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Long-term memory is often considered easily corruptible, imprecise, and inaccurate, especially in
comparison to working memory. However, most research used to support these findings relies on weak
long-term memories: those where people have had only one brief exposure to an item. Here we
investigated the fidelity of visual long-term memory in more naturalistic setting, with repeated exposures,
and ask how it compares to visual working memory fidelity. Using psychophysical methods designed to
precisely measure the fidelity of visual memory, we demonstrate that long-term memory for the color of
frequently seen objects is as accurate as working memory for the color of a single item seen 1 s ago. In
particular, we show that repetition greatly improves long-term memory, including the ability to discrim-
inate an item from a very similar item (fidelity), in both a lab setting (Experiments 1–3) and a naturalistic
setting (brand logos, Experiment 4). Overall, our results demonstrate the impressive nature of visual
long-term memory fidelity, which we find is even higher fidelity than previously indicated in situations
involving repetitions. Furthermore, our results suggest that there is no distinction between the fidelity of
visual working memory and visual long-term memory, but instead both memory systems are capable of
storing similar incredibly high-fidelity memories under the right circumstances. Our results also provide
further evidence that there is no fundamental distinction between the “precision” of memory and the
“likelihood of retrieving a memory,” instead suggesting a single continuous measure of memory strength
best accounts for working and long-term memory.

Public Significance Statement
Visual working memory appears to be based on persistence of perceptual representations in visual
cortex. By contrast, visual long-term memory depends critically on semantically meaningful stimuli
and is organized by categories and concepts. Does this mean visual long-term memory is funda-
mentally incapable of storing as precise perceptual information as visual working memory? In the
current work, we show that after being shown multiple repetitions of the same item, visual long-term
memory can represent incredibly precise visual details. In fact, after just 8 repetitions, visual
long-term memory can be as precise as our very best visual working memories. This provides
evidence that there is not a fundamental distinction between the fidelity of visual working memory
and visual long-term memory.

Keywords: visual long-term memory, visual working memory, repetition, memory fidelity, memory
capacity

Humans have remarkable visual long-term memory abilities,
capable of storing thousands of items (Standing, Conezio, &
Haber, 1970) with high fidelity (Brady, Konkle, Alvarez, & Oliva,

2008). However, although long-term memory can be highly accu-
rate, many researchers have found that it is less accurate than
working memory (with claims made in terms of “precision”:
Biderman, Luria, Teodorescu, Hajaj, & Goshen-Gottstein, 2019; or
only “likelihood of retrieval”: Brady, Konkle, Gill, Oliva, & Al-
varez, 2013) and less robustness to noise (Schurgin & Flombaum,
2018a). For example, Schurgin and Flombaum (2018a) showed
that adding additional noise to an object image when testing it has
almost no effect on working memory but substantially impacts
long-term memory, even with identical encoding and test situa-
tions. In the current work, we ask (a) whether working memory is
truly capable of storing higher fidelity memories than visual long-
term memory; (b) whether long-term memories become higher
fidelity after repetitions or have an intrinsic limit on the amount of
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visual detail they can contain; (c) whether multiple distinct pro-
cesses (e.g., precision errors vs. guesses) are present in working
memory and long-term memory, or whether a single process best
explains the data; and (d) ultimately address the question of
whether working memory and long-term memory share a repre-
sentational format or are qualitatively distinct.

Is Visual Long-Term Memory Less “Precise” Than
Working Memory?

It may not seem surprising that after a long delay, memory is
weaker and correspondingly long-term memories may be less
strong and less precise than working memory. This could be true
for a variety of reasons; for example, the mere passage of time may
particularly impact memory for detail but leave gist unaffected
(e.g., Brainerd & Reyna, 2005; Sadeh, Ozubko, Winocur, & Mos-
covitch, 2016), or interference may leave categorical knowledge of
what we have seen but impair memory for the specific details of
individual objects (e.g., Koutstaal & Schacter, 1997; Maxcey &
Woodman, 2014). In fact, some researchers argue not only that the
two systems tend to differ, but that the visual working memory
system is fundamentally different from visual long-term memory
system in its ability to represent detailed information (perhaps
because working memory necessarily precedes long-term memory,
e.g., Biderman et al., 2019).

