individual differences in meas-
ures of concept “importance” or centrality were recover-
able across the tasks. In particular, the same concepts tended 
to be more  highly interconnected with other concepts in 
the network across the two similarity tasks. Our results are 
aligned with recent findings from Wulff et al. (2022b), who 
also reported reliable individual differences in properties 
of semantic networks content across participants. Our work 
moves beyond this work by using a large sample size (70 
versus 8 participants) and a wider range of methodological 
and analytic approaches.

Global properties of semantic networks

We also examine the reliability of global metrics of semantic 
network topology across different measurement approaches. 
Unlike local metrics that capture how specific semantic units 
relate to one another, global metrics generalize across the 
specific units and try to characterize some general properties 
of the semantic graph.

We find that global metrics like network clustering and 
efficiency (average path length) are not particularly reliable 
across different task structures and methods of representing 
semantic networks. When binarizing the data, we find that 
the average clustering coefficient may be recoverable, but 
our ability to do so was not robust across different thresh-
olding criteria or experiments. Likewise, for weighted full 
and sparse graphs, we did not recover the clustering coef-
ficient reliably across experiments. For average shortest path 
length, we detected reliable individual differences only in 
Experiment 1b when analyzing weighted sparse graphs. In 
all other experiments, we found no statistical association in 
average shortest path length across the two tasks. Finally, 
when analyzing the clustering of graphs or the average short-
est path length of graphs, we found that associations between 
these metrics across the two tasks were low to moderate at 
best.
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In short, we find that we cannot recover these global met-
rics as reliably as local measures. Furthermore, if individual 
differences in global indices of network topology for simple 
concepts exist, these measures are expected to generalize 
across specific concepts: that is, for the average shortest path 
length to be a useful measure of someone’s idiosyncratic 
semantic network structure, we would expect that it would 
be stable across semantic networks defined over different 
sets of concepts. We find that they are not even stable across 
different semantic relatedness tasks that use the same words. 
These results suggest that there are reliable individual differ-
ences in specific semantic associations between concepts—
as captured by local metrics of semantic networks—but 
overall semantic network structure is highly sensitive to the 
method and items used to collect similarity judgments that 
define the network and, therefore, may not be a particularly 
stable individual difference.

Implications for research linking semantic network 
structure to other tasks

Our experiments yield an estimate of shared variance across 
different semantic relatedness tasks for simple concepts. 
This estimate sets an upper bound on the amount of shared 
variance between a single semantic relatedness task and 
tasks that probe other cognitive (e.g., creativity) processes: if 
a semantic network measure is not reliable across elicitation 
methods, it cannot reliably predict other cognitive processes. 
Therefore, our results suggest that individual differences in 
local semantic network structure may be reliably recovered 
and corroborate the use of similarity-based distances to 
quantify individual differences in semantic networks (e.g., 
Reilly et al., 2023).

In contrast, measures of global structure of semantic net-
works are relatively unreliable, as indexed by the lack of 
consistent associations we find between these metrics across 
two semantic relatedness tasks, in which we would expect 
associations between these metrics to be maximal. Further-
more, in instances when we do find associations between 
these metrics across the two tasks, we use filtering criteria 
that were either not used in prior work or failed to show 
associations between semantic network structure and indices 
of global function in other studies. For instance, in Experi-
ment 2a, we find significant correlations between cluster-
ing coefficients across the two semantic relatedness tasks 
when analyzing binarized graphs with a fixed edge density. 
In contrast, Benedek, et al., (2017) failed to find associations 
between the structure of semantic networks in indices of 
creativity when using a fixed edge density filtering proce-
dure. Therefore, even in cases when we do find associations 
between these metrics, these associations do not appear to 
be replicated in work that links these measures of network 
topology to other indices of global function.

Our failure to find that individual differences in global 
network structure are  fully robust across different semantic 
relatedness tasks could reflect aspects of our methodological 
design, such as our sample size or choice of stimuli. How-
ever, we note that our sample size is either much larger (e.g., 
Cosgrove et al., 2023, n = 26 per group) or close to that used 
in prior studies (e.g., Benedek, et al., n=79 in the final analy-
sis), and we chose our sample size in a way that permitted 
us to detect the upper bound for a low correlation. Finally, 
across four experiments we did find consistent evidence for 
robust associations across tasks, both at the aggregate and 
for local measures of individual differences. Collectively, 
this indicates that our findings are likely not driven by low 
power, but that for simple concepts and standard (under-
graduate) samples of participants, individual differences in 
global, but not local, semantic network structure are weak 
if present. Nevertheless, one important future direction is to 
apply our validation approach with diverse samples that vary 
in key demographics, such as age or expertise, where there 
may be greater variation across people in latent knowledge 
structures (as suggested by Cosgrove et al., 2023).

With regard to our choice of stimuli, there are currently 
no predefined, theory-based criteria for choosing word stim-
uli to measure individual differences in semantic networks 
in the general population. We selected concrete, simple con-
cepts from a validated word corpus, and therefore our crite-
ria for choosing words are aligned closely to those reported 
in prior work (e.g., Benedek, et al., 2019). However, one 
fruitful direction for future research is to examine possible 
effects of concept spaces on researchers’ ability to recover 
individual differences in metrics of network topology. A core 
(implicit) assumption in current research in this domain is 
that properties of network topology are stable across stimuli 
spaces. For this reason, we chose simple, concrete concepts 
in all our studies. However, it is possible that robust indi-
vidual differences in network topology do exist but only 
when measuring specific stimuli spaces. This prediction 
aligns with evidence that knowledge structures vary by con-
cept domains (e.g., Kemp & Tenenbaum, 2008). Therefore, 
closely examining the effects of psycholinguistic properties 
of words, concept spaces and their interactions with exper-
tise, as well as effects of overall inter-concept relatedness, 
is an important direction for pinning down whether and how 
individual differences in semantic network topology vary in 
other domains.

Another potential concern may be that our semantic relat-
edness tasks place different demands on participants, making 
it difficult to find associations across them. For instance, 
the pairwise similarity judgment task involves making judg-
ments about two words whereas the spatial multi-arrange-
ment task involves making judgments about more than two 
words. However, our goal is to examine whether measures 
of latent differences in semantic network structure can be 



Behavior Research Methods 

1 3

measured reliably across such nuisance variations in task 
structure. As such, introducing task differences of this 
type is precisely the point of our studies because it gives 
us an opportunity to isolate latent differences in semantic 
network structure from strategic differences in how people 
approach the tasks. Furthermore, both tasks have been vetted 
in prior work (e.g., Richie et al., 2020) as well as our own 
(see Appendix 3 for extended discussion) and, by design, 
are more like one another than (e.g., creativity) tasks that 
have been linked to semantic relatedness judgments in this 
literature. Finally, these concerns would not explain why we 
managed to find strong associations between these tasks at 
the aggregate, as well as reliable individual differences in 
local but not global metrics of semantic networks. In short, 
our results indicate that, given our stimuli and characteristics 
of our sample, global metrics are only weakly correlated 
across different semantic relatedness tasks at best.

It is possible that global metrics of network topology are 
less robust because they are highly sensitive to choice of 
thresholding criteria and concept spaces. It is also possible 
that global properties of semantic network structure arise in 
generative memory tasks; however, a major hurdle in using 
such tasks is to isolate individual differences in semantic 
memory organization from possible individual differences 
in executive function. Another possibility is that most of 
the variance in structural properties of individuals' semantic 
networks is driven by the demands of the semantic related-
ness tasks rather than latent structural properties of seman-
tic networks. For instance, Likert scale ratings of similarity 
might capture stable individual differences in rating biases, 
and when such individually biased ratings are converted 
into networks, they might yield individual differences in 
overall network density; these in turn might be correlated 
with another task. However, the stable individual differ-
ence driving this effect would be the overall bias in Likert 
judgments, rather than a task-stable feature of semantic net-
works. A conceptually related finding was recently reported 
in the neural computational modeling domain. Domhof et al. 
(2021) demonstrated that different approaches to brain par-
cellation, that is, the reduction of the dimensionality of brain 
networks to distinct regions, can substantially change graph 
theoretic measures of network topology at the level of indi-
vidual subjects, including clustering and efficiency metrics. 
These results indicate that global graph theoretic measures 
of network structure at the level of individuals may be highly 
susceptible to peripheral differences in researchers’ analytic 
choices (e.g., Simmons et al., 2011), meaning that in their 
current application, these metrics may not provide reliable 
measures of interindividual variation in brain network con-
nectivity. These results align with ours, because we also 
did not find reliable associations between these metrics in 
semantic memory, even when varying several core aspects of 

our methodological and analytic approach, such as stimuli, 
rating scale granularity, and filtering criteria.

Based on our results and the results of Domhof et al. 
(2021), we also underscore that peripheral analytic deci-
sions can substantially affect the results of structural graph 
theoretic analyses. In the current context, we find that differ-
ences in thresholding criteria can change researchers’ con-
clusions about the presence or absence of individual differ-
ences in metrics of network topology. Therefore, to reduce 
researchers’ degrees of freedom (e.g., Wicherts et al., 2016), 
we advocate that researchers either use principled a priori 
criteria for thresholding graphs or ensure that their results 
are robust across different thresholding criteria.

Another major recommendation for researchers who seek 
to quantify structural properties of semantic networks at the 
level of individuals is to collect data from multiple different 
semantic relatedness tasks and check whether associations 
between semantic network properties and other cognitive 
processes are reliable regardless of how semantic judgments 
are collected. More generally, since no method is a pure 
measure of latent processes, we suggest that researchers 
conduct replications of studies that apply graph theoretic 
analyses to study individual differences, using diverse tech-
niques for collecting semantic relatedness data and various 
stimuli sets. Inferences about how structural network proper-
ties relate to individual differences from a single study and 
method should be made with caution.

Conclusion

Our work contributes to a growing research area on the 
application of graph theoretic analyses for understanding 
semantic network structure. We show that different graph-
based representations may preserve individual differences in 
semantic memory organization for loosely related concepts. 
We also show which metrics of network topology are robust 
and which are not, given our methodology. We find that local 
measures such as node centrality scores are robust across 
different experiments and network filtering approaches. In 
contrast, global metrics of network structure such as average 
clustering coefficient and shortest path length are less reli-
able. Our paper serves as a springboard for refining method-
ology in this growing research domain, and we suggest sev-
eral future directions that can help elucidate the robustness 
of these measures under other testing conditions. We rec-
ommend that researchers who apply these metrics to study 
individual differences either preregister predefined filtering 
criteria to avoid excess degrees of freedom or demonstrate 
that their results are robust across analytic decisions, as well 
as ensure that their results are consistent across different 
methods for collecting semantic relatedness data.
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Appendices

Appendix 1: Technical description of the adaptive 
multi‑arrangement task and algorithm

The adaptive multi-arrangement task requires partici-
pants to arrange items in an arena based on their semantic 
relatedness. On subsequent trials, the algorithm samples 
two items for which there is already some evidence. This 
ensures that dissimilarity matrices are aligned across tri-
als. Once a pair of items is sampled, additional items are 
sampled if they improve “trial efficiency.” Trial efficiency 
is the ratio between “utility benefit” and “trial cost.” Trial 
cost is defined as the additional cost of evaluating a given 
pair of items and is simply the number of items sampled 
for a given trial (n) raised to a power X, that is, nX . We 
used an exponent of 1.2 under the assumption that the 
time it takes items is super-linear but sub-quadratic. Trial 
benefit is the additional utility gained if a given pair of 
items is included on a trial. In this context, trial benefit 
is the sum of evidence utility, which is calculated using 
the exponential saturation function 1 − e−w∗d , where w is 
the current evidence weight for a given word pair, which 
is simply the onscreen distance of that item squared. This 
definition of evidence utility assumes that the dissimilarity 
signal-to-noise ratio is proportional to the onscreen dis-
tances, such that smaller distances have a smaller signal-
to-noise ratio. The evidence utility exponent d was set to 
10, which is the default value used by Kriegeskorte and 
Mur (2012). For this formula, evidence utility is arbitrarily 
close to 1 as w approaches .5. For this reason, .5 is used as 
a criterion for terminating the algorithm; that is, once each 
item pair has an evidence value of .5, or times out (after 
35 minutes), the experiment ends.

Since the algorithm “zooms in” on subclusters of items 
on different trials, a scaling factor needs to be defined that 
rescales and combines distances of each arrangement in 
a way that ignores the on-screen distance for that specific 
arrangement. This is implemented iteratively. A reference 
dissimilarity matrix is used to calculate the rescaling 
factor on each trial. For 20 words, the reference dissimi-
larity matrix can be seen as a vector of 190 values, and 
the rescaled matrix is this vector normalized. The values 
in this vector are the average of the onscreen distances 
weighted by their evidence utility obtained from previ-
ous trials. These values are used to rescale dissimilarity 
vectors for all item pairs obtained on the current and pre-
vious trials. Specifically, after the reference dissimilarity 
vector is normalized, entries from dissimilarity estimates 
from all trials are set to equal the values in the normalized 
reference vector. Then a new reference matrix is calcu-
lated using the evidence-weighted average of the rescaled 

distances. This is repeated iteratively until the root mean 
square of the deviations between the reference matrix from 
the previous and current iteration is arbitrarily close to 0.

Appendix 2: Example graph representations

Graphs

Each figure below shows binary graphs of two randomly 
sampled participants and the average data from Experiment 
1a (Fig. 7) and 2a (Fig. 8), as well as the similarity adjacency 
matrices of two different sample participants and average 
data from Experiment 1a (Fig. 9) and 2a (Fig. 10).

Appendix 3: Secondary methodological 
contribution

Validation of the adaptive multi‑arrangement task 
for detecting individual differences

A secondary methodological contribution of our research 
is that we are the first to show that the adaptive version of 
the spatial multi-arrangement task can be used to predict 
individual differences in semantic processing for words. 
Previous work by Kriegeskorte and Mur (2012) demon-
strated that this task and algorithm can be used to recover 
the high-dimensional structure of similarity judgments for 
visual stimuli, and follow-up work by Charest et al. (2014) 
demonstrated that the task correlates with individual differ-
ences in neural representations of visual stimuli, e.g., real-
world objects. Furthermore, recent work by Majewska et al. 
(2021) applied the adaptive spatial multi-arrangement task 
to a large-scale data set with verb stimuli and demonstrated 
that it can provide a fine-grained measure of subclasses of 
semantic concepts, although the authors did not examine its 
potential to capture individual differences. Finally, Richie 
et al. (2020) recently demonstrated that a non-adaptive ver-
sion of the algorithm (Goldstone, 1994), which does not 
involve “zooming in” on clusters of objects, can be used to 
recover high-dimensional structures of words. Richie et al. 
(2020) also found that performance on this task correlates 
with performance on binary similarity judgment; however, 
they did not demonstrate that this measure is sensitive to 
individual differences and did not compare the robustness 
of different modeling approaches in their capacity to capture 
such individual differences. In short, our work contributes 
to a line of research on validating the adaptive version of 
the spatial multi-arrangement task. While prior work has 
shown its potential to recover the high-dimensional structure 
of similarity judgments and its relative efficiency, we show 
that it can also be used to recover individual differences in 
similarity judgments for concepts with different modeling 
approaches.
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Appendix 4: Example of experiment instructions

Instructions for spatial multi‑arrangement task

In this study you will complete two tasks. This is the first 
session and this task will take approximately 35–40 min-
utes to complete. The first part of the experiment is called 
the Word Arrangement task. It is explained below. The 
second part of the experiment will be described to you 
during the second session of the study. The Word Arrange-
ment task requires you to arrange 20 words according 
to their similarity. Specifically, you will use the mouse 
to click on a word and drag it into a circular arena. You 
should use the relative distance between words to indi-
cate how similar you think each words is relative to other 

words. In other words, similar objects are placed closer 
together; dissimilar objects are placed far apart. In the 
current context, the objects are blocks with words inside 
of them, and the distance from the center of two blocks 
represents their dissimilarity. If you were to place two 
blocks such that they completely overlap with one another, 
that would mean you consider the words to be identical. 
Consider this example...<Image of example arrangement> 
You will not be shown all of the 20 words at once, but 
will be shown subsets of the 20 (up to 10) words on each 
trial. Often, words will repeat across trials so that we can 
obtain similarity judgments between all words, and/or 
get more precise similarity judgements for specific words 
pairs. Thus, on some trials, you will see many words (up 
to 10), and on other trials you will see fewer words (as 

Fig. 7  Example graphs from Experiment 1 of two participants (first two upper panels) and graph constructed from average data (lower panel)
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few as 3). It does not matter how many words you see; you 
should use all of the space available to you in the circle 
to arrange the words and communicate the dissimilarity 
between words given to you on a given trial. For instance, 
if you see 10 words, you should arrange words that are 
relatively similar to one another closer together, and words 
that are less similar further apart. As an example, consider 
the example array below. The words “Dracula,” “vampire,” 
and “cape” are relatively close to each other because this 
person considered these words to be more similar to one 
another than the others. On a different trial, however, the 
algorithm <b>zooms in</b> on the three words “Drac-
ula,” “vampire,” and “cape.” This allows us to collect more 
precise measurements of your judgments of similarity. 
Therefore, if you see fewer (3 words), you should still use 
ALL of the space in the arena to precisely communicate 

the relative similarity of those three words. As an exam-
ple, consider the example array below, which now just has 
the words “Dracula,” “vampire,” and “cape,” This person 
considered “Dracula” and “vampire” to be more similar 
to one another, so they are placed closer together, and are 
further apart from the word “cape.” Again, it is important 
to note that even if these words are similar to one another, 
all of the space in the circle is used to communicate the 
relative similarity between these three words. Finally, note 
from this example that it does not matter where on the 
circle you place words—that is, whether they are on the 
top, left, right, or bottom of the circle. What matters is 
the distance between each word, which is a measure of 
how similar you think those words are to each other. If 
you need to reset an arrangement, you can right-click the 
“START OVER” button on the bottom left-hand side of 

Fig. 8  Example graphs from Experiment 2 of two participants (first two upper panels) and graph constructed from average data (lower panel)
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the screen. Once you are ready to advance, you should 
click the “NEXT TRIAL” button on the bottom right hand 
side of the screen. The program uses an adaptive algorithm 
that is based on the precision and consistency with which 
you make your judgments. Therefore, you will see words 
repeatedly on different trials. The more you think about 
your judgments on each trial, the faster the experiment 
will end. If you arrange words randomly on each trial, the 
algorithm will not reach criterion, and it will take longer to 
complete the task. Therefore, you should try to make your 
arrangements precise and consistent, rather than speeding 
through. This will ensure that the algorithm reaches crite-
rion faster, and ends this task. Keep in mind that there is 
no wrong way to arrange the words. This is a method for 
measuring your subjective judgment of similarity between 
each of the words, so there is no wrong answer as long as 

you are not doing the arrangements randomly and follow 
the instructions given above.

Instructions for relatedness ranking task (100‑point 
slider scale). Note that instructions for the Likert 6‑point 
rating task are identical with the exception that they refer 
to the 6‑point rather than 100‑point scale

You are done with the first part of the experiment and 
ready to start the second part of the experiment. In this part 
of the task you will be asked to judge similarity between 
two words in a different way. This part of the experiment 
will last 20–25 minutes. Specifically, you will be shown 
a pair of words at a time, and asked to rate how similar 
you think the two words are on a scale from 1 (maximally 
different) to 100 (identical). To report on your similarity 

Fig. 9  Heatmaps of adjacency matrices (0=similar, 1=similar) from Experiment 1 of two participants (first two upper panels) and average data 
(lower panel)
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judgments, you will use a sliding scale with your mouse. 
Please think about each rating carefully and try to make 
your ratings as precise as possible using values of the scale 
that seem to best match your judgment. For instance, I may 
think that the words “bread” and “baguette” are extremely 
similar, so I would give them a rating of 90. I may think 
that “bread” and “butter” are similar, but less similar than 
baguette, so I would give them a rating of 75. I may think 
that “bread” and “knife” are somewhat similar, though less 
similar than “bread” and “butter” so I would give them rat-
ing of 60. Similarly, I may think that “bread” and “doctor” 
are extremely dissimilar, so I would give them a rating of 
1. Note that these are just examples to illustrate how dif-
ferent values of the scale relate to different similarity judg-
ments, and you should choose values that seem best to you.

Data Availability All data and analytic code are available on the Open 
Science Framework repository at https:// osf. io/ 26wku/.
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