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a b s t r a c t

In many decision tasks, we have a set of alternative choices and are faced with the problem of how
to use our latent beliefs and preferences about each alternative to make a single choice. Cognitive
and decision models typically presume that beliefs and preferences are distilled to a scalar latent
strength for each alternative, but it is also critical to model how people use these latent strengths to
choose a single alternative. Most models follow one of two traditions to establish this link. Modern
psychophysics and memory researchers make use of signal detection theory, assuming that latent
strengths are perturbed by noise, and the highest resulting signal is selected. By contrast, many modern
decision theoretic modeling and machine learning approaches use the softmax function (which is based
on Luce’s choice axiom; Luce, 1959) to give some weight to non-maximal-strength alternatives. Despite
the prominence of these two theories of choice, current approaches rarely address the connection
between them, and the choice of one or the other appears more motivated by the tradition in the
relevant literature than by theoretical or empirical reasons to prefer one theory to the other. The goal
of the current work is to revisit this topic by elucidating which of these two models provides a better
characterization of latent processes in m-alternative decision tasks, with a particular focus on memory
tasks. In a set of visual memory experiments, we show that, within the same experimental design, the
softmax parameter β varies across m-alternatives, whereas the parameter d′ of the signal-detection
model is stable. Together, our findings indicate that replacing softmax with signal-detection link
models would yield more generalizable predictions across changes in task structure. More ambitiously,
the invariance of signal detection model parameters across different tasks suggests that the parametric
assumptions of these models may be more than just a mathematical convenience, but reflect something
real about human decision-making.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

We make choices in virtually every real-world and laboratory
ask. For example, we decide which cereal we prefer in a super-
arket, which color a word is in a Stroop task, or which item is

old’ in a forced-choice memory study. Because decision processes
re ubiquitous, there is great value in determining the type of
uantitative model that best captures them. To this end, we ex-
mine the generalizability of two prominent probabilistic models
f choice. The first is a Gaussian signal detection model, which is
ased on classic Signal Detection Theory (e.g., Wixted, 2020) and
hurstone’s law of comparative judgment (Thurstone, 1927). The
econd is the normalized exponential model, commonly known
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as the softmax function (e.g., Bridle, 1990), which is based on
Luce’s Choice Axiom (LCA) (Luce, 1959) and the ratio of strengths
formula (Bradley & Terry, 1952) (for extensive taxonomy of these
models see: Townsend & Landon, 1983).

In the current work, we focus on how these two models
generalize across different decision-based visual memory tasks
in order to better understand the types of computations people
use to convert sensory evidence to memory representations to
make memory-based decisions. Focusing on the generalizability
of these models is key because this allows us to better isolate
latent variables of interest (e.g., Navarro, 2021). For illustration,
consider a standard forced-choice task in which you are shown
an object that you have to remember. Subsequently, when you
are tested on your memory, you are shown that object along
with one or seven foil objects, where foils refer to objects you
were never actually shown. In this simple forced choice task, as
more foil items are added you will tend to become less accurate
at choosing the object you saw because the probability of you
incorrectly choosing a foil will tend to increase when more foils
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re present (Wickens, 2001). Importantly, if memory conditions
re held constant across these decision tasks, the fidelity of your
emory for the object you saw should also remain unchanged,

egardless of howmany foils you are shown (Swets, 1959). Thus, a
ey question is what decision model best allows us to assess peo-
le’s memory strength independently of the decision task we use
o test it. In other words, which decision model’s parameters are
nvariant and best generalizes across variations in task structure
hat affect the decision process but not memory fidelity?

We focus on Signal Detection Theory and Luce’s Choice Ax-
om because they are prominent in different domains, such as
ecision-making and memory research, but within some do-
ains, there are relatively few comparisons between them. Fur-

hermore, early work that examines the connections between
hese models (for recent review see: Pleskac, 2015), has yet to be
inked to contemporary research questions. We illustrate these
oints in the context of recent computational modeling research
n visual memory.
Our article has the following structure. First, we overview each

f the theories and their corresponding models. Second, we out-
ine how early work on the relationship between models based on
DT and LCA applies to contemporary research on visual memory
nd describe a critical test that we used to discriminate between
hem. Finally, we discuss our findings and their relevance for
heorizing about decision processes within and outside of visual
emory tasks.

.1. Signal detection theory

The application of SDT to the study of sensory and cognitive
rocess comes from the tradition of perceptual psychophysics
e.g., Green, Swets, et al., 1966), which highlights the relationship
etween sensory signals that must be used to make a decision,
nd the physical and neural noise that perturbs them before a
ecision is made (Wickens, 2001). Over the years, SDT has been
sed in other domains, such as memory research (e.g., Wixted,
007), to provide a detailed description of decision processes in
etection and discrimination tasks by postulating latent memory-
trength signals that are perturbed by noise. The two core as-
umptions of signal detection models is that when faced with
aking a decision, the conceivably rich and multi-dimensional

epresentation of each alternative is collapsed down into a scalar
alue – the decision variable – and that the decision variable
nvoked by a particular alternative is probabilistic. Jointly, these
ssumptions capture the mainstream view that there are internal
nd external sources of noise that corrupt sensory and memory
ignals (e.g., Dosher & Lu, 1998). For instance, in the memory
omain, a familiar object, such as a backpack, will produce a
ecision variable of some magnitude with respect to some task,
uch as a familiarity signal for a recognition task. The decision
ariable produced by observing a backpack will vary from one
nstance to another due to variation in external circumstances,
uch as its lighting and vantage point, as well as fluctuations of
nternal states, such as memory, attention and motivation.