The idea that working memory is inherently more perceptual
than long-term memory is consistent with classic work from the
verbal domain showing that working memory interference is based
on perceptual similarity but long-term memory interference is
based on semantic similarity (Baddeley, 1966). However, in the
domain of visual memory, this claim is also partly motivated by
the nature of active storage in visual working memory: sensory
recruitment models argue that visual working memory arises from
persisting perceptual representations in visual cortex (Serences,
2016; Serences, Ester, Vogel, & Awh, 2009; Harrison & Tong,
2009). By their nature, low-level visual representation like this are
capable of maintaining significant visual detail. By contrast, long-
term memory must necessarily involve consolidated memory rep-
resentations, likely accessed via medial temporal lobe retrieval
structures and so inherently less visual than the case of visual
working memory. In fact, many models of the hippocampus and
other medial temporal lobe structures argue that a central design
feature of this memory system is pattern separation and pattern
completion—designed to group all approximately similar items
together into a unified memory representation and maximize the
distinctiveness of this memory from other, similar objects (Yassa
& Stark, 2011).

In the case of visual long-term memory, the semantic nature of
memory is well known, and broadly consistent with the idea that
visual long-term memory may be less perceptual and more seman-
tic than visual working memory. For example, it is known that
interference between items in visual long-term memory is based on
semantic similarities rather than perceptual overlap (Konkle,
Brady, Alvarez, & Oliva, 2010), and that items interfere with each
other within a category-based structure in visual memory (e.g.,
Maxcey, Glenn, & Stansberry, 2018). Understanding the meaning
of a stimulus is also critical to successful encoding into visual
long-term memory, as items that are understood are better remem-
bered than identical visual stimuli that are not understood by

participants (e.g., Brady, Alvarez, & Störmer, 2019; Wiseman &
Neisser, 1974). Thus, there are many reasons to suspect that there
could be a fundamental difference between working memory and
long-term memory in the degree of perceptual detail that can be
stored and the tendency to rely on conceptual structure rather than
perceptual information.

The Role of Memory Strength in Both Systems:
Set Size and Repetition

However, several important factors are often overlooked when
researchers directly compare the precision of representations in
these memory systems. One is that working memory is often asked
to hold more than just one item in mind simultaneously—for
example, to compare two items, we may hold both in mind at
once—and because of its limited capacity, this comes with a major
cost. In fact, even holding in mind two items rather than one in
working memory makes memory for each item far less accurate
and precise (e.g., Wilken & Ma, 2004; Zhang & Luck, 2008).
Thus, although working memory could be capable of holding more
precise estimates of a single item than long-term memory is, with
reasonable working memory loads consisting of a few items, it
remains possible that working memory represents information
with less fidelity than long-term memory.

Another factor that is often overlooked in comparisons between
these two systems is that although working memory is necessarily
limited to maintaining information that was just present, long-term
memory can integrate across many separate episodes. Indeed, in
many ways the principle function of long-term memory is to
integrate information over time, both to extract categories and
other general principles (e.g., Schapiro, Gregory, Landau, McClo-
skey, & Turk-Browne, 2014) as well as to learn about particular
objects and how they vary (e.g., Rust & Stocker, 2010). Whereas
working memory is designed to work with objects that were just
present or that are still present—and so the object that is the source
of the information is straightforward to determine—long-term
memory must connect across large time windows without spatio-
temporal cues to what objects are the same as ones that have been
previously seen (Schurgin & Flombaum, 2018b). This raises the
question of how precise long-term memory can really be: When
we have seen a given item many times, is long-term memory at a
disadvantage relative to working memory in making detailed dis-
criminations? How accurately can people access existing memory
and integrate additional information about an item into these
existing long-term memories?

Repetition, Spacing, and the Testing Effect

It is well known that long-term memory improves with repeti-
tion (e.g., Hintzman, 1976, 2010; Schurgin & Flombaum, 2018b),
with a large literature demonstrating this for a variety of materials
(e.g., pictures: Hintzman & Rogers, 1973; words: Cepeda, Pashler,
Vul, Wixted, & Rohrer, 2006), and many influential studies asking
about how best to space these repetitions to maximize the improve-
ment in memory (e.g., Cepeda et al., 2006). However, less work
has asked about the fidelity of memory (i.e., beyond simply asking
whether an item is or is not remembered) and how it is impacted
by repetition. Models of memory differ on the extent to which
repetition is assumed to independently generate new traces versus
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truly integrate new information into higher fidelity memory traces
(e.g., Raaijmakers, 2003), and many classic models of memory
presume that additional repetition simply increases the probability
of retrieval for an item but does not impact its representational
nature (Bower, 1961); for example, arguing new experiences lay
down new memory traces rather than integrating with past traces
(Hintzman, 1976; Moscovitch, Nadel, Winocur, Gilboa, & Rosen-
baum, 2006; see Kahana, 2020 for a review). Thus, this question is
of considerable interest both practically and theoretically.

Work using continuous report measures has provided some
mixed evidence on this issue. For example, Sutterer and Awh
(2016) asked participants to recreate the color of studied object
after a delay using a circular color wheel. For some objects, they
gave people retrieval practice. Based on the fit of “mixture mod-
els” to their data, which attempt to separate errors into two puta-
tively distinct sources (“the precision of remembered items”, and
“the proportion of items retrieved successfully”), they argued that
retrieval practice seems not to enhance the precision of visual
memory (Sutterer & Awh, 2016). This is surprising because re-
trieval practice is among some of the most robust ways to improve
memory for items in most situations (e.g., Roediger & Butler,
2011). Thus, this could be taken as evidence that repeated memory
traces are not in fact integrated into high fidelity memory traces.
However, although Sutterer and Awh (2016) found no effect on
“precision,” they did find an effect of retrieval practice on the other
parameter that the model they fit distinguishes—the proportion of
items that were retrieved at all (the opposite of guess rate). Im-
portantly, in several other instances it has been found that with
higher power, putative changes in “only” proportion of items
retrieved, but not item precision, are in fact changes in both (e.g.,
Zhang & Luck, 2009 vs. Rademaker, Park, Sack, & Tong, 2018, in
the case of delay). Thus, this work leaves open the possibility that
memory fidelity—the accuracy of the memory in terms of the
exact color being reproduced—does in fact improve with repeti-
tion and testing practice, not only the ability to access the memory.

Dissociating “Precision” From “Likelihood of Items
Being Retrieved at All”

The majority of existing work asking about the fidelity of visual
long-term memory and visual working memory has used methods
that attempt to dissociate memory “precision” from the “likelihood
of retrieval” (e.g., in long-term memory: Sutterer & Awh, 2016;
Brady et al., 2013; Biderman et al., 2019). However, as noted
above, recent work has often empirically found that these two
parameters are rarely, if ever, dissociable (i.e., higher-power tends
to reveal both change, not just one: Rademaker et al., 2018;
Biderman et al., 2019). Furthermore, we have recently argued is in
fact not even theoretically possible to dissociate likelihood of
retrieval from precision in visual memory (Schurgin, Wixted, &
Brady, 2018). Instead, both of these putatively distinct parameters
seem to tap into single process—characterized by a unitary con-
cept of underlying memory strength, rather than two dissociable
psychological constructs (of precision and guessing).

Work claiming a dissociation of these two parameters arose
because, when asked to exactly reproduce a color or other aspect
of a stimulus from memory, participants often have a substantial
number of large errors (a “fat tail” in the error distribution). This
is often taken as evidence for a distinct “guessing” or “memory

failure” state, the prevalence of which can be estimated via a
“mixture model” fit to the data (Zhang & Luck, 2008). However,
Schurgin et al. (2018) have recently shown that, counterintuitively,
a single process seems to best explain these error distributions—
the “fat tail” of errors is just a natural consequence of offering
participants many lures that are all maximally dissimilar from a
target, not evidence of a distinct “guessing” state (see also Bays,
2014, 2015). The model Schurgin et al. propose is relatively
straightforward (see interactive primer at https://bradylab.ucsd.edu/
tcc/): If you encode a color (e.g., red), familiarity spreads to other,
similar colors (e.g., pink also feels familiar), but not very much to
less similar colors (no familiarity spreading to yellow, blue, or
green). Then, these familiarity signals are corrupted by noise. In
this model, memories differ only in their signal-to-noise ratio (d=).
The “fat tail” of errors arise because there is almost no spreading
of familiarity to any of the colors far from the encoded color (e.g.,
far from red). Thus, when d= is low, and thus the noise is high,
yellow, blue, or green are all equally likely to be the most familiar
(due to noise), creating a long, flat tail in the error distribution.

This model (target confusability competition [TCC]) argues that
for a given stimulus—for example, a particular color space—there
is always a fixed relationship between the so-called “likelihood of
retrieval” and “precision” that arise from mixture models, because
these both tap the same unitary process, not distinct psychological
states. In addition, this model provides a theoretical motivation for
believing that repetition of items—which should improve the
signal-to-noise ratio (d=)—should not only reduce the likelihood of
large errors but should also improve the “fidelity” of the memory.
That is, this model predicts that changing memory strength must,
by necessity, not only make people better at easy discriminations
(was it red or blue?) but also must improve the fidelity of the
memory, improving performance at difficult discriminations (was
it light red or dark red?) and continuous report as well.

The Current Work

Thus, in the current work we sought to address how repetition
affects visual long-term memory fidelity. When an item is seen
repeatedly, how accurately do people combine the information
from each exposure? Does their ability to make subtle perceptual
discriminations about the object markedly improve with repetition,
or visual long-term memory inherently semantic, and nonvisual in
nature (e.g., Konkle et al., 2010) in a way that prevents high
fidelity visual memories? Does memory fidelity change in the way
predicted by single process models of feature memory (e.g.,
Schurgin et al., 2018) or are there strong dissociations between
“precision” and “likelihood of retrieval” (Biderman et al., 2019)?

We addressed these questions using psychophysical methods (in
particular, continuous color report), for both newly learned objects
with repeated exposure (Experiments 1–3) and existing memory
for frequently seen objects in everyday life (brand logos, Experi-
ment 4). In Experiments 1–3, we directly assessed visual long-term
memory fidelity for real-world objects in a laboratory setting
common to previous studies (Biderman et al., 2019; Brady et al.,
2013) but with repeated exposure. In Experiment 4, we used a
novel response method where participants selected the color of a
previously seen object, not from a color wheel, but from a 2D slice
of color space. This allowed us to assess the fidelity of participants
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color memory for items that do not fall on a single-color wheel
(i.e., colors used in brand logos).

In all four experiments, we found evidence that participants
ability to make very subtle discriminations about the exact color of
an object improved a huge amount with additional exposure. In
particular, for objects that had been repeatedly seen, participants
could accurately reproduce their color as well as they could repro-
duce the color of a single object held in working memory for just
1 s. In addition, we found that in the tasks using a color wheel,
where working memory and long-term memory could be com-
pared directly and where the single process (e.g., TCC) versus two
states (e.g., mixture models) views could be assessed, the two
systems had identical error distributions across a wide range of
different memory strength conditions—with no dissociations be-
tween the supposedly distinct parameters of “precision” and “like-
lihood of retrieval.” Together, these results show that our visual
working memory and long-term memory systems do not intrinsi-
cally differ in their fidelity; instead, memory strength changes in
both systems affect the tendency to make large errors and the
precision of small errors in the same way, as would be expected
under a single process model of memory (e.g., Schurgin et al.,
2018). Furthermore, our results show that long-term memory can
be just as high fidelity as our best working memories after repeated
exposure, and even standard long-term memory paradigms pro-
duce memories with higher fidelity than Set Size 6 working
memory.

Experiment 1: The Fidelity of Visual Long-Term
Memory With Repeated Study

Method

The design, methods, dependent measures, and exclusion crite-
ria for this study were preregistered. See http://aspredicted.org/
blind.php?x�3nq63u for details.

Participants. Thirty students were recruited from the Univer-
sity of California, San Diego’s undergraduate subject pool, and
received class credit for their participation. All subjects gave
informed consent, and the study was approved by the University of
California, San Diego Institutional Review Board. The sample size
was selected a priori (see preregistration) and was considerably
larger than the sample sizes used in past literature on this question
(e.g., N � 5 through N � 24; Biderman et al., 2019; Brady et al.,
2013). Our main measure of interest was how long-term memory
performance benefitted from repetition, for example, whether
long-term memory performance was improved with eight repeti-
tions compared to one. Given the large number of within-
participant trials, we expected a large standardized effect size, in
line with the difference between working memory and long-term
memory performance in previous work, which was very large (all
dz � 3, Biderman et al., 2019, guess parameter). Our sample of 30
participants gave us power to detect an effect 1/3rd this size (dz �
1.0) in comparing eight versus one repetitions with �99% power
at � � .05.

Stimuli. Five hundred and forty object images were selected
from a previously published set of stimuli (Brady et al., 2013).
These images were of objects in a single arbitrary color (e.g., each
object would be recognizable in any color). When presented, each

object was colored randomly by rotating the hue of the object on
a color wheel, ranging from 0 to 360 degrees. This allowed us to
use continuous color report methods to investigate the effect of
repetition. Such methods have previously been used to study both
working memory for simple shapes, as well as for working and
long-term memory of arbitrarily colored object images (Brady et
al., 2013; Brady & Alvarez, 2011; Wilken & Ma, 2004; Zhang &
Luck, 2008).

Procedure. Participants were asked to remember the precise
color of objects and report this color using a color wheel. We
compared memory performance in working memory (at Set Size 1
and 3) and long-term memory (for objects repeated one, two, or
eight times). Our primary measure of interest was how memory
performance was affected by repetition and to what extent long-
term memory performance for well-studied items was comparable
to working memory performance.

Overall, participants completed two 1.5-hr experiment sessions
with the delay between sessions no more than seven days. In each
session, participants completed both a working memory and long-
term memory task. These tasks were blocked on each day, with the
order counterbalanced across participants and sessions, although
the conditions within the working memory task (Set Size 1 and 3)
and within the long-term memory task (one repetition, two repe-
titions, eight repetitions) were interleaved.

On each trial of the working memory condition, either one or
three objects were presented simultaneously for 1 s in a circle
around fixation (see Figure 1). Participants were instructed to
remember the color of all the presented objects and avoid verbal
encoding. After a 1 s delay, participants then reported the color of
a randomly chosen object. The probed object appeared in greyscale

Figure 1. Experiment 1 methods. A: Methods of visual working memory
task. Participants saw either one or three objects for 1 s and had to
remember their colors. After a 1-s delay, they used a response wheel to
change the color of the object until it matched their memory. B: Methods
of visual long-term memory task. Participants studied 42 images, consist-
ing of some objects seen only once, some repeated twice, and some
repeated eight times. After a delay and a distracting task, participants
reported the color of each of these objects using a response wheel. See the
online article for the color version of this figure.
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in the same location it was encoded in, and participants had to
match its color to their memory by rotating a response wheel that
changed the color of the object. During each session, participants
completed 45 trials at each set size, randomly intermixed, for a
total of 90 working memory trials. Thus, across both sessions
participants completed a total of 180 working memory trials total,
90 trials at each set size.

The long-term memory task was blocked. In each session,
participants completed 15 blocks, for a total of 30 blocks across
sessions. In each block, participants were shown 42 images, one
after another, for 1 s each with a 1 s interstimulus interval. These
42 images were comprised of six objects shown only once, six
objects repeated twice, and three objects repeated eight times each;
images of each object were randomly interleaved in the 42 studied
images. Participants were instructed to only remember the color of
all the presented objects without using verbal labels, to try to
minimize any usage of verbal strategies; importantly previous
work by Brady et al. (2013) found nearly no effect of a verbal
interference task on this memory task.

A critical aspect of our task was to ensure that participants are
not actively storing information in working memory when we are
attempting to probe the contents of visual long-term memory.
Thus, after the object images were presented, participants com-
pleted two trials of a change detection task, to ensure participants
weren’t actively maintaining colors in visual working memory for
the recently encoded items. In the task, adapted from Brady and
Tenenbaum (2013), participants were shown a pattern of black and
white squares for 750 ms, followed by a 1,000-ms blank period,
and then either an identical or changed version of the original
display. The test display was shown on screen until participants
made a response, indicating if the test was “same” or “different”
from the previous display (see Brady & Tenenbaum, 2013, for
more information on this task). This filled delay period should
disrupt any attempt by participants to actively maintain the colors
of studied objects in working memory.

After the change detection task, we assessed long-term memory
performance. Participants were asked to report the color of each of
the object images that they had previously seen, using the color
wheel as in the visual working memory task. An object was cued
by being shown in grayscale (at the center of the screen), and then
participants had to spin the response wheel to match its color to
their memory. In total, during each session participants encoded
and were tested on 90 objects that they saw only once; 90 objects
they saw repeated twice; and 45 objected repeated eight times.
Thus, across both sessions, participants encoded and were tested
on 180 objects presented once, 180 presented twice and 90 pre-
sented eight times.

Participants were able to complete the experiment at their own
pace, without any time constraints or penalties. Participants took
on average 1hr 15 min for each session. They were instructed to be
as accurate as possible.

Data analysis. Participants reported the color of each object
image using a color wheel, and therefore the angular difference
from the correct answer to the participant’s selected answer on the
color wheel is our measure of accuracy. On a given trial this error
can range from 0° degrees, a perfect memory, to �180°, a very
poor memory. To summarize these errors across trials and estimate
overall memory performance, we calculated the deviation of each
response in each condition. Then, given a set of responses, we need

to compute an overall measure of performance. To do this we
relied on the circular standard deviation, which is a descriptive
statistic that measures how dispersed participants responses are.
This is similar to other descriptive statistics used in the literature
(e.g., Bays, Catalao, & Husain, 2009 report a variant of this; as do
van den Berg, Yoo, & Ma, 2017 and others, see Ma, 2018).

We use the circular standard deviation in particular as a descrip-
tive statistic of errors because despite being straightforward and
nonparametric, it is closely related to model-based measures of
performance like d= from the single-process TCC model (Schurgin,
Wixted, & Brady, 2018).

We did not rely primarily on the mixture model technique of
Zhang and Luck (2008) because this technique does not appear to
isolate different properties of memory (see the introduction and the
Target Confusability Competition Model Fits to the Long-Term
Memory Data section in the Appendix); however, our preregis-
tered exclusion criteria did rely upon these mixture model param-
eters, and we used them for this purpose; they are reported in the
Appendix (the Mixture Model Fits for Experiments 1, 2, and 3
section).

Our data are well captured by the TCC model of Schurgin et al.
(2018), providing evidence for this model’s generality to long-term
memory. These fits are described in the Appendix (the Target
Confusability Competition Model Fits to the Long-Term Memory
Data section). However, for simplicity—and in line with recom-
mendations for papers not directly about model comparisons (Ma,
2018)—we report the circular standard deviation as our main
measure.

Calculation of chance. If participants had 0 information and
simply picked colors at random, their maximum error would be
180 degrees, and their minimum error would be 0 degrees, with a
mean of 90 degrees. However, the circular standard deviation of
their errors is not the same as their mean error. Thus, to contex-
tualize the circular standard deviations we observe, we calculated
chance performance for this metric: To do so, we simply generated
10,000 samples of errors uniformly between �180 and 180, and
then calculated the circular standard deviation of this data. This
gives us an upper bound on circular standard deviation, indicating
what is expected from pure guessing. This is plotted in the Figure
3 as the dashed line.

Exclusion. Following our preregistered exclusion criteria re-
sulted in the exclusion of 6 out of 30 participants. All of these
participants were estimated to have a guess rate (Zhang & Luck,
2008) greater than 0.70 in at least one condition. Including these
participants did not change the overall pattern of results.

Results

Figure 2 shows error by condition in working and long-term
memory, and Figure 3 shows the summary of these errors in terms
of circular standard deviation. Overall, we found the expected set
size effect in working memory, with performance reliably better
for Set Size 1 than Set Size 3, t(23) � 12.1, p � .0001, dz � 2.5.
In addition, there was a significant main effect of repetition, with
long-term memory performance improving with repetition, F(2,
46) � 277.4, p � .0001, �2 � 0.92. By eight repetitions, long-term
memory performance was comparable to working memory perfor-
mance: the circular standard deviation was 28.4 in the eight rep-
etition case, and 31.2 in the three-item WM case (difference: �2.8,
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SEM of difference: 2.1), not reliably different, t(23) � 1.35, p �
.19, dz � 0.27. The same results hold when fitting the TCC model
to the data (see the Appendix).

Thus, this experiment shows that long-term memory fidelity
significantly improves with repetition, even when judged using a
psychophysical measurement of exactly what is remembered, and
where you must discriminate the remembered item from extremely
similar colors. In this situation, long-term memory performance
even overlapped with performance in a relatively easy working
memory situation: the eight repetition condition was similar in
terms of error to a Set Size 3 working memory condition.

Experiment 2A and 2B: Across-Subject Replications
of Experiment 1

Experiment 1 provided evidence that participants benefit from
repetitions, and showed that under the particular circumstance of
our task, 8 repetitions in long-term memory was sufficient to reach
the same level of performance as a relatively normal working
memory task (with three items)—suggesting that the two memory
systems are at least partially overlapping in their ability to repre-
sent high fidelity color information. In that study, participants by
necessity saw the same objects in multiple conditions—that is, the

same object might have appeared in one color in a working
memory trial whereas it subsequently appeared in a different color
in the long-term memory condition (and was kept constant in the
long-term memory condition). Thus, in Experiment 2, we repli-
cated the critical conditions aspects of Experiment 1 in across-
subject conditions where objects did not repeat across conditions,
to ensure this was not a significant factor.

Method

Experiment 2A. There were N � 30 participants (six ex-
cluded per preregistration criterion, final sample � 24). The stim-
uli, procedure, and analysis strategy in Experiment 2A were very
similar to those of Experiment 1 but included only a subset of
conditions. In particular, in Experiment 2A participants had three
conditions: (a) perform working memory for one item, (b) long-
term memory with one repetition per item, or (c) long-term mem-
ory with two repetitions per item. The task was blocked such that
participants performed 100 trials of the working memory task
either before or after the long-term memory task; and during the
long-term memory task, there were five blocks, each of 40 images
(20 shown once, 10 shown twice in each block).

Figure 2. Error histograms by condition (collapsed across participants for visualization purposes), showing the
proportion of each error amount in each condition. 0° error on the reproduction task is perfect memory, and 180°
error means participants selected a color on the opposite side of the color wheel. In both working memory and
long-term memory, these histograms have the same shape, with many errors near 0 and then a long tail of
responses to all the colors that are approximately equally dissimilar to the target. As more items are added in
working memory, performance degrades (more large errors); as items repeat more in long-term memory,
performance improves (fewer large errors). WM � working memory; LTM � long-term memory.
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Experiment 2B. There were 31 participants (3 excluded per
preregistration criterion, final sample � 28). As in Experiment 2A,
the stimuli, procedure, and analysis strategy in Experiment 2B
were very similar to those of Experiment 1 but included only a
subset of conditions. In particular, in Experiment 2A participants
had only two conditions: (a) long-term memory with one repetition
per item, or (b) long-term memory with eight repetitions per item.
In both conditions, participants saw 24 objects per block. In some
blocks participants saw 24 unique objects, whereas in others they
saw only three objects, each presented eight times.

Results

Experiment 2A. We found similar results to Experiment 1 in
terms of working memory for set size 1 (M � 16.4, SEM � 0.7),
long-term memory for unrepeated items (M � 46.0, SEM � 3.2)
and long-term memory for items repeated twice (M � 37.2,
SEM � 3.2). Performance at the long-term memory conditions
were significantly worse than the working memory condition (one
repeat: t(23) � 9.26, p � .001, dz � 1.89; two repeats: t(23) �
6.42, p � .001, dz � 1.31). The benefit from repetition in long-
term memory was also large, t(23) � 4.24, p � .001, dz � 0.87.

Experiment 2B. We found that the circular standard devi-
ation was 52.6 (SEM � 1.8) for items seen once, and 18.0
(SEM � 1.5) for items seen eight times, a significant difference,
t(27) � �23.96, p � .001, dz � 4.53. In this context, with
slightly fewer objects to remember and a blocked design, per-
formance at eight repetitions was considerably better than in
Experiment 1, t(50) � 4.12, p � .001, d � 1.15; in fact,
performance was better than the set size 3 working memory task
from that experiment (M � 31.2, SEM � 1.6), t(50) � 5.92, p �
0.001, d � 1.65, and numerically not quite as good as set size
1 working memory but comparable statistically (M � 15.8,
SEM � 0.6), t(50) � 1.26, p � .21, d � 0.35.

Discussion

Experiments 1 and 2 provide strong evidence that long-term
memory fidelity significantly improves with repetition. Using a
psychophysical measurement of exactly what is remembered, and
where you must discriminate the remembered item from extremely
similar colors, we found that in the conditions of our task, eight
repetitions of an item brings long-term memory performance to the
same level as the best working memory performance (Set Size 1),
with participants able to accurately reproduce the exact color they
had seen extremely accurately. That is, eight repetitions in the
long-term memory condition of Experiment 2B allowed people to
reproduce the exact color as accurately as they could in the very
best working memory conditions of Experiment 1 (one item seen
just 1 s ago). This provides evidence that participants do integrate
information across repetitions in long-term memory to form higher
fidelity memory traces, and provides initial evidence that working
memory and long-term memory substantially overlap in the range
of fidelity of reproduction that is possible using the two systems,
even in situations with nearly maximally strong working memory
representations.

Experiment 3: Is Repetition Better Than Simply
Extended Encoding Time?

Experiments 1 and 2 show that long-term memory is improved
dramatically with repetition. Experiment 3 asks whether repetition
per se is important, or whether the effect of repetition in those
experiments is simply to allow people more total time with each
object. Thus, in Experiment 3 we contrast seeing an object and its
color eight times for 1 s each, versus one time for 8 s total. If
repetition per se has a role in creating higher fidelity memories,
than participants should be more accurate in the eight-repetition
condition. If total time processing and encoding the objects is most
relevant, the two conditions should be identical. And if participants

Figure 3. A: Results of Experiment 1 in terms of circular standard deviation; each point represents the mean
standard deviation across participants, with error bars �1 SEM. As participants were repeatedly exposed to items
in long-term memory, memory performance improved. With eight repetitions in long-term memory, performance
was as good as for three items that had been seen only 1 s ago (working memory task). B: Results from the
across-subject manipulation in Experiment 2 replicate the within-subject manipulation of Experiment 1. C:
Experiment 3 compared performance for a single 8-s exposure in long-term memory to 8 separate 1-s exposures,
equating total viewing time and asking how memory fidelity is affected. We found participants perform much
better with eight repetitions than a single 8-s exposure. See the online article for the color version of this figure.
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benefit most from a single long exposure, which could potentially
allow for deeper processing of the item and its color, then they
should be best in the single long exposure condition.

Method

The design, methods, dependent measