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A quantitative model of ensemble perception 
as summed activation in feature space

Maria M. Robinson       & Timothy F. Brady     

Ensemble perception is a process by which we summarize complex scenes. 
Despite the importance of ensemble perception to everyday cognition, 
there are few computational models that provide a formal account 
of this process. Here we develop and test a model in which ensemble 
representations reflect the global sum of activation signals across all 
individual items. We leverage this set of minimal assumptions to formally 
connect a model of memory for individual items to ensembles. We compare 
our ensemble model against a set of alternative models in five experiments. 
Our approach uses performance on a visual memory task for individual 
items to generate zero-free-parameter predictions of interindividual 
and intraindividual differences in performance on an ensemble 
continuous-report task. Our top-down modelling approach formally  
unifies models of memory for individual items and ensembles and opens  
a venue for building and comparing models of distinct memory processes 
and representations.

Human perception and cognition are grounded in a capacity-limited 
system1–4. A basic question across research areas in the behavioural sci-
ences is how people effectively represent an environment that should 
far exceed their processing capabilities5. One widely accepted answer to 
this question is that perceptual and cognitive systems take advantage of 
redundancies in the environment by forming a condensed summary or 
gist6–8. In the visual domain, the ability of people to extract summaries 
in this way is commonly referred to as ensemble perception9.

In a standard laboratory ensemble task, participants are shown 
a set of stimuli that share properties in a specific feature dimension, 
such as colour, and are instructed to report on their average along that 
dimension. Figure 1 depicts two example ensemble tasks with colours 
and shapes. People are remarkably accurate at these tasks and often 
notably better at reporting the average of the set than at reporting on 
any individual item10. Extensive empirical and theoretical work suggests 
that ensemble processing partially underlies our ability to create more 
robust representations of simple scenes10,11, categorize objects12 and 
guide our attention13. Such tasks may also lead to critical insights into 
the limits of conscious perception. For example, preserved ensemble 
information in the relative absence of information about individuals 
is thought to show that ‘phenomenal’ consciousness overflows con-
scious access14,15.

Given the fundamental role of ensemble processing, there is 
immense value in developing process-based models that explain the 
mechanisms of ensemble extraction. However, so far, mainstream 
theories of ensemble extraction are largely grounded in verbal descrip-
tions9. A known limitation of verbal theories is that they may lack the 
precision of mathematical models, which is requisite for delineating 
hypothetical constructs and adjudicating between competing theo-
retical accounts16–19.

The goal of the current work is to attempt to fill this gap. We pre-
sent a theoretical framework and quantitative models of ensemble 
memory, and compare these models in different experiments to test 
core process-based hypotheses of how ensembles are computed and 
represented. We report consistent evidence for a Perceptual Summa-
tion model of ensemble memory. According to this model, stimuli 
evoke distributed patterns of activity over feature values, and ensemble 
representations reflect the global sum of these activations. We find 
that this model captures a range of phenomena in the ensemble and 
gist-memory literature.

A major aspect of our modelling framework is that rather than 
deriving a ‘best fit’ to ensemble data alone, we instead formally link a 
model of memory for individual items with ensembles. Accordingly, 
we use our framework to predict performance in a wide range of 
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of how representations of individual items relate to ensembles thus 
remains an important puzzle in the ensemble literature.

The second relevant dichotomy is between views that noise 
accrues during an ‘early’ versus ‘late’ stage of ensemble process-
ing30. We make two distinctions between possible types of early and 
late noise in ensemble processing. The first is between perceptual 
and post-perceptual noise—that is, noise that accrues during per-
ception without memory demands versus noise that accrues during 
memory-based processes, such as active maintenance. The second 
distinction is between presummarization and postsummarization 
noise31, which is noise that accrues before versus after ensemble rep-
resentations are computed.

We distinguish between these two kinds of early and late noise 
because it is conceptually possible, and is in fact an assumption of the 
model we propose, that patterns of activation elicited by individual 
items are corrupted by perceptual noise (consistent with early per-
ceptual noise accrual) but that post-perceptual noise accrues after 
rather than before ensembles are computed (consistent with late 
postsummarization noise accrual). This view entails that ensemble 
computation operates over item representations that are corrupted 
by perceptual but not post-perceptual noise. This contrasts to some 
subsampling accounts, according to which only a few items are used 
to create ensemble representations. Current subsampling models 
are more aligned with the view that ensembles are computed after 
post-perceptual noise accrues over representations of individual items, 
which are then used to compute an ensemble when memory is tested28. 
Broadly, these dichotomies between variants of early and late theories 
of noise provide insight into the time course of ensemble extraction.

The last relevant dichotomy is between views that ensemble repre-
sentations are probabilistic versus point estimates. For instance, some 
researchers examined the content of ensemble-like representations 
in a visual search task32. These authors reported evidence that people 
are sensitive to the entire underlying (uniform or Gaussian) distribu-
tion of features in the external environment, rather than simply an 
estimate of the average and variance of those features. This claim is 
consistent with people storing entire probability distributions over 
visual features, at least in the kind of implicit tasks used in that work33. 
This probabilistic representation view contrasts with an alternative 
view that people represent a point estimate of the ensemble, such as 
an average in feature space of each individual item10,24. This dichotomy 
speaks to the richness of ‘summaries’ computed in ensemble tasks.

ensemble tasks, which differ in both stimuli and presentation format, 
from tasks that involve processing of individual items. This modelling 
thus involves generalizing across different cognitive tasks rather than 
simply fitting the data of a particular task20–22. The proposed model 
also provides a high-precision account of human performance by 
capturing complete distributions of errors in continuous-report tasks. 
Finally, this framework postulates probabilistic mental representa-
tions, making it broadly consistent with contemporary population 
coding models of perception and cognition23. Next, we review relevant 
theoretical work on ensemble perception, placing a special focus on 
dichotomies that highlight core questions researchers may want a 
model of ensemble processing to answer.

Existing theories of ensemble perception are foundational for 
stimulating hypotheses of ensemble perception and memory9,24. We 
use these theories to outline three relevant dichotomies, which high-
light core desiderata for a quantitative process model of ensembles.

The first dichotomy is between views that ensemble process-
ing does versus does not involve operating over representations of 
individual items24. This is a core dichotomy because it speaks to how 
ensemble representations are computed. It also bears on the extent 
to which ensembles are possible to compute when item information 
is unavailable to memory, which is critical for theories about the role 
of ensembles in consciousness15,25.

One class of views posit that ensemble processing involves pool-
ing over already-processed representations of individual items10,26–28. 
According to this view, people have complete representations of 
individual items and pool them to compute an ensemble. In contrast, 
other views suggest that ensemble processing involves automatically 
extracting an average without first representing each individual on 
its own6,25. Researchers have also proposed that ensemble extrac-
tion involves dividing the total amount of activation elicited by 
perceived items by their number, without explicitly representing 
individual items29.

Much of the work that seeks to address how representations of 
individual items relate to ensembles is non-quantitative, which can 
make the connection between individual and ensemble representa-
tions difficult to explain. For example, some researchers report that 
representations of ensembles are present even when memory for 
individual items is at chance, implying distinct representations for 
both10. However, these authors also report that pooling noisy informa-
tion about individual items can predict ensemble data27. The question 
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Fig. 1 | Laboratory ensemble tasks. Examples of laboratory ensemble tasks in which participants are typically asked to report on the average along a stimulus 
dimension, such as colour or shape, using a continuous reproduction task.
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The current model posits that ensemble processing involves 
pooling over individual item representations. It also postulates that 
representations of individual items are corrupted by noise at an early 
perceptual stage, but that post-perceptual noise accrues after ensem-
bles are computed. This aligns with the view that ensemble perception 
is distinct from simply actively maintaining individual items in work-
ing memory and then summarizing them when ensemble memory 
is probed. Finally, the model posits probabilistic representations, 
according to which each individual item as well as the ensemble is rep-
resented as a distribution of activity over the entire feature space. We 
next describe the quantitative framework that serves as the conceptual 
and mathematical basis for the current ensemble model.

We took a top-down strategy for developing a computational 
model of ensemble processing34. We used an existing quantitative 
framework of memory and carved out a set of plausible constraints 
on the algorithms that underlie ensemble perception and memory for 
them. We formalized these constraints using a set of computational 
models.

We conceived of the current ensemble model using the target 
confusability competition (TCC) theory of memory35. In a set of more 
than a dozen experiments, TCC outperformed mainstream models of 
visual memory in terms of both fit to data and ability to predict data 
across distinct visual working and long-term memory tasks. The TCC 
model combines two fundamental ideas shared by a broad range of cog-
nitive computational models (Fig. 2a), which are that memory-based 
decisions are made under uncertainty36,37 and that information in the 
world is processed on the basis of its psychophysical rather than physi-
cal similarity structure38–40.

The first premise of TCC is that memory representations are intrin-
sically probabilistic and vary in strength, a core principle of signal 
detection theory37,41,42 and, broadly, Bayesian models of cognition43–46. 
For instance, a remembered item is assumed to be neither completely 
forgotten nor completely remembered. Instead, there is a probability 
distribution over how well the item is remembered, such that some-
times it is remembered with high fidelity and elicits a strong familiar-
ity signal, and other times it is remembered with lower fidelity and 
elicits a weaker familiarity signal. In signal detection theory and TCC, 
the strength of each memory’s familiarity signal is captured with the 
signal-to-noise-ratio parameter, d′.

The second premise of TCC is that familiarity spreads across fea-
ture space according to the stimulus’s psychophysical properties, an 
assumption shared with other foundational models of memory47–51. 
Specifically, the familiarity of a given stimulus is a function of the psy-
chophysical similarity between this stimulus and contents of memory, 
which can also be thought of as distributed patterns of activation in 
neural populations that are selective to remembered feature values52,53. 
This assumption entails that stimuli will elicit a stronger familiarity sig-
nal if they are more psychophysically similar to contents in memory. For 
instance, if the remembered item is a purple square, the colour purple 
will elicit a very strong familiarity signal, as will colours that are nearly 
perceptually indistinguishable from purple. Colours that are somewhat 
similar to purple, such as magenta, will also elicit a familiarity signal, 
which will be stronger than those elicited by relatively dissimilar col-
ours, such as green. This latent psychophysical similarity function and 
the corresponding distribution of memory signals is approximately 
exponential in form, in line with previous theories of memory and 
generalization39,40,54,55.

To summarize, TCC is a model that formally combines two fun-
damental views about memory processes in a way that permits gen-
eralization across memory tasks with a single free parameter, d′. The 
generalizability and parsimony of TCC, as well as its basis on probabil-
istic models of cognition and psychophysical scaling, make it a power-
ful framework for building cognitive architectures. We used TCC to 
derive the Perceptual Summation model as well as a set of contending 
models, with which we tested hypotheses of how ensembles are com-
puted and represented. We also derived and tested a set of alternative, 
non-TCC-based models that make different processing assumptions. 
Next, we describe the TCC working-memory model for individual items 
and explain how we extended it to models of ensemble memory and 
formally linked these models.

Figure 2b (left) shows a schematic of a typical trial in a visual work-
ing memory task for individual items, which requires memorizing three 
coloured circles and their spatial locations. The TCC model postulates 
that each item elicits some location-dependent pattern of activity, 
which causes an increase in familiarity for its respective colour but 
also for similar colours. These levels of activation are each corrupted 
by perceptual noise, which makes it more difficult to distinguish highly 
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Fig. 2 | TCC framework for memory of individual items and ensembles. a, The 
TCC framework merges principles of memory uncertainty and the exponential 
generalization gradient. On the left, the two Gaussian distributions represent the 
distribution of familiarity signals for old (purple) and new (yellow/orange) items, 
with increasing values denoting greater familiarity. Purple, having been seen, on 
average has higher familiarity, but on a given trial people judge just one sample 
from this distribution, such that sometimes, yellow/orange may feel more familiar. 
In line with signal detection theory, the distance between these distributions (d′) 
quantifies memory fidelity. On the right, the psychophysical similarity function 
shows how average familiarity scales as a function of psychophysical similarity to 
the remembered item (for example, the purple at the centre of the distribution 
has familiarity equal to d′, and the yellow and orange at the edges have familiarity 
equal to zero). b, TCC allows us to link models for individual items and ensembles. 
The left panel shows the TCC model for individual items, which postulates that 
each item in the memory array elicits a distributed pattern of activation over 
feature values (upper left), which is corrupted by noise (centre left). When tested, 
people report on the feature value that generates the maximum memory signal 
based on the probed item (lower left). The right panel shows the TCC Perceptual 
Summation model for ensembles, which postulates that each item in the memory 
array elicits a distributed pattern of activation over feature values, which are 
pooled at an early encoding stage of processing (upper right). This distributed 
pattern of activation is corrupted by noise (middle right), and when queried on the 
mean colour, people report on the feature value that elicits the maximum memory 
signal in this ensemble representation (lower right).
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similar feature values from one another. Throughout our modelling, we 
assumed that perceptual noise affects individual item activations in the 
same way in both working memory and ensemble tasks (see Methods 
for how perceptual noise was measured and modelled).

After individual item representations are perceived, their pat-
tern of activity is corrupted by attention-based and memory-based 
noise. These effects of post-perceptual noise are captured with a single 
free parameter, d′, which quantifies the signal-to-noise ratio of each 
individual representation. The signal-to-noise ratio is affected by key 
experimental variables, such as memory load, encoding time and the 
retention interval, each of which affects how well the items are initially 
encoded and how much noise accumulates during memory mainte-
nance. At the end of the trial, the probed item’s location is queried, 
and the participants report on the colour channel that generates the 
maximum familiarity signal.

Formally, the TCC model for individual items is given by the fol-
lowing equation:

ri,VWM = argmax ( f(x)id′ + σnoise) . (1)

The index i denotes the probed item, ri,VWM is the predicted 
response on the continuous-report visual working memory task for 
that item, f(x) is the measured similarity of each colour x with respect 
to item i, σnoise is a fixed amount of post-perceptual noise (set to one 
standard deviation with no loss in generality) and argmax denotes 

the decision rule that memory reports are based on the feature that 
generates the maximum familiarity signal.

We developed the Perceptual Summation ensemble model from 
the TCC model for individual items, as well as constraints based on 
prior evidence from the ensemble literature. These constraints include 
seemingly contradictory evidence that memory for individual items 
can predict memory for ensembles, but that memory for ensembles 
is more robust than memory for individual items10.

Like the model for individual items, the Perceptual Summation 
model postulates that each item in the memory array elicits patterns 
of activity over feature values, each of which is corrupted by percep-
tual noise (Fig. 2b, right). However, the Perceptual Summation model 
postulates that the ensemble is extracted during encoding, before 
memory-based noise accrues over representations of individual items. 
The model thus postulates that memory-based noise accumulates 
over the ensemble instead of over representations of each item in the 
array. When probed on the average, participants report on the colour 
channel that generates the maximum familiarity signal. The equation 
for the Perceptual Summation model is the following:

rENS = argmax((
N
∑
i=1

f(x)id′) + σnoise) . (2)

Note that equations (1) and (2) are nearly identical, except that 
self-reports on the visual working memory task (ri,VWM) are determined 
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Fig. 3 | TCC ensemble models. Schematic of all ensemble models that fall within 
the TCC framework. Within the TCC framework, all ensemble models posit 
that activations of individual memory representations, quantified with the 
signal-to-noise ratio (d′), underlie ensemble memory processes. Accordingly, 
each model can be used to predict ensemble data with zero free parameters 
by independently estimating a signal-to-noise ratio from a working memory 
task and substituting it into the ensemble models. Each model provides a way 
of linking memory for individual items to memory for ensembles, but each 
embodies different theoretical assumptions regarding how ensembles are 
computed. The Perceptual Summation model postulates that each item elicits 
item-specific patterns of activation that are pooled at an early encoding stage 

of processing. This model has the potential to capture key predictions in the 
ensemble memory literature, such as that ensemble representations are more 
robust than representations of individual items, but that item-specific memory 
can still predict aspects of ensemble memory. The Post-perceptual Summation 
model, in contrast, captures the view that representations of individual items are 
maintained in working memory until memory is probed. Finally, the Automatic 
Averaging model postulates that ensemble representations of the average are 
extracted automatically rather than being built up from representations of 
individual items. Together, comparing these models allows us to formally test key 
predictions in the ensemble literature using formal model comparison as well as 
a principled, theoretical framework of memory processes.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | October 2023 | 1638–1651 1642

Article https://doi.org/10.1038/s41562-023-01602-z

by levels of activation elicited by a single probed item (i), whereas 
self-reports on the ensemble task (rENS) are determined by the summed 
levels of activation of all N items.

With this framework, we connected the models for individual 
items and ensembles. We postulated that the patterns of activation 
elicited by each item in the memory array are the same in both work-
ing memory and ensemble tasks, and are pooled via summation in 
the early perceptual stage of ensemble extraction. Like in the model 
for individual items, this pattern of activation is measured with a 
psychophysical similarity function (which captures how familiarity 
signals are distributed across feature values for each item) and a 
single free parameter d′ (which measures the signal-to-noise ratio 
that scales these patterns of activation on the basis of the demands 
of the memory task). We formally linked memory for individual items 
and ensembles by estimating the signal-to-noise ratio (d′) of each 
individual item from a visual working memory task for individual 
items, and substituting this signal-to-noise ratio into the Perceptual 
Summation model to compute the predicted summed pattern of 
activation of the ensemble. With this approach, we predicted entire 
distributions of memory errors in continuous-report ensemble tasks 
with zero free parameters.

To summarize, the difference between representations of indi-
vidual items and ensembles is that in ensemble tasks patterns of acti-
vation elicited by individual items are pooled via summation before 
post-perceptual noise accrual. This entails that the signal-to-noise 
ratio of the post-summation ensemble representation will be larger 
than it is for individual items when there is overlap in feature values 
or redundancies between items in the ensemble array. Through the 
lens of likelihood signal detection theory41, this pooling mechanism 
can be seen as an optimal way of combining the likelihood elicited by 
each item into a more robust ensemble memory representation, or gist, 
as opposed to treating the evidence elicited by each item separately.

The Perceptual Summation model’s pooling mechanism can be 
seen as a cognitive-level approximation of processes described in neu-
ral population coding models. Very generally, some evidence suggests 
that increased population size may increase the amount of information 
embedded in populations of neurons56. Although the relationship 
between population size and readout accuracy is extremely complex 
and an active topic of investigation56–59, this framework provides one 
neurally plausible instantiation for the computations postulated in the 
Perceptual Summation model.

To test the predictions of the Perceptual Summation model, we 
compared it with a set of alternative models. The first prediction we 
considered is the time course of ensemble extraction. The Perceptual 

Summation model’s ‘early pooling’ prediction contrasts with an alter-
native view that individual items are held in working memory until 
ensemble memory is probed, at which point they are pooled to com-
pute an ensemble. This alternative view is informally embodied in 
some subsampling theories of ensemble processing28. We formalized 
this prediction within the TCC framework with the Post-perceptual 
Summation model.

The Post-perceptual Summation model predicts that peo-
ple maintain location-dependent representations of each item in  
memory—as they would in a standard working memory task for indi-
vidual items—until they are probed on their memory for the ensem-
ble. Thus, according to this model, ensemble representations are 
computed at a relatively late stage, and each item therefore accrues 
memory-based noise separately, before the ensemble is pooled. The 
equation for the Post-perceptual Summation model is the following:

rENS = argmax (
N
∑
i=1
( f(x)id′ + σnoise)) . (3)

Note that the terms in the Post-perceptual (equation (3)) and 
Perceptual Summation (equation (2)) models are nearly identical, with 
the difference that summation occurs over individual items that have 
already accrued post-perceptual noise (equation (3)) versus before 
representations of individual items have accrued post-perceptual noise 
(equation (2)). To summarize, these two models can mimic each other 
if d′ is allowed to freely vary; however, because we use a generalization 
approach, d′ is constrained across tasks, allowing us to differentiate 
these models (see Supplementary Information for extended discus-
sion of these issues).

Finally, we considered an ensemble model that follows from the-
ories that ensemble averages are extracted automatically, without 
processing of individual items6,25, which we refer to as the Automatic 
Averaging model. Although still nested within the TCC framework, 
this model differs from the Perceptual and Post-perceptual Summa-
tion models because it postulates that individual items in ensemble 
tasks automatically elicit distributed patterns of activation around 
the average feature value in ensemble array, rather than eliciting 
item-specific patterns of activation that are pooled via summation. 
This representation of the average is also probabilistic and scaled by 
the signal-to-noise ratio of a single memory representation. We also 
consider alternative assumptions about the signal-to-noise ratio for 
this model in the Supplementary Information. To summarize, this 
model is equivalent to assuming that the ‘average’ is directly percep-
tually available to people in the same way as an item that is physically 
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text for the full model descriptions.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | October 2023 | 1638–1651 1643

Article https://doi.org/10.1038/s41562-023-01602-z

present. As shown in equation (4), this model postulates that people 
extract a single probability distribution over the mean feature, which 
is also corrupted by noise:

rENS = argmax ( f(x)meand′ + σnoise) . (4)

Note that equation (4) is nearly identical to equation (1) except that 
the similarity function is centred on the average feature value instead 
of the value of an individual item. Figure 3 depicts each of these TCC 
ensemble models.

So far, these ensemble models posit that, on average, each item is 
weighted equally when computing an ensemble. This is tenable under 
conditions that do not lead to disproportionate prioritization of a 
specific item or subset of items60,61.

However, it is known that some conditions do elicit unequal 
weighting of items in memory. For instance, items that were shown 
more recently tend to be remembered better than items shown less 
recently, and such recency effects affect ensemble representations as 
well62. To evaluate the generalizability of our modelling, we extended it 
to conditions in which items receive unequal prioritization in memory. 
Furthermore, the summation account becomes more distinct from 
other possible accounts when items vary in strength; therefore, this 
analysis also provides a stronger test of the view that ensemble rep-
resentations reflect a sum of local patterns of activation. Finally, this 
analysis helps demonstrate that we can predict both interindividual 
and intraindividual variations in ensemble processing.

To this end, in one of our experiments we used a sequential pres-
entation ensemble paradigm. One way to generalize the TCC-based 
models to this situation is to simply obtain separate d′ estimates for 
each item in the sequence and use these estimates to compute ensem-
ble predictions. However, we can also use a temporal model that cap-
tures memory changes as a function of the sequential presentation 
with fewer parameters. We used prior modelling work62 to extend 
our modelling in this way (Methods). As expected, we found the same 
pattern of results using both types of models. Next, we describe a few 
alternative, non-TCC models of ensemble perception.

Currently, there are no computational models of ensemble 
processing that fully capture distributions of errors in a continuous 
self-report task and that can account for data across a range of ensem-
ble manipulations. However, to bolster the interpretability of our 
modelling, we derived a set of alternative models that serve as con-
ceptual foils to the TCC ensemble models. Some of these models are 
baseline models that make extremely simplistic assumptions about 
ensemble processing, which we use to check the tenability of our TCC 
models. Other models link memory performance for individual items 
to memory for ensembles while postulating different assumptions 
about memory processes, such as that there are true ‘guessing states’63. 
Each of these models is depicted schematically in Fig. 4. Because we did 
not find that these are best-performing models, for ease of exposition, 
we include a conceptual description of these models in the Methods.

We ran five experiments to evaluate the predictive accuracy of 
each ensemble model, with the goal of assessing the generalizability of 
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Fig. 5 | Colour, shape and sequential memory tasks. a,b, Example trial 
sequences used in the visual working memory (VWM) and ensemble tasks 
with colour (a) and shape (b). In the visual working memory tasks (left), the 
participants saw a set of colours (a) or shapes (b); then, after a delay, a single 
location was probed, and the participants had to indicate which colour or 
shape was in that position. In the ensemble tasks (right), the participants saw a 
set of colours (a) or shapes (b) and then after a delay were probed on the mean 
colour or mean shape (for example, a summary of the entire set) rather than on 

a single individual item. c, An example trial sequence used in the visual working 
memory and ensemble tasks in Experiment 5. On each trial of the visual working 
memory task (left), the participants saw a number of coloured real-world objects 
presented one at a time. Then, a single object appeared at test in greyscale, and 
the participants had to indicate what colour that particular item had been. In the 
ensemble task (right), the participants saw a sequence of colours on a single real-
world object, and at test they had to indicate the average colour of this object (ISI 
denotes ‘interstimulus interval’).
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our modelling results across different ensemble tasks. As previewed, 
each experiment had the same structure, meaning that the partici-
pants completed one block of a visual working memory task and 
one block of an ensemble task (presented in random order across 
participants). This allowed us to measure d′ in the visual working 
memory task and use it to predict performance in the ensemble task. 
In Experiments 1 and 2, we examined people’s memory for colour 
(Fig. 5a) and manipulated set size and the range of colour values in the 
ensemble task, respectively. In Experiments 3 and 4, we evaluated the 
generalizability of these results for a higher-level shape feature space 
(Fig. 5b), where we also manipulated set size and varied the range of 
shapes, respectively. Finally, in Experiment 5, we used a sequential 
presentation task (Fig. 5c) to test models when memory representa-
tions receive different priority.

Results
Our goal was to evaluate the ability of the Perceptual Summation ensem-
ble model to generalize performance from the visual working mem-
ory task to the ensemble task. We formally compared the predictive 
accuracy of this model with that of other models using the predicted 
negative log likelihood (PNLL) between it and the contending models. 
PNLL is a predictive model comparison metric because we assess the 
models on the basis of their capacity to generalize across tasks—that 
is, make zero-free-parameter predictions on new data in a different 
task. However, we do note that all TCC models also yield good fit to 
the data (R2 ≥ 0.9 across all experiments; Supplementary Informa-
tion). Because PNLL is a negative log likelihood, lower scores reflect 
less deviance and better model predictions. PNLL naturally accounts 
for model complexity because it captures predictive accuracy rather 

than goodness of fit (for an elaborated discussion of this point, see the 
Supplementary Information).

For our main analysis with TCC ensemble models, we fit the TCC 
visual working memory model to the data and substituted d′ estimates 
from these fits into the ensemble models to predict the ensemble 
data. To ensure the robustness of our models’ performance, we also 
implemented a reverse inference analysis in which we fit the ensemble 
models to the ensemble data and then used the best-fitting parameters 
from the ensemble task to predict the working memory data (Sup-
plementary Information). We found that our results are robust across 
these different methods of prediction.

We implemented analyses at the level of individual participants. 
Specifically, we compared the observed PNLL between each model and 
the best-performing model using a paired t-test. The data distribution 
was assumed to be normal, but this was not formally tested. We report 
the observed effect size (dz) and the lower and upper bounds of a con-
fidence interval for the mean difference (CIL and CIU, respectively). We 
used a conservative Bonferroni correction63 to control for multiple 
comparisons. For our main comparisons in Experiments 1–4 and Experi-
ment 5, there were six and eight family-wise comparisons (m), respec-
tively, and the adjusted significance threshold (αA = α/m = 0.05/m) 
was 0.008 and 0.006, respectively. For our reverse inference compari-
sons, there were two family-wise comparisons in each experiment, and 
αA = 0.025. We found that each central comparison was statistically 
significant when adjusting for multiple comparisons.

Ensemble memory for colour with different set sizes
In Experiment 1, the participants completed a visual working memory 
and ensemble task that used colour as the stimulus and manipulated 
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Fig. 6 | Comparison in predictive accuracy between the Perceptual 
Summation model and competing models of ensemble memory for colour 
with set size manipulation. Top, violin plots based on the difference in PNLL 
scores between each of the six alternative competing models (PNLLalt) and 
the main Perceptual Summation model (PNLLPerSum) for Experiment 1 (n = 50 
participants). Lower PNLL values indicate higher predictive accuracy; therefore, 
PNLL difference scores higher (or lower) than zero indicate support for the 

Perceptual Summation (or a competing) model. In both experiments, the vast 
majority of participants were better predicted by the Perceptual Summation 
model than by any of the alternatives. Bottom, descriptive and inferential 
statistics from all comparisons in Experiment 1, including the mean and standard 
error of the mean across participants. The PNLL values were compared with a 
paired two-tailed t-test, corrected for multiple comparisons, and all P values were 
statistically significant (P < 0.001).
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set size to assess how each model captures changes as a function of 
memory load. We found that the Perceptual Summation model was the 
best-performing model (the PNLL of the Perceptual Summation model 
was statistically lower than for all alternative models; all P < 0.001). 
Figure 6 shows the difference in PNLL between the Perceptual Sum-
mation and competing models, along with descriptive and inferential 
statistics. Figure 7 shows the fits of the TCC models to aggregate and 
example individual data.

Ensemble memory for colour with different ranges
In Experiment 2, the participants performed a colour task, and we 
manipulated the range of the colours in the ensemble task—that is, 
how distinct they were from each other. We found that the Percep-
tual Summation model was the best-performing model (the PNLL 
of the Perceptual Summation model was statistically lower than 

for all alternative models; all P < 0.001). Figure 8 shows the differ-
ence in PNLL between the Perceptual Summation and competing 
models, along with descriptive and inferential statistics. Extended 
Data Fig. 1 shows the fits of the TCC models to the aggregate and 
individual data.

Ensemble memory for shapes with different set sizes
In Experiment 3, we manipulated set size and had the participants 
remember shapes instead of colours. We found that the Perceptual 
Summation model was the best-performing model (the PNLL of the 
Perceptual Summation model was statistically lower than for all alterna-
tive models; all P < 0.001). Extended Data Fig. 2 shows the difference 
in PNLL between the Perceptual Summation and competing models, 
as well as fit statistics. Extended Data Fig. 3 shows the fits of the TCC 
models to the aggregate and individual data.
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Fig. 7 | The Perceptual Summation model predicts ensemble memory for 
colour with set size manipulation. a,b, Graphical representations of the 
TCC models’ fit and prediction of the data in Experiment 1. In this experiment, 
the participants had to remember the colours of simultaneously presented 
circles, and the number of colours was manipulated in the working memory and 
ensemble tasks. Panel a shows the fits of the TCC model for individual items to 
aggregate data from the visual working memory task for six and eight items. 
Estimates of d′ from the visual working memory task were substituted into 

the TCC Perceptual Summation (blue), Post-perceptual (red) and Automatic 
Averaging (green) models to predict the ensemble data. Panel b shows model 
predictions for a few example participants (P1 through P4). We visually show the 
fits of the TCC model for individual items to the visual working memory data to 
demonstrate that it provides a reasonable fit to the data (for an extended model 
comparison between this model and other contending models for individual 
items based on fit and predictive accuracy, see Schurgin et al.35).
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Ensemble memory for shapes with different ranges
In Experiment 4, we manipulated the range of shapes in the ensem-
ble task. We found that the Perceptual Summation model was the 
best-performing model (the PNLL of the Perceptual Summation model 
was statistically lower than for all alternative models; all P < 0.001). 
Extended Data Fig. 4 shows the difference in PNLL between the Per-
ceptual Summation and competing models, along with descriptive 
and inferential statistics. Extended Data Fig. 5 shows the fits of the TCC 
models to the aggregate and individual data.

Ensemble memory for sequentially presented stimuli
In Experiment 5, we presented stimuli sequentially, introducing varia-
tion in the strength of the items. We found that the Recency Perceptual 
Summation model was the best-performing model (the PNLL of the 
Perceptual Summation model was statistically lower than for each of the 
competing models; all P < 0.001). As expected, this model performed 
comparably to a model where we measured a separate d′ for each item 
in the sequence. Extended Data Fig. 6 shows the difference in PNLL and 
statistical comparisons. Extended Data Fig. 7 shows the fits of the TCC 
models to the aggregate and individual data.

Discussion
Across five experiments, we found support for a Perceptual Summation 
ensemble model that postulates that ensemble representations are a 
sum of activations elicited by individual items in the memory array, 
which are pooled at a relatively early encoding stage of processing. We 
used the TCC framework to formally link a working memory model for 
individual items with this ensemble model. The Perceptual Summation 
model yields zero-free-parameter predictions of the full distribution of 
errors in ensemble tasks, using parameters obtained from a matched 

visual working memory task for individual items. It is a general process 
model of ensembles, developed on the basis of an existing theory of 
memory for individual items to make predictions for any ensemble task. 
Our modelling demonstrates that it can make predictions for ensemble 
tasks that use different stimuli spaces and presentation formats. In the 
Supplementary Information, we report simulations that demonstrate 
how the model can be extended to other tasks.

We compared our Perceptual Summation model of ensembles 
to a suite of contending models to adjudicate between competing 
hypotheses regarding how ensembles are extracted. The first critical 
comparison is between the Perceptual and Post-perceptual Summa-
tion models, which provides insight into the time course of ensemble 
extraction. The Perceptual Summation model entails that people pool 
over individual item representations relatively early at the perceptual/
encoding stage of ensemble extraction. In contrast, the Post-perceptual 
Summation model entails that people pool at a later processing stage, 
after individual items are encoded and consolidated in working mem-
ory28. We found that the Perceptual Summation model outperformed 
the Post-perceptual Summation model, indicating that ensemble 
processing in these settings is more akin to a perceptual process rather 
than a complex deliberate process, in which people calculate a pooled 
representation using individual memory representations when their 
ensemble memory is probed.

Second, we found that the Perceptual Summation model outper-
formed the Automatic Averaging model. The Automatic Averaging 
model aligns with prior proposals6 that people extract an average 
without maintaining representations of individual items; it serves 
as a logical foil to the Perceptual and Post-perceptual Summation 
models, which both predict that ensembles are constructed from rep-
resentations of individual items. Across all studies, we found that the 
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Fig. 8 | Comparison in predictive accuracy between the Perceptual 
Summation model and competing models of ensemble memory for colour 
with colour range manipulation. Top, violin plots based on the difference in 
PNLL scores between each of the six alternative competing models (PNLLalt) and 
the main Perceptual Summation model (PNLLPerSum) for Experiment 2 (n = 50 
participants). Lower PNLL values indicate higher predictive accuracy; therefore, 
PNLL difference scores higher (or lower) than zero indicate support for the 

Perceptual Summation (or a competing) model. In both experiments, the vast 
majority of participants were better predicted by the Perceptual Summation 
model than by any of the alternatives. Bottom, descriptive and inferential 
statistics from all comparisons in Experiment 2, including the mean and standard 
error of the mean across participants. The PNLL values were compared with a 
paired two-tailed t-test, corrected for multiple comparisons, and all P values were 
statistically significant (P < 0.001).
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Perceptual Summation model outperformed the Automatic Averaging 
model, suggesting that people use representations of individual items 
to extract ensembles rather than automatically extracting an average.

We also compared the Perceptual Summation model with four 
non-TCC models, which elucidates how to characterize ensemble 
representations. We found that the fully probabilistic TCC models 
outperform point estimate and partial distribution models. We clarify 
here that when we refer to representations as ‘probabilistic’ we do not 
assume that they must conform to classic probability axioms64. Rather, 
we assume that memory representations preserve uncertainty infor-
mation for the full distribution of feature values and that performance 
in memory tasks reflects a readout of these uncertainties over feature 
values. These results are broadly consistent with neural population 
coding models of memory, according to which memory representa-
tions are grounded in distributed neural patterns of activation across 
feature values53,65,66.

We conclude this section by noting that, like in all model compari-
sons, our inferences are qualified by the set of models we consider. For 
instance, we do not make the strong claim that there are no alternative 
Automatic Averaging or Point Estimate models that could provide 
a better account of the data in principle. Our goal was to develop a 
broad range of alternative models within and outside of the TCC frame-
work, with varying assumptions, and implement them as fairly to each 
theoretical position as possible. In the Supplementary Information, we 
discuss how our model connects to and differs from existing models of 
ensemble processing. We anticipate that future modelling work may 
provide a new suite of alternatives. We believe it is critical that such 
work focuses on developing models that can account for performance 
across a range of ensemble tasks, have the potential to generalize across 
task structures, and make high-precision predictions of performance.

The Perceptual Summation model has relevance for theories of gist 
memory. Gist memory is broadly defined as memory for ‘generalities’ 
across multiple items, as opposed to memory for individual items, 
and, as such, both gist and ensemble processes involve abstracting 
regularities from multiple items24,67. Our model of ensembles can-
not speak to how memory for gist and memory for individual items 
interact during short-term or long-term memory retrieval. However, 
it provides a candidate explanation for how gist memory representa-
tions are computed. According to this model, the bottleneck during 
the encoding of individual items is the same across visual working 
memory tasks for individual items and the extraction of a pooled repre-
sentation. Furthermore, the model proposes that memory-based noise 
accrues in the same way regardless of whether people are instructed 
to remember a single item or an ensemble. Critically, it postulates that 
representations are pooled at a relatively early processing stage, prior 
to post-perceptual noise accrual. Altogether, the Perceptual Summa-
tion model provides a parsimonious and precise account of how gist 
representations may arise from representations of individual items, 
while still being more robust than representations of individual items.

This model also provides an unambiguous account of how the 
processing of individual items differs from the processing of gist68. 
That is, instead of using theoretically underspecified constructs69 (such 
as focused versus diffuse attention30,70 or preattentive and attentive 
modes of processing71,72), it describes how different computations over 
the same representations can give rise to distinct types of memories. 
We believe that such an approach has great promise for building precise 
and testable models of gist memory, hierarchical representations and 
reconstructive memory processes in the visual domain.

We conclude by discussing a few potential limitations and venues 
for future research. In the current modelling approach, we use a single 
parameter, d′, to measure a potentially diverse set of processes. In line 
with standard signal detection models, d′ quantifies the signal-to-noise 
ratio of each memory representation, and different processes at encod-
ing, maintenance and retrieval are built into this measure. However, 
signal-detection-based accounts are fully compatible with the view 

that processes and memory representations are multidimensional41. 
Our measure of memory with d′ simply captures how people combine 
multidimensional processes and memory representations into a single 
decision variable, which they use to make memory judgements when 
their memory is probed73. Naturally, this measure can be comple-
mented with other modelling frameworks that unpack these processes. 
We elaborate and clarify related aspects of signal detection theory, TCC 
and our generalization approach in the Supplementary Information.

Another limitation is that we did not model all possible phenom-
ena in the ensemble literature. This is because our goal was to formally 
establish a link between two different processing models, and, to this 
end, we focused on a set of mainstream ensemble tasks where the pat-
terns of effects are robust. In the Supplementary Information, we report 
simulations to demonstrate that our model can, in principle, capture 
both outlier discounting and increased weighting of outliers. We also 
report simulations to show how the model accounts for differential 
effects of set size on the fidelity of ensemble representations and for 
the effects of various distributions of stimuli in the ensemble array. Our 
overall aim is to lay out a theoretical and methodological framework 
for future modelling research of ensemble and gist memory.

Methods
The study was completed online through the university’s SONA sys-
tem and approved by the Institutional Review Board (IRB approval 
code: 151663; expiration 1 January 2023). All participants were at least 
18 years old, provided informed consent and reported normal or 
corrected-to-normal vision. The participants were from the Univer-
sity of California, San Diego, community and participated in exchange 
for course credit. The participants were blind to the hypotheses of the 
study. In each experiment, we collected data until our final sample size 
was n = 50, which affords 99% power for a medium effect size (dz = 0.5) 
for a paired t-test at α = 0.05. We did not analyse the data of partici-
pants who failed to complete the study. We also excluded data from 
participants if their d′ estimates in any of the visual working memory 
task conditions (and for the last item in the sequential presentation 
task) were more than 1.5 standard deviations below the group mean. 
All data and code are available in the Open Science Framework reposi-
tory (osf.io/mt29p/).

Experiment 1: memory for colour with manipulation of set size
The participants completed a block of a visual working memory task 
and an ensemble task (the order of blocks was randomized across 
participants). At the beginning of every trial in both the visual working 
memory and ensemble tasks, the participants were shown a written 
prompt with the current trial number and the total number of trials in 
that block (1,000 ms). After the prompt offset, the participants were 
shown a fixation cross in the centre of the screen and six placeholders 
(1,000 ms). Next, the participants were briefly presented with the 
memory array (350 ms). We manipulated memory load (randomly 
across trials) in the visual working memory and ensemble tasks; thus, 
the participants were instructed to remember six (50% of trials) or eight 
items in both tasks. The colour of each circle was randomly sampled 
from the CIELAB colour space of Schurgin et al.35 with the constraint 
that each colour had to be at least 30° away from the other colours in 
the array. In the ensemble block, the memory array also consisted either 
of six (50% of trials) or eight coloured circles. The step size between 
colours in the ensemble task was fixed to 15° for both set sizes. There 
were 150 trials in the visual working memory block and 150 trials in 
the ensemble block (75 trials per memory load condition in each of 
the tasks).

The memory array in both blocks was followed by a retention 
interval (900 ms) and the memory probe. In the visual working memory 
task, the participants were shown a black outline around one of the 
placeholders, which cued them to report on the colour of the circle 
shown in that spatial location. In the ensemble task, the participants 
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were instructed to report on the average colour. In both tasks, the 
participants reported on the colour using a colour wheel.

Experiment 2: memory for colour with manipulation of range 
in the ensemble task
The procedure of Experiment 2 was identical to the procedure of Experi-
ment 1 with the following exceptions. First, in both the visual working 
memory and ensemble memory blocks, the memory array always con-
sisted of six coloured circles. Second, in the ensemble task, the step size 
between colours in each condition was constrained to be 10° (60° range 
condition), 15° (90° range condition) or 20° (120° range condition). 
There were 75 trials of the visual working memory task and 225 trials 
of the ensemble task (75 trials in each of the three range conditions).

Experiment 3: memory for shape with manipulation of set size
Experiment 3 was identical to Experiment 1, except that the participants 
were shown shapes instead of colours, and we changed the encoding 
time to 1,000 ms and the retention interval to 800 ms because the 
shape task is more difficult than the colour task. The shape stimuli 
were taken from Li et al.74.

Experiment 4: memory for shape with manipulation of range 
in the ensemble task
Experiment 4 was identical to Experiment 2, except that the partici-
pants were shown shapes instead of colours, and we changed the encod-
ing time to 1,000 ms and the retention interval to 800 ms.

Experiment 5: memory for sequentially presented colours
The goal of Experiment 5 was to model data from a sequential instead 
of simultaneous presentation paradigm. Therefore, in this experiment 
the participants were instructed to remember the colours of coloured 
pictures of real-world objects43. We used pictures of real-world objects 
instead of uniform stimuli (for example, circles) because this allowed 
us to easily probe an item’s serial position in the sequential visual 
working memory task for individual items by showing the participants 
a greyscale photo of one of the objects in the sequence and probing 
them on that object’s colour.

As before, all participants completed a block of the visual work-
ing memory and ensemble tasks. In both tasks, the participants 
self-advanced each trial by mouse-clicking on a fixation cross in the 
centre of the screen. The mouse-click was followed by a brief delay 
(1,000 ms), after which they were shown a sequence of six objects, 
each presented one at a time in the centre of the computer screen. In 
both tasks, each object was presented for 600 ms and followed by a 
450 ms interstimulus interval. In the visual working memory task, on 
each trial, each object in the sequence was unique, and the colour of 
each object was constrained to be at least 30° away from the colours 
of the remaining objects. In the ensemble task, on each trial, each 
object in the sequence was the same (though different objects were 
presented across trials), and the step size between colours was 20°. 
To measure the effects of recency in the ensemble task, we adapted 
a manipulation from prior work62. Specifically, on half of the trials, 
the first (or last) three objects in the sequence had colours that were 
counterclockwise from the mean colour, whereas the last (or first) 
three objects had colours that were clockwise from the mean colour 
in colour space.

In both tasks, the last object in the sequence was followed by a 
900 ms delay. Within the delay period, the participants were shown 
a dynamic visual mask, which was displayed for 100 ms, 100 ms after 
the last object offset. The mask was used to reduce potential effects 
of iconic memory on recency effects in the sequential presentation 
design. After the retention interval, the participants were probed on 
their memory with a continuous report. In the visual working memory 
task, the participants were shown a greyscale version of one of the 
six objects in the sequence and instructed to adjust its colour to its 

colour on that trial. In the ensemble task, the participants were shown 
a greyscale version of the object from that trial and instructed to adjust 
its colour to the average colour on that trial. There were 120 trials in 
the visual working memory task, and each object in the sequence was 
probed equiprobably (on 20 trials) across the experimental block. 
There were 96 trials in the ensemble task, with 48 trials each in the 
counterclockwise and clockwise conditions.

Generating predictions from TCC ensemble models
The models were fit separately to each participant’s visual working 
trial-level memory data. The best-fitting parameter estimates from 
these fits were used to predict the same person’s data on the ensem-
ble task. In Experiments 1–4, we fit the standard TCC model for single 
items to the visual working memory data. The formula for this model is 
given in equation (1). After obtaining a d′ estimate from fitting models 
to the visual working memory data, we substituted this parameter 
into equations (2)–(4) of the Perceptual and Post-perceptual Summa-
tion and Automatic Averaging models to predict the ensemble data. 
Note that each equation includes information about the similarity 
gradient with respect to each item in the ensemble memory array. 
Therefore, for instance, in experiments where we manipulated the 
range of colours or shapes, the range of activations elicited by items 
in the memory array is captured by summing these patterns of activa-
tions in the model (if an array has items that are further apart in feature 
space, this will also spread out the pooled activation function of the 
ensemble). In Experiment 5, we fit the sequential version of the visual 
working memory model (equation (5)) and substituted both the d′ and 
rate parameters into equations (6) and (7) to predict the ensemble data 
using the Recency variants of the Perceptual and Post-perceptual Sum-
mation models for ensembles, respectively. As noted, the Automatic 
Averaging model postulates that people extract a single representation 
of the mean without building it up from representations of individual 
items; therefore, for this model we used only a single d′ estimate to 
make predictions.

Generating predictions from non-TCC ensemble models
The first alternative non-TCC ensemble model is the Noise-Free Point 
Estimate model, according to which people automatically extract a 
noise-free point estimate of the mean feature, which is corrupted by 
motor noise only. In other words, the Noise-Free Point Estimate model 
simply predicts that self-reports on the ensemble task are the true 
mean. This model is unlikely to perform well since it cannot capture the 
full distribution of errors in a delayed estimation task, but we include 
it because it serves as a logical reference point against which to com-
pare the assumptions of TCC ensemble models (such as that ensemble 
representations are probabilistic).

To generate predictions from the Noise-Free Point Estimate model, 
we calculated an equally weighted average value of the ensemble (like 
in the Automatic Averaging model). We then added a small amount of 
jitter to this estimate to simulate small effects of motor noise. To simu-
late motor noise, we used the built-in randn function in MATLAB, which 
generates random samples from a standard Gaussian distribution.

The second non-TCC model is the Noisy Point Estimate model, 
a more plausible extension of the Noise-Free Point Estimate model. 
According to this model, people automatically extract a point estimate 
of the mean feature along with an uncertainty interval around this 
value. More precisely, we make the simplifying assumption that people 
represent a fixed uniform uncertainty interval around the true mean 
value64. This model provides a simple way of capturing the idea that 
people represent a noisy representation of the ensemble. To generate 
predictions from the Noisy Point Estimate model, we drew random 
samples of data from a uniform distribution, which had a range of 60° 
and was centred on the true value of the average—that is, the samples 
were drawn from −30° to 30° around the mean value. The assumption 
behind this model is that people represent a uniform uncertainty 
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interval around the true mean value; thus, the number of samples was 
based on the number of trials in each ensemble condition.

So far, neither of the first two Point Estimate models formally links 
memory for individual items to memory for ensembles. We therefore 
considered two additional models, which do link processing across the 
working memory and ensemble tasks and make more tenable assump-
tions about processing on ensemble tasks. The first of these models 
we refer to as the Average Item Point Estimate model, according to 
which people compute ensembles by averaging over point estimates 
of individual item representations, a model closely related to the aver-
aging view6,10,24.

The second of these models is the Precision Ensemble model, 
according to which people maintain a point estimate of the mean, 
which has a Gaussian rather than uniform uncertainty interval around 
it. Rather than using a fixed interval for all subjects as we did for the 
Noisy Point Estimate model, we calibrated this interval for each indi-
vidual by obtaining a standard deviation estimate from their working 
memory data using the popular standard mixture model (inspired by 
Zhang and Luck75). Therefore, this model also inherits a fundamentally 
different processing assumption about memory than the TCC ensem-
ble models, which is that there are true ‘guessing states’ in memory, 
such that there is no evidence that can be used to report on memory. 
To generate predictions for the Average Item Point Estimate model, 
we used people’s working memory data to sample n point estimates 
(measured in degrees of error) for each item in the array and then aver-
aged across these estimates. For instance, if people had to remember 
six items on the visual working memory and ensemble tasks, we drew 
(with replacement) six samples of their self-report data (converted 
to error in degrees) on the visual working memory task and averaged 
across these. This was repeated for each trial to generate the predicted 
distribution of errors on the ensemble task.

To summarize, neither the Noise-Free Point Estimate nor the Item 
Average Point Estimate model postulates probabilistic representations. 
The Noisy Point Estimate and Precision Ensemble models postulate 
partially probabilistic representations because there is an uncertainty 
interval around the mean, but not a full probability distribution over 
feature values64. Note that we do not presume that these point-estimate 
models capture all possible ways in which point-estimate or partially 
probabilistic models could account for the data. However, in the 
absence of other quantitative models in the literature that can apply 
to such ensemble perception tasks, we created models that spanned a 
wide range of plausible assumptions regarding the nature of ensemble 
extraction and the properties of ensemble representations. We also 
address this point in the Discussion.

The Precision Ensemble model was implemented by fitting a stand-
ard mixture model75 to each individual’s visual working memory data 
and using the standard deviation estimate from this model to compute 
an uncertainty interval around the true average. The latter was imple-
mented by sampling random samples of data (based on the number 
of trials in the ensemble task), from a normal distribution with mean 
zero and the standard deviation set to the standard deviation (inverse 
of precision) estimate from the mixture model.

Recency TCC ensemble models
The Recency TCC model quantifies recency weights using an exponen-
tial function (without base e) over the serial position of each stimulus 
in the sequence. The recency model for individual items is given by 
the following equation:

ri,VWM = argmax ( f(x)id′rate
j + σnoise) , (5)

where all terms are identical to those given in equation (1), except a 
second parameter, rate, which has the item position of item j in the 
exponent (where j = 1 is the most recent item in the sequence). The rate 

parameter is a free parameter bounded between 0 and 1 that captures 
the effects of memory decay on memory, with smaller values (of the 
parameter) indicating stronger decay effects and therefore relatively 
higher weighting of more recent items in the ensemble (and relatively 
better performance for them in the visual working memory task). The 
equations for the Perceptual and Post-perceptual Summation ensemble 
models are extended in a similar way, as shown below (equations (6) 
and (7), respectively):

rENS = argmax((
N
∑
i=1

f(x)id′rate
j) + σnoise) , (6)

rENS = argmax(
N
∑
i=1

(f(x)id′rate
j + σnoise)) . (7)

Note that the Automatic Averaging model is unchanged because 
it postulates that people automatically extract a single representation 
of the mean without building up this representation from individual 
items. We treat this model as being conceptually equivalent to a pro-
totype model that entails an equally weighted average76.

Model fitting
All models were fit to visual working memory trial-level data (that is, 
the full distribution of memory errors on each trial) in MATLAB 2021b 
using maximum likelihood estimation by minimizing the negative log 
likelihood. Minimization was implemented with the fmincon algorithm 
in the Optimization Toolbox as well as basic iterative search. The pre-
dictive accuracy of each model was measured using the PNLL. For the 
main analyses, we substituted the best-fitting parameters from the 
visual working memory task into equations for each of the ensemble 
models to predict the data on the ensemble task, and we calculated the 
PNLL using data from the ensemble task conditions.

Psychophysical similarity function and perceptual noise
The psychophysical similarity functions in our colour experiments 
were estimated in prior work using a Likert task and verified using 
a ‘triad’ task, a mainstream method for obtaining psychophysically 
scaled similarity data35. Perceptual noise was measured with a percep-
tual matching task, also a mainstream task for quantifying perceptual 
confusability of visual stimuli. In this task, the participants were shown 
a colour and asked to match it to one of 60 colours (6° apart) presented 
simultaneously on the computer screen. This task provides insight into 
how perceptual noise affects the perceptual confusability of stimuli. 
These perceptual matching data were converted to a covariance matrix, 
which was convolved with the psychophysical similarity function35. 
We note that the resulting psychophysical similarity signal detection 
model is a simulation-based approximation of a correlated noise signal 
detection model77.

The same tasks were applied to the shape data. The shape wheel 
was created and validated as a circular space in prior work74. We col-
lected Likert similarity data and perceptual confusion data for this 
wheel using the same methods as used for the colour data.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data are publicly available at the following OSF link: https://osf.
io/mt29p/.

Code availability
The code is publicly available on OSF (https://osf.io/mt29p/).
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Extended Data Fig. 1 | The Perceptual Summation model predicts ensemble 
memory for color with a range manipulation. Graphical representation 
of TCC models’ fit and prediction of data in Experiment 2. In this experiment 
participants had to remember colors of simultaneously presented circles, and 
the range of colors was manipulated in the ensemble task. The top row of panel 
A shows the fits of the TCC model for individual items to aggregate data from 

the visual working memory task for six items. The bottom row of panel A shows 
results from the predictive analysis in which d’ estimates from the visual working 
memory task were substituted into the TCC Perceptual Summation (blue), 
Post-perceptual (red) and Automatic Averaging (green) models to predict the 
ensemble data. The bottom panel (B) shows model predictions for a few example 
participants. Schurgin et al.35).
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Extended Data Fig. 2 | Comparison in predictive accuracy between 
Perceptual Summation model and competing models of ensemble memory 
for shape with the set size manipulation. The top panel shows violin plots for 
the difference in predicted negative log likelihood scores between each of the six 
alternative competing models (PNLLAlt) and the main Perceptual Summation 
model (PNLLPerSum) for Experiment 3 (n = 50 participants). Lower values of 
PNLL indicate higher predictive accuracy, therefore, PNLL difference scores 
higher (or lower) than zero indicate support for the Perceptual Summation (or 

a competing) model. In both experiments, the vast majority of participants 
are better predicted by the Perceptual Summation model than any of the 
alternatives. The bottom panel shows a table with a summary of descriptive and 
inferential statistics from all comparisons in Experiment 3, including the mean 
and standard error of the mean across participants. PNLL values were compared 
with a paired two-tailed t-test, corrected for multiple comparisons and all 
p-values were statistically significant (p < 0.001).
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Extended Data Fig. 3 | The Perceptual Summation model predicts ensemble 
memory for shape with a set size manipulation. Graphical representation of 
the TCC models’ fit and prediction of data in Experiment 3. In this experiment 
participants had to remember different shapes, and the number of shapes was 
manipulated in the working memory and ensemble task. The top row of panel 
A shows the fits of the TCC model for individual items to aggregate data from 

the visual working memory task for six items and the second row of panel A 
shows results from the predictive analysis in which d’ estimates from the visual 
working memory task were substituted into the TCC Perceptual Summation 
(blue), Post-perceptual (red) and Automatic Averaging (green) models to predict 
the ensemble data. Panel B shows data and model predictions for a few example 
participants.
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Extended Data Fig. 4 | Comparison in predictive accuracy between 
Perceptual Summation model and competing models of ensemble memory 
for shape with the range manipulation. The top panel shows violin plots with 
the difference in predicted negative log likelihood scores between each of the six 
alternative competing models (PNLLAlt) and the main Perceptual Summation 
model (PNLLPerSum) for Experiment 4 (n = 50 participants). Lower values of 
PNLL indicate higher predictive accuracy, therefore, PNLL difference scores 
higher (or lower) than zero indicate support for the Perceptual Summation (or 

a competing) model. In both experiments, the vast majority of participants 
are better predicted by the Perceptual Summation model than any of the 
alternatives. The bottom panel shows a table with a summary of descriptive and 
inferential statistics from all comparisons in Experiment 4, including the mean 
and standard error of the mean across participants. PNLL values were compared 
with a paired two-tailed t-test, corrected for multiple comparisons and all 
p-values were statistically significant (p < 0.001).
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Extended Data Fig. 5 | The Perceptual Summation model predicts ensemble 
memory for shape with a range manipulation. Graphical representation 
of TCC model’s fit and prediction of data in Experiment 4. In this experiment 
participants had to remember simultaneously presented shapes, and the range 
of shapes was manipulated in the ensemble task. The top row of panel A shows 
the fits of the TCC model for individual items to aggregate data from the visual 

working memory task for six items, and the second row of panel A shows results 
from the predictive analysis in which d’ estimates from the visual working 
memory task were substituted into the TCC Perceptual Summation (blue), 
Post-perceptual (red) and Automatic Averaging (green) models to predict the 
ensemble data. Panel B shows data and model predictions for a few example 
participants.
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Extended Data Fig. 6 | Comparison in predictive accuracy between 
Sequential Perceptual Summation model and competing models of 
ensemble memory for sequentially presented stimuli. The top panel 
shows violin plots of the difference in predicted negative log likelihood 
scores between each of the eight alternative competing models (PNLLAlt) 
and the main Sequential Perceptual Summation model (PNLLPerSum) (n = 50 
participants). Lower values of PNLL indicate higher predictive accuracy, 
therefore, PNLL difference scores higher (or lower) than zero indicate support 
for the Sequential Perceptual Summation (or a competing) model. The vast 
majority of participants are better predicted by the Sequential Perceptual 
Summation model than any of the alternatives. Note that the baseline here is 
the Sequential Perceptual Summation model that relies on fitting a decay rate. 
The independent d’ Perceptual Summation model, the last model above, is the 

same model but without this parametric assumption about how d’ changes 
across the items in the working memory task. This independent model is instead 
one in which we used separate d’ estimates to quantify familiarity of items as 
a function of serial position, rather than a single d’ and rate parameter. This 
model is marked with an * because it is also a version of the Sequential Perceptual 
Summation model and so shows comparable predictive accuracy to the main 
Sequential Perceptual Summation model we use, as expected. The bottom panel 
shows a table with a summary of descriptive and inferential statistics from all 
comparisons in Experiment 5, including the mean and standard error of the mean 
across participants. PNLL values were compared with a paired two-tailed t-test, 
corrected for multiple comparisons and for all comparisons between competing 
models p-values were statistically significant (p < 0.001).
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Extended Data Fig. 7 | The Perceptual Summation model predicts ensemble 
memory for sequentially presented stimuli. Summary of results from 
Experiment 5, in which participants had to remember colors of sequentially 
presented real-world objects. The top row of panel A shows the fits of the 
Sequential TCC model to individual data and the second row of panel A shows 
the TCC Sequential Perceptual Summation (blue), Post-perceptual (red) and 

Automatic Averaging (green) models’ predictions of the ensemble data in two 
conditions. In the clockwise (counterclockwise) condition the most recently 
shown items were from the clockwise (counterclockwise) direction from the 
mean color, producing a clockwise (counterclockwise) bias. Panel B shows data 
and model predictions for a few example participants.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description All studies were quantitative experimental studies. Participants were shown colored circles (Experiments 1-2), shapes (Experiments 
3-4), or colored real world objects (Experiment 5), and instructed to remember them over a short retention interval. After the 
retention interval participants were probed on their memory with continuous report wheel.

Research sample University of California, San Diego students, ages 18+, with normal or corrected-to-normal vision, a representative sample of US 
adults. Data from undergraduate students are typically used in lab visual cognition tasks (Brady & Alvarez, 2011; Brady & Tenenbaum, 
2013). 

Sampling strategy All sample sizes were decided a priori. All studies used convenience samples of undergraduates from the University of California, San 
Diego.  In each experiment, we collected data until our final sample size was n=50, which affords 99% power for a medium effect size 
(dz=.5) for a paired t-test at =.05.  We did not analyze data of participants who failed to complete the study.

Data collection All experiments were deployed online via the University of California, San Diego SONA system. Participants computer screens showed 
stimuli, and responses were collected via keyboard or mouse.  Manipulations were within participants and participants were run 
online without direct experimenter supervision, therefore, experimenter blinding does not apply.

Timing All individual studies were collected between September 2019-September 2021.

Data exclusions Our exclusion criteria were pre-established. We excluded any participants < 1.5 standard deviations below the mean of the overall d' 
across participants in any of the conditions in the VWM task in Experiments 1-4, and the overall d' in Experiment 5.  This led to the 
following number of exclusions in each of the experiments.  We collected data until our sample size reached a pre-determined 
sample size of n=50 in each Experiment. Publicly available data includes data from all participants (included and excluded from the 
main analysis). 
Experiment 1: Nine participants; Experiment 2: Five participants; Experiment 3: Six participants; Experiment 4: Zero participants; 
Experiment 5: One participants.

Non-participation No participants dropped out or declined participation. 

Randomization Every study is within-subject so no randomization of participants to groups was required.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Participants were undergraduates from University of California, San Diego. Covariate relevant information: all participants at 
UCSD reported normal color vision and were between the ages of 18-35 years old.
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Recruitment Participants were recruited via the Sona Systems online portal, where psychology undergraduate students can participate in 

studies for extra credit. We are not aware of any self-selection biases that could impact the study results.

Ethics oversight Studies were approved by the UCSD IRB.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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