Because decision variables in this view are seen as random
ariables, it is common to postulate a specific probability distribu-
ion over them (although see: Kellen, Winiger, Dunn, & Singmann,
021). While in some low-level perceptual domains, great care
as been taken to characterize the functional form of this dis-
ribution, and thus the form of the psychometric function (e.g.,
reen et al., 1966), in most applications such fidelity is unattain-
ble and researchers simply assume that decision variables are
ormally distributed. Thus, historically, the normality assumption
ommon in SDT is made primarily for convenience (Wickens,
001). Furthermore, in contemporary modeling work it is of-
en treated as an auxiliary assumption that does not have a
2

theoretical justification (Kellen et al., 2021; Rouder, Pratte, &
Morey, 2010). To preview our analysis and results, we show that
the Gaussian parameterization of signal detection models is not
merely ancillary. Instead, its use can have a principled theoretical
basis that formalizes how sensory signals are converted to de-
cision variables. We discuss this point in depth when reviewing
the mathematical link between the Gaussian signal detection and
softmax model.

Finally, most mainstream signal detection models postulate
that, while decision variables are probabilistic, the decision mak-
ing process is deterministic (for exceptions see, e.g., Benjamin,
Diaz, & Wee, 2009). That is, once decision variables are sampled
from their probability distributions, choices are made determin-
istically by comparing the decision variables to one another, or to
a fixed decision criterion. Next we describe how these principles
are used to explain performance in mainstream detection and
discrimination tasks.

1.1.1. SDT for detection and discrimination tasks
In detection tasks the observer responds by indicating the

presence or absence of a target stimulus. The classic Gaussian sig-
nal detection model posits that this decision is made by collapsing
the rich stimulus representation down into a single decision vari-
able and then comparing this decision variable X against a fixed
decision threshold C . Accordingly, the probability of responding
that a target is ‘‘Present’’ on target present and absent trials is
given by Eqs. (1) and (2), respectively:

P('Present ' | Present) = P(XT > C), (1)

P('Present ' | Absent) = P(XF > C). (2)

In Eq. (1) XT denotes the decision variable elicited by the target
stimulus, which is a random variable sampled from a normal
distribution with free parameters, mean µ > 0 and variance σ 2:
XT ∼ N (µ, σ 2). A common assumption is that, on average, deci-
sion variables on target present trials will be of greater magnitude
than on target absent trials, and it follows that their mean will
also be greater. Therefore, with no loss in generality, the mean
and variability of the decision variable elicited by foil items, XF
in Eq. (2), on target absent trials is set to 0 and 1, respectively:
XF ∼ N (0, 1).

Unlike in detection tasks, in forced-choice discrimination tasks
the target is always shown and an observer must select it out of a
set of n alternatives. Classic signal detection models postulate that
this selection process involves computing the maximum of a set
of n independent random variables corresponding to the decision
variables invoked by each of the stimuli: Xi. More precisely, the
probability of identifying a given item i as the target is the
probability that the magnitude of the decision variable generated
by the target Xi exceeds the decision variables generated by each
of the n − 1 foil items Xj for j ̸= i:

P(ID(i)) = P(∀j ̸= i : Xi > Xj). (3)

This general expression can be written out for the special cases
of correct choices, when Xi corresponds to the target (i = 1),
and incorrect choices, when i ̸= 1. For correct choices, or Target
Identifications, Xi is the target (Xi = X1 = XT ) and all Xjs are foils,
thus Xi ∼ N (µ, σ 2), and Xj ∼ N (0, 1). For incorrect choices, or
Foil Identifications, the target is one of the Xjs while Xi and the
remaining Xjs are foils. For both of these special cases, we can
rewrite the general expression:

X1 = XT ∼ N (µ, σ 2) (4)

X2...n ∼
iid

N (0, 1) (5)

P(ID(Target)) = P(X1 > max(X2...n)), (6)

P(ID(Foil)) =

n∑
P(Xi > max(X1..n\i)). (7)
i=2
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.2. Luce’s choice axiom

Luce’s Choice Axiom (LCA) comes from the decision theory
radition, rather than psychophysics, and is predated by the ratio
f strengths formula for pairwise choices (Bradley & Terry, 1952)
for empirical tests and extended discussion of these models
ee: Townsend & Ashby, 1982; Townsend & Landon, 1983). Un-
ike SDT, the LCA framework is silent about the mechanisms
f detection and discrimination processes. Instead, it consists of
set of axioms that impose ‘‘plausible constraints’’ on choice
robabilities.
The central axiom is called Independence from Irrelevant Al-

ernatives and states that the probability of choosing one alterna-
ive over another should not change if irrelevant alternatives are
dded or taken away. Under this view, response probabilities for
ach alternative are computed by dividing each response strength
y the sum of all response strengths in the set. For instance if a is

one alternative out of a larger set T , the probability of choosing a
ut of S is

P(a, S) =
φ(a)∑
z∈S φ(z)

, (8)

where φ is a response strength function. Note that independence
from irrelevant alternatives follows directly from this formula
because the odds of choosing a over a different alternative b ∈ S
remains the same, even if we consider a larger set of alternatives
T where S ⊆ T . That is, for 0 < P(x) < 1,
P(a, S)
P(b, S)

=
P(a, T )
P(b, T )

=
φ(a)
φ(b)

. (9)

Eq. (8) also implies that the function φ lies on a ratio scale.
That is, assume there exists another function φ′ that satisfies the
equality
φ(a)
φ(b)

=
φ′(a)
φ′(b)

. (10)

Substituting 1 for φ(b) and τ > 0 for φ′(b) yields τφ(a) =

φ′(a), showing that the scale φ is unique up to multiplication by
a positive constant (proof adapted from: Krantz, Luce, Suppes,
& Tver-sky, 1971). This entails that the response function φ lies
on a ratio scale, an important and rare property of psychological
metrics (Falmagne & Doble, 2015).

Finally, note that in order for choice probabilities in Eq. (8) to
be restricted between zero and one, response strengths should
be constrained to be non-negative. One way to impose this con-
straint is to parameterize the Luce choice model with an expo-
nential function, such that

P(a, S) =
eφ(a)∑
z∈S eφ(z) . (11)

This formulation of LCA is equivalent to the exponential form
f the multinomial distribution and the softmax function (Bridle,
990), which is routinely used in econometrics (McFadden, 1980),
achine learning (Murphy, 2012) and reinforcement learning

Sutton & Barto, 2018).

.2.1. LCA for detection and discrimination tasks
Through the lens of LCA, performance in detection and dis-

rimination tasks is not determined by random decision variables
ut by fixed response strengths. In detection tasks, assume that
denotes response strength generated by the target stimulus1

1 Technically, β denotes how response strengths are weighted. More
recisely, as β increases responses become more deterministic, such that
lternatives with higher response strengths receive more weighting and are
ore likely to be chosen. However, since we assume that foil items yield zero

esponse strength in this exposition, we equate β with response strength of the
target stimulus.
3

and V denotes a bias parameter for reporting the stimulus is
absent. Then, on target present trials, the probability of correctly
responding target present is

P('Present ' | Present) =
eβ

eβ + eV
. (12)

On target absent trials, the probability of incorrectly respond-
ng target present is determined by the response strength gener-
ted by the foil, which is zero. Thus, the probability of incorrectly
esponding target present on target absent trials is

('Present ' | Absent) =
1

1 + eV
. (13)

Note that the formulas for choice probabilities in Eqs. (12) and
(13) are formally equivalent to a logistic cumulative distribution
(Suppes & Krantz, 2007), a special case of the softmax function
for binary choices.

Extending this logic to discrimination tasks with n alterna-
tives uses the standard assumption that the response strength
generated by the target and n − 1 foils is equal to β and zero,
respectively. Accordingly, the probability of correctly selecting
the target is

P(ID(Target)) =
eβ

eβ + n − 1
, (14)

nd the probability of incorrectly selecting a foil item is

(ID(Foil)) =
n − 1

eβ + n − 1
. (15)

.3. Connections between SDT and LCA

Due to their distinct origins and distinct mathematical in-
tantiations, models based on SDT and LCA may seem extremely
ifferent from one another. However, the Gaussian signal detec-
ion and softmax models turn out to be close approximations in
ome tasks. More precisely, in detection tasks, the connection be-
ween these models follows simply from the fact that the logistic
istribution approximates the normal distribution (Treisman &
aulkner, 1985). This entails that the LCA for binary choices is
ssentially equivalent to a signal detection model with a logistic
arameterization, which closely approximates the Gaussian sig-
al detection model. Thus, in detection tasks LCA and Gaussian
ignal detection models are closely related.
In discrimination tasks with more than two alternatives the

aussian signal detection and softmax model no longer approx-
mate each other. The relationship between these two models
reaks down in m-afc tasks (where m > 2) because the dis-
ribution of maximums of normally distributed variables is not
normal distribution. However, it is possible to establish an

quivalence between the two models by dropping the normality
ssumption in the signal detection model. Holman and Marley
1974) as well as Yellott (1977) showed that, if decision variables
n the signal detection model have a Type 1 extreme value Gum-
el distribution for the maximum (Gumbel, 1954), than the signal
etection model is mathematically equivalent to the Luce model
or any number of alternatives (m) in an m-afc task. We provide
our own proof of this result in Appendix.

In the current context, the major implication of this result
is that comparing the softmax model to the Gaussian signal
detection model can be recast as a comparison of two different
parameterizations of the signal detection model, that is, a signal
detection model with a Gumbel versus a Gaussian parameteri-
zation. As we discuss next, these two parameterizations have an
important conceptual basis because they describe different ways

of translating sensory evidence into decision variables.
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Fig. 1. Processing implications of the Gaussian versus Gumbel parameterization of the signal detection model. By Central Limit Theorem, the Gaussian signal detection
odel entails that observes convert sensory evidence (depicted with colored distributions) evoked by a stimulus (such as backpack) to decision variables via pooling.
he Gumbel signal detection model, which is formally equivalent to the softmax model, entails that observers convert sensory evidence to decision variables by
aking the maximum of the sensory signals.
.4. Processing implications of a Gaussian versus Gumbel signal
etection (softmax) model

A common assumption is that the Gaussian parameterization
f signal detection models is made for mathematical convenience
nd does not have a theoretical basis (e.g., Kellen et al., 2021).
owever, early work by Thompson and Singh (1967) provides one
rincipled justification for using a normal distribution to model
ecision variables. These researchers noted that each time we
bserve a stimulus, it produces a sensory response of some vari-
ble magnitude. For instance, through the lens of contemporary
opulation coding neural models, these sensory responses can be
onceived of as distributed patterns of activation in populations
f neurons (e.g., Averbeck, Latham, & Pouget, 2006).
If this large number of sensory signals (e.g., patterns of acti-

ation across a population) are pooled together by summing or
veraging to compute decision variables, then in accordance with
he Central Limit Theorem, decision variables will be normally
istributed. In contrast to the Gaussian, the Gumbel distribution
s an extreme value distribution used to model the maximum of
set of random variables (Gumbel, 1954). Thus, a signal detec-

ion model with a Gumbel parameterization is most consistent
ith the view that, rather than pooling, the observer takes the
aximum of sensory signals to compute decision variables. Fig. 1
epicts these predictions by showing how a stimulus produces a
eural response profile that consists of a set of tuning functions
colored distributions), and how these neural responses can be
onverted to a single decision variable through the lens of each
odel.
Together, a test between these models can be recast as a test

f two different signal detection models. To further motivate the
omparison of these two models, we underscore that there is
xtensive support for signal detection theory as a general theory
n the memory domain (for recent overview see: Wixted, 2020)
sing diverse methods, including Receiver Operating Characteris-
ics analysis (e.g., Robinson, Benjamin, & Irwin, 2020; Williams,

obinson, Schurgin, Wixted, & Brady, 2022; Wixted, 2007), and a

4

novel critical test which rests on minimal assumptions (Winiger,
Singmann, & Kellen, 2021) While some authors reported evidence
for alternative models under some conditions (e.g., Balakrishnan,
1999; Rouder et al., 2008), follow-up work suggests that these
results were spuriously driven by either restricted model assump-
tions, or non-diagnostic data and inadequate metrics of model
fit (Mueller & Weidemann, 2008; Robinson, Williams, & Brady,
2022). Moreover, recent modeling work in the visual memory do-
main indicates that a signal detection model constrained by psy-
chophysical scaling methods outperforms all extant alternative
models of visual memory both in fit and generalization (Schurgin,
Wixted, & Brady, 2020). Thus, classic and contemporary modeling
work demonstrates robust evidence for signal detection models
of memory. Our work builds on this literature by highlighting
that the parametric assumptions of signal detection models are
not merely ancillary, but can have different implications for how
we think observers convert rich sensory or memory evidence to
decision variables when making memory-based decisions.

1.5. Critical test: Parameter invariance across changes of m in m-afc
tasks

We compared the Gaussian signal detection and softmax
model by examining which model’s parameters (d′ in SDT; β in
LCA/softmax) are invariant across variations in the number of al-
ternatives presented at test in an m-afc task. Our test rests on the
assumption that, everything else being equal, the way in which
observers compute decision variables should be invariant across
changes in m-afc. This assumption aligns with the broader view
that model parameters that generalize across task structures may
also provide better approximations of latent cognitive processes
(Busemeyer & Wang, 2000).

We note that a similar test was used in an auditory mem-
ory task in an early study by Treisman and Faulkner (1985).
These authors reported evidence for the Gaussian signal detection
model, however, their results were somewhat ambiguous. Mainly,

′
they found that variations in m-afc produces decreases in d and
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ncreases β , parameters in the Gaussian signal detection and
oftmax model, respectively. The researchers interpreted this as
vidence for the Gaussian signal detection model because they
easoned that increasing the number of alternatives in the audi-
ory task may increase memory load and hurt performance, but
ot improve it. However, while the finding that d′ decreases with
may be more psychologically plausible, it does not demonstrate

hat parameters of this model are invariant with m because m is
onfounded with memory load. Furthermore, this study only used
ata from 6 participants and may have been underpowered. As
e discuss next, one of our goals was to address both of these
ethodological limitations and perform a more direct test of the

wo theories.

.6. Application to visual memory

We ran a new set of experiments that extends the critical test
f Treisman and Faulkner (1985) to the visual memory domain.
he first reason we used a visual memory task is because this
llows us to present all m-afc alternatives visually, instead of hav-
ng participants maintain these in working memory. Accordingly,
his study design minimizes differences in memory load across
-afc task, addressing the core limitation of the Treisman and
aulkner experiment and providing a strong testbed of parameter
nvariance. We also increase the number of participants in our
xperiments to ensure that our studies are sufficiently powered.
Another motivation for extending this test to the visual mem-

ry domain is because a comparison between these models has
irect relevance for contemporary models of visual memory. That
s, both the Gaussian signal detection and softmax models have
een used in recent modeling work as response functions that
apture how people make decisions in m-afc visual memory tasks
Oberauer & Lin, 2017; Schurgin et al., 2020). However, these
odels have not been empirically compared with critical tests,
nd the processing implications for understanding how people
ompute decision variables in visual memory tasks have not been
iscussed. Finally, there is much recent interest in instantiating
uman visual memory models using neural network architec-
ures (e.g., Bates, Alvarez, & Gershman, 2023; Brady & Störmer,
020; Hedayati, O’Donnell, & Wyble, 2022) that routinely use
he softmax as a response function (Murphy, 2012); it remains
nclear whether this provides the best approximation of how
umans map latent states to memory judgments. Our goal is to fill
hese gaps by comparing these models in a set of visual memory
5

xperiments. To this end, we ran two experiments in which we
aried the structure of the stimulus space, the dimensionality of
timuli and the presentation format to ensure that our results
ere robust across different processing domains and theoretical
ssumptions.

. Experiment 1: Memory for simple features

Experiment 1 was designed to test the signal detection and
oftmax models in a multiple alternative forced choice visual
orking memory task with simple features (color). The central
omparison involves examining which model’s parameters are
nvariant across changes in the number of alternatives in m-afc
tasks.

2.1. Methods

Participants Participants (n = 31) were undergraduate student
volunteers, at the University of California, San Diego, who par-
ticipated in the study for course credit. All participants were at
least 18 years old, reported normal or corrected-to-normal vision,
and provided informed consent. All experiments were approved
by the Institutional Review Board at the University of California,
San Diego.

Our predetermined sample size was n = 30. This sample
ize is a conservative bound for detecting a medium effect size
dz = 0.6) with 90% power and α = .05 significance criterion.
We collected participant data until our sample size reached n =

0 based on our exclusion criteria. Consistent with our standard
ab practice, we excluded trials with reaction times less than
00 ms or greater than 5000 ms (average proportion of 3% per
articipant). We excluded participants who had more than 10%
f trials excluded, or who whose performance was at chance in
ny of the four conditions (one participant).
Stimuli Stimuli were colored circles. Colors were drawn from

he CIE L*a*b* color space, centered in the color space at (L = 54,
= 21.5, b = 11.5) with a radius of 49 (from Schurgin et al., 2020).
Procedure Fig. 2 shows an example trial from Experiment 1. On

each trial, participants were shown four circles and instructed to
remember their colors and spatial locations. The minimum dis-
tance (along the color circle) between each circle in the memory
array was 30 degrees. The memory array was shown for 1000 ms.
After a brief retention interval (800 ms), participants were shown
a spatial cue that probed one of the four circles shown in the

memory array.
Fig. 2. Example trial from Experiment 1. On each trial participants were shown a memory array with four colored circles. The memory array was presented for
1000 ms and followed by an 800 ms retention interval. After a retention interval, participants were shown a self-report screen with 2, 4, 8, or 16 equally spaced
colors, and the other positions filled with gray ‘‘filler’’ squares. One of the colors presented at test was always shown on that trial, and the remaining colors were
not. Participants had to click one the colors to indicate which color was at the cued position on this trial. Responses were not speeded. The pictured trial shows an
8-AFC test with 8 colors presented at test, and the correct answer is the yellow color on the bottom of the response wheel, as this matches the color presented in
the top left location, which is the cued location on this trial.
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Participants were instructed to use a discretized color wheel
to report on their memory for the probed circle. The discretized
color wheel consisted of 2, 4, 8, or 16 colors, which were spaced
either 180◦, 90◦, 45◦ or 22.5◦ apart in color space, respectively.
articipants were instructed to click on the color that they thought
est matched the color of the probed circle. One of the colors
lways matched the color of the probed circle, whereas the others
id not. There were a total of 500 trials in the experiment (125
rials per m-afc condition), and each experimental session lasted
pproximately 50 min.

.2. Analysis

Participants’ responses were converted to errors by taking
heir distance along the color wheel from the correct answer,
here the correct response is centered at zero. Rather than as-
uming that all foils are processed independently and elicit zero
ignal regardless of their similarity to the shown color, we fit
odels to the full distribution of errors under the assumption

hat the latent memory strength of each alternative scales with
he psychophysical similarity to the remembered item. This as-
umption aligns with classic feature matching models of memory
e.g., Clark & Gronlund, 1996), as well as more recent work on
isual memory (Schurgin et al., 2020). More precisely, both theo-
etical frameworks predict that foils that are more similar to the
arget have stronger latent memory strengths than those that are
ess similar. This fitting procedure used psychophysical similarity
alues obtained by Schurgin et al. (2020). These deviation values
ere fit with a Gaussian signal detection model and a softmax
odel to estimate parameters d′ and β , respectively. Models
ere fit separately to each participant’s data and fitting was

mplemented in MATLAB using maximum likelihood estimation
MLE).

Our goal was to determine which model’s parameters are
nvariant across the m-afc manipulations. We tested this by com-
aring the relative fits of the Gaussian signal detection and soft-
ax model when parameters d′ and β , respectively, were fixed
cross all m-afc conditions.2 This analysis provides insight into

which model best accommodates the data if we assume that its
parameters are invariant across manipulations of m-afc. Since
both the signal detection and softmax models have the same
number of parameters, we used the log likelihood (LL) to com-
pare models (note that larger values of the LL indicate supe-
rior fit). These values were compared at the level of individual
participants using a paired t-test.

We also implemented three secondary analyses that comple-
ment our critical test. In the first complementary analysis, we ran
a manipulation check that memory fidelity, which is captured via
model parameters, did not decrease as a function of alternatives
in m-afc. In the second complementary analysis, we evaluated the
relative flexibility of both models because prior work suggests
that variants of the ratio of strengths formula can be extremely
complex relative to alternative models with the same number
of parameters (Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002;
Townsend & Ashby, 1982). To compare these models on their
flexibility, we assessed the relative fits when parameters varied
freely across m-afc conditions. This analysis provides insight into
whether (as expected) the invariance of parameters of these
models, as opposed to their functional form, yields better fits to
data in our primary analysis when parameters are fixed across

2 Model comparisons are essential because in m-afc tasks models cannot
e compared by simply examining the distributions of errors. For instance,
he maximum rule Gaussian signal detection model does not predict perfectly
aussian distribution of errors because distribution of the maximums of m > 2
ariables is slightly skewed.
6

-afc conditions. That is, we expect that if these models are
atched on their flexibility, they should yield comparable fits

o the data when parameters vary freely across experimental
onditions. In the third complementary analysis, we compared
he standard deviation of parameters across m-afc conditions
hen we allowed these to vary freely across m-afc conditions.
e expect variability of parameters across m-afc conditions to
e smaller in the model that provides the best fit to data when
arameters are fixed across m-afc conditions.

.3. Results

.3.1. Manipulation check
Panel A of Fig. 3 shows parameter estimates from each model

hen they were allowed to vary freely across m-afc experimental
onditions. Note that one critical assumption of our analysis is
hat by making m− afc alternatives visible to participants we do
ot increase memory load with m − afc. To check for this, we
xamined whether parameter estimates decreased systematically
s a function of the m−afc manipulation. We found that they did
ot. Specifically, in the Gaussian signal detection model, average
′ equaled 1.79 (SEM = .17), 1.86 (SEM = .16), 1.98 (SEM = .14)
nd 1.84 (SEM = .16) in the 2, 4, 8, and 16 m-afc conditions,
espectively. In the Gumbel signal detection model, average β
stimates equaled 2.42 (SEM = .34), 2.5 (SEM = .23), 2.85
SEM = .19) and 3.07 (SEM = .24) in the 2, 4, 8, and 16 m-afc
onditions, respectively. Together, through the lens of both mod-
ls we did not find that performance decreased systematically as
e increased the number of alternatives at test.

.3.2. Model flexibility
Importantly, based on LL, we found that the Gaussian signal

etection (X̄ = −560; SEM = 31) and softmax (X̄ = −560.01;
EM = 31) models fit the data comparably when parameters
ere free to vary across m-afc conditions (t(29) = .19, p > .84;
z = 0.04). This analysis provides convergent support for the
onclusion that the superior fit of the Gaussian signal detection
odel when its parameters are fixed across m-afc conditions,

eflects its superior capacity to capture invariants across m-afc
onditions, as opposed to this model having a more flexible
unctional form.

.3.3. Critical test for parameter invariance
Panel B of Fig. 3 shows the difference in log likelihood (LL) be-

ween the Gaussian signal detection and softmax model when pa-
ameters d′ and β , respectively are fixed across m-afc conditions.
ositive and negative values indicate support for the Gaussian
ignal detection and softmax model, respectively, whereas values
ear zero indicate equal support for both models. We found that
he LL was significantly higher for the Gaussian signal detection
X̄ = −562.2; SEM = 31) than the softmax (X̄ = −565.3;
EM = 31) model (t(29) = 4.26, p < .001; dz = 0.77).
Average parameter estimates in the fixed models were d′

= 1.86
SEM = .15) and β = 2.69 (SEM = .22).

Based on the standard deviation of parameters across m-afc
conditions, we also found that there was significantly less vari-
ability in parameters in the Gaussian signal detection (X̄ = .21;
SEM = .02) than the softmax model (X̄ = .55; SEM = .08)
when these were allowed to vary freely (t(29) = 5.26, p <
.001; dz = 0.96). Thus, the d′ parameter of the Gaussian signal
detection model was more stable acrossm-afc conditions than the
β parameter of the softmax model. Together, our results provide
support for the Gaussian signal detection over the softmax model.
That is, we find that the Gaussian signal detection model does a
better a job at capturing invariance of decision latent processes
across m-afc conditions, and that these effects are not due to
differences in model flexibility.



M.M. Robinson, I.C. DeStefano, E. Vul et al. Journal of Mathematical Psychology 117 (2023) 102805

m
i
l
m
t
c
S

3

o
b
h
f
o
c
u
f
c
h

3

3
1
p

Fig. 3. Model fitting and comparison results from Experiment 1. Panel A shows the difference in log likelihood between the Gaussian signal detection and softmax
odels when we fixed each model’s parameters across m-afc conditions. Positive values indicate support for the Gaussian signal detection model, negative values

ndicate support for the softmax (or Gumbel signal detection model), and values at zero indicate equal support for both models (denoted with the black dotted
ine). Panel B shows participants raw proportion correct at each m-afc condition (top) as well as the parameter estimates obtained from fitting the Gaussian SDT
odel (middle) and softmax model (bottom) separately to the full error distributions from each m-afc condition. In each figure, the black dot and error bar denote

he average and standard error of the mean across participants within each condition. The black dotted line in Panel B, denotes the mean across participants and
ondition. The fact that estimates of d′ are more stable than estimates of β across m-afc conditions is consistent with the model comparison favoring the Gaussian
D model.
. Experiments 2: Memory for real-world objects

The goal of Experiment 2 was to examine the generalizability
f our modeling results. To this end, in Experiment 2 we modified
oth the stimuli and presentation format. More precisely, we
ad participants remember real-world objects instead of simple
eatures and presented stimuli sequentially instead of simultane-
usly. Another advantage of using real-world objects instead of
olors as stimuli, is that the real-world object stimulus space in
nconstrained. This entails that we can select a larger number of
oils that are completely dissimilar from the target and, therefore,
ompare models without relying on additional assumptions about
ow participants process psychophysically similar foils.

.1. Methods

Participants Participants (n = 31) were undergraduate student
volunteers, at the University of California, San Diego, who par-
ticipated in the study for course credit. As in Experiment 1, we
collected participants until we reached a final sample size of (n =

0). Exclusion criteria were the same as those used in Experiment
. We excluded an average of 4% of trials per participant, and one
articipant.
Stimuli Stimuli were photos of real-world objects taken from

Brady, Konkle, Alvarez, and Oliva (2008). All objects were from
different categories.

Procedure Fig. 4 shows an example trial from Experiment
2. On each trial, participants were shown a sequence of five
7

unique photos of real-world objects. Each object was presented
for 300 ms, and the interstimulus interval was 100 ms. The
sequence of objects was followed by a retention interval that
lasted 800 ms.

At memory test, participants were shown 2, 4, or 8 objects
and were instructed to click on the object that was shown in the
sequence on that trial. We include 3 instead of 4 m-afc conditions
because trials with sequential presentation are longer and we
wanted to ensure that the experimental session did not run over
the 50 min time limit, while maintaining a sufficiently large
number of trials per condition. One of the objects always matched
an object shown on that trial sequence, whereas the others were
completely novel objects that were only shown once throughout
the entire experimental session. There were a total of 210 trials
(70 trials per m-afc condition), and each experimental session
lasted approximately 50 min.

3.2. Analysis

In this experiment all stimuli, including targets and non-
targets in the memory array, as well as foils were chosen
randomly with the constraint that they came from different cate-
gories (as in Brady et al., 2008). Accordingly, there is no structure
to the error distribution as a function of similarity, and analyzing
the accuracy data and error distributions yields identical results.
Thus, the analysis was identical to the one used in Experiment
1, with the exception that we fit models to proportion correct
alone rather than the complete error distribution with no loss in
generality.
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Fig. 4. Example trial sequence from Experiment 2. On each trial participants were shown a sequence of five unique photos of real-world objects. Each object was
presented for 300 ms, with an inter-stimulus interval (ISI) of 100 ms. The object sequence was followed by an 800 ms retention interval, and then a self-report
screen. The self-report screen showed 2, 4, 8 objects. One of the objects was always an object shown on the trial sequence, and the remaining objects were foils
from different categories, that were not shown again during the experimental session. Participants had to click which object they had seen on that trial. Responses
were not speeded.
3.3. Results

3.3.1. Manipulation check
Panel A in Fig. 5 shows parameter estimates from each model

hen these varied freely across experimental conditions. In the
aussian signal detection model, average d′ equaled 1.42 (SEM =

12), 1.49 (SEM = .13) and 1.61 (SEM = .13) in the 2, 4 and
m-afc conditions, respectively. Average β estimates equaled

.71 (SEM = .16), 1.96 (SEM = .17) and 2.30 (SEM = .18)
in the 2, 4 and 8 m-afc conditions, respectively. Again, through
the lens of both models, memory performance did not decrease
systematically with an increase in the number of alternatives.
8

3.3.2. Model flexibility
Based on the LL, both models yielded identical fits to the data

(X̄ = −105.4; SEM = 3.6 for both models; t(29) = 0). Again, this
indicates that the superior performance of the Gaussian signal
detection model is not due to its having a more flexible functional
form.

3.3.3. Critical test for parameter invariance
Panel B in Fig. 5 shows the difference in log likelihood (LL)

between the Gaussian signal detection and softmax model when
parameters d′ and β , respectively are fixed across m-afc condi-
tions. As before, positive and negative values indicate support for

the Gaussian signal detection and softmax model, respectively,
Fig. 5. Model fitting and comparison results from Experiment 2. Panel A shows the difference in log likelihood between the Gaussian signal detection and softmax
odels when we fixed each model’s parameters across m-afc conditions. Positive values indicate support for the Gaussian signal detection model, negative values

ndicate support for the softmax (or Gumbel signal detection model), and values at zero indicate equal support for both models. Panel B shows participants raw
roportion correct at each m-afc condition (top) as well as the parameter estimates obtained from fitting the Gaussian SDT model (middle) and softmax model
bottom) separately to the percent correct from each m-afc condition. In each figure, the black dot and error bar denote the average and standard error of the mean
across participants within each condition. The black dotted line in Panel B, denotes the mean across participants and condition. The fact that estimates of d′ are
ore stable than estimates of β across m-afc conditions is consistent with the model comparison favoring Gaussian SD.
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hereas values near zero indicate equal support for both models.
e found that the LL was significantly higher for the Gaussian

ignal detection (X̄ = −106.9; SEM = 19) than the softmax
X̄ = −107.8; SEM = 20) model (t(29) = 4.42, p < .001;
dz = .81). Average parameter estimates in the fixed models were
d′

= 1.52 (SEM = .12) and β = 2.04 (SEM = .16). Based on the
standard deviation of parameters acrossm-afc conditions, we also
found that there was significantly less variability in parameters
in the Gaussian signal detection (X̄ = .24; SEM = .03) than the
softmax model (X̄ = .41; SEM = .04) when these were allowed
o vary freely (t(29) = 8.77, p < .001; dz = 1.60). Once again,
hese results provide support for the Gaussian signal detection
ver the softmax model.

. General discussion

We revisited the connection between the Gaussian signal de-
ection and (Luce choice) softmax model. Although these two
odels come from different traditions, they closely approximate
ach other in detection tasks, and both can be recast as dif-
erent parametric variants of the signal detection model in the
-afc task. Thus, the distinction between signal detection and
oftmax choice models can be understood as embodying different
ssumptions about the latent distribution of decision variables in
signal detection model, where the Gaussian parameterization is
onsistent with pooling of sensory evidence to compute decision
ariables, whereas the Gumbel distribution is most consistent
ith taking the maximum of sensory evidence to compute de-
ision variables (Thompson & Singh, 1967). Together, comparing
hese models may help elucidate how people compute decision
ariables from sensory evidence in a range of cognitive tasks.
We applied these ideas to examine which signal detection

odel provides the best characterization of processes in visual
orking memory tasks. To this end, we designed a critical test
o assess which model’s parameters are invariant across changes
n the number of alternatives in m-afc visual memory tasks.
e assumed that the model that best capture stable latent pro-

esses, should yield parameters that are invariant across m-afc
onditions (Busemeyer & Wang, 2000) because the computations
eople use to compute decision variables in these conditions
hould be the same. We implemented this test in two different
isual memory experiments, where we varied the structure of the
timulus space — that is, how similar stimuli were to one another,
he dimensionality of stimuli — that is, whether people had to
emember simple features (color) or complex real-world objects,
nd presentation format — that is, whether stimuli were pre-
ented simultaneously or sequentially. Across these experiments,
e found consistent support for the Gaussian signal detection
odel. These results align with the view that sensory evidence is
ooled via summation or averaging, and indicates that out of this
uite of models, the Gaussian signal detection model best capture
atent processes in visual memory.

.1. Models of visual working memory

Our work has direct implications for contemporary models of
isual memory. First, this is relevant for building cognitive models
f visual memory. Relevant in this context are two prominent
odels, the Target Confusability and Competition (TCC) (Schurgin
t al., 2020) and Interference model (Oberauer & Lin, 2017). The
CC model combines principles from signal detection theory and
hepard’s law of generalization; it postulates that familiarity is a
unction of the psychophysical similarity to remembered items,
uch that items that are more similar to items held in memory
enerate a stronger familiarity signal. Importantly, an assumption

f this model is that the response function that maps familiarity

9

ignals to responses is a Gaussian signal detection model. The
nterference model postulates that memory for items is driven by
ued based retrieval. More precisely, access to working memory
epresentations is determined by a spatial retrieval cue, as well as
oise that is uniformly distributed across memoranda. In contrast
o TCC, the Interference model uses a softmax response function.
mportantly, when proposing these models, these researchers did
ot provide a process-based justification for using one response
unction over the other.

Our work suggests that the Gaussian signal detection model
s more appropriate because it does a superior job of capturing
ognitive invariants in forced choice memory tasks. As discussed,
his result suggests that people pool sensory evidence via summa-
ion or averaging when computing decision variables. Critically,
his study is one of few to directly model how people translate
arly sensory signals to higher-level representations, and lays the
roundwork for building and constraining cognitive architectures
hat characterize the linking function between perception and
emory (e.g., Hedayati et al., 2022).

.2. Limitations and future directions

Throughout our article we focused on two specific models
f choice the Gaussian signal detection and softmax model. In
rinciple, however, we could have compared a much wider range
f models; for instance, we could have considered a larger range
f signal detection models with different parameterizations. This
pproach was taken by Rouder et al. (2010), who used Receiver
perating Characteristics analysis to compare different param-
terizations of the signal detection model to a variant of the
aussian signal detection model, which is most prominent in the
ecognition memory domain (Wixted, 2007). For instance, the
uthors considered signal detection models with a log-normal
nd gamma parameterization. In the current study, we focused on
omparing Gaussian signal detection and softmax (Gumbel signal
etection) models because they are prominent across different re-
earch domains. Furthermore, there is a large body of classic work
hat examines the formal relationship between these models, but
t is disconnected from more contemporary modeling of visual
emory. Another major reason is that, unlike the Gaussian and
umbel signal detection models, these alternative parameteriza-
ions do not currently have a clear theoretical interpretation. In
hort, there is an extremely wide range of possible parameteri-
ations of signal detection models. Considering a larger subset of
hese is outside of the scope of the current project because our
oal is to focus solely on theoretically-motivated models.
Finally, our results conflict with a recent analysis by Oberauer

2021). Oberauer (2021) implemented a factorial comparison of
isual working memory models, and found support for the soft-
ax over the Gaussian signal detection model. A major limitation
f this work, is that it is not based on a critical test, such as our
est of parameter invariance. Instead, Oberauer (2021) factorially
ombined different dimensions of each model until he identified
model that provided superior ‘‘fit’’ to the data based on a
articular model comparison technique. More precisely, Ober-
uer considered different combinations of activation functions
e.g., Laplace versus von-Mises) and response rules (e.g., Gaussian
ignal detection versus softmax), and found that the best fitting
odel had a von Mises activation and softmax response rule. A
ritical limitation of this work, is that models were evaluated
olely on their fit to data, rather than their ability to capture
ognitive invariants. It is known that superior fit to data alone
oes not entail that a model’s basis theory is also a superior
ne (Roberts & Pashler, 2000). Instead, it could reflect other
actors such as, inadequate penalization of a model’s flexibil-
ty (Piantadosi, 2018; Pitt & Myung, 2002). Our results suggest
hat the Gaussian signal detection model performs well across
range of experimental conditions and when we make minimal
ssumptions about the latent activation function.
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.3. Conclusion

We revisited the connection between the Gaussian signal de-
ection and Luce choice-based softmax model. We found that the
aussian signal detection model best captures decision processes
hat underpin mainstream visual working memory tasks. This
esult suggest that people pool sensory evidence to compute
ecision variables in such tasks, and paves the way for developing
inking propositions (Teller, 1984) between neural and cognitive
odels of visual memory.
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ppendix. Gumbel signal detection and softmax model

We provide a proof for equivalence between the Gumbel sig-
al detection and softmax model (original result proved by Hol-
an & Marley, 1974; Yellott, 1977). We start with the general

orm of the signal detection model likelihood for discrimination
asks, given partially in the main text in Eq. (3). For simplicity,
irst consider n independent and identically distributed (i.i.d.)
ariables with probability and cumulative densities f and F , re-
pectively. Eq. (3) can be rewritten as a likelihood of the signal de-
ection model for discrimination tasks in terms of these densities
f n variables, as shown below

(ID(i)) = P(∀j ̸= i : Xi > Xj), (A.1)

= P(Xi = x)P(Xj < x, ∀j ̸= i), (A.2)

Eq. (A.2) shows the joint probability that the magnitude of
he decision variable Xi exceeds the magnitude of all remaining
variables Xj, where ∀j ̸= i.

For continuous variables in a memory task where there is one
target and n− 1 foils, the likelihood that the target generates the
maximum familiarity signal is∫

∞

−∞

fT (x)FF (x)n−1dx, (A.3)

nd the likelihood that a foil generates the maximum familiarity
ignal is

∞

−∞

(n − 1)fF (x)FT (x)FF (x)n−2dx. (A.4)

Informally, Eq. (A.3) gives the probability that the target gen-
rates a familiarity signal x (denoted with probability density fT ),
hich exceeds the familiarity signal of all n−1 foils (denoted with

cumulative density FT exponentiated by n−1). Similarly, Eq. (A.4)
gives the probability that one of the foils generates a familiarity
signal that exceeds the target and the remaining n−2 foils, which
can happen in n − 1 ways. In both equations, these probabilities
are integrated over every possible value of x.

Next, assume that each of n variables has a Gumbel distri-
bution (for maximums) with scale parameter α = 1. As before,
we assume that on target present trials decision variables will be
10
larger on average than on target absent trials, so the shift param-
eter µ > 0 and µ = 0 on target present and target absent trials,
respectively. Thus, the densities for decision variables elicited by
the target, fT and FT on target present trials are

fT (x) = eµ−xe−eµ−x
, (A.5)

FT (x) = e−eµ−x
, (A.6)

and the densities for decision variables elicited by the foils, fF and
FF on target absents trials are

fF (x) = e−xe−e−x
, (A.7)

FF (x) = e−e−x
. (A.8)

Replacing the generic densities in Eq. (A.4) with the Gumbel
densities in Eqs. (A.5) through (A.8), the likelihood for the Gumbel
signal detection model on target present and absent trials is the
following,

P(ID(Target)) =

∫
∞

−∞

(eµ−xe−eµ−x
)(e−e−x

)n−1dx, (A.9)

P(ID(Foil)) =

∫
∞

−∞

(n − 1)(e−xe−e−x
)(e−eµ−x

)(e−e−x
)n−2dx. (A.10)

For simplicity, we show equivalence between the Gumbel
signal detection and softmax model using the likelihood for target
present trials (Eq. (A.9)), but these steps can be extended to the
likelihood for target absent trials (Eq. (A.10)).

First, using substitution, set z = e−e−x
. Differentiating, dz

dx =

e−e−x
−x and dx = (e−e−x

−x)−1dz. Simplifying,

P(ID(Target)) =

∫
∞

−∞

(eµ−xe−eµ−x
)zn−1(e−e−x

−x)−1dz (A.11)

=

∫
∞

−∞

eµe−eµ−x
+e−x

zn−1dz. (A.12)

Replacing x with −ln(−ln(z)), in Eq. (A.12) and simplifying
gives,

P(ID(Target)) ==

∫
∞

−∞

eµe−eln(−ln(z))+µ
+eln(−ln(z))

zn−1dz, (A.13)

=

∫
∞

−∞

eµeln(z)e
µ
−ln(z)zn−1dz, (A.14)

=

∫
∞

−∞

eµze
µ
z−1zn−1dz. (A.15)

After applying the power rule, Eq. (A.15) can be rewritten as,

(ID(Target)) =

∫
∞

−∞

eµze
µ
+n−2dz = eµ ze

µ
+n−1

eµ + n − 1
. (A.16)

Substituting e−e−x
back for z, and plugging in the boundaries,

ields

(ID(Target)) =
eµ−e−x(eµ+n−1)

eµ + n − 1

⏐⏐⏐∞
−∞

, (A.17)

=
eµ

eµ + n − 1
. (A.18)

Eq. (A.18) is identical to softmax expression for P(ID(Target))
in discrimination tasks (Eq. (14) in main text) with β = µ,
completing the proof.
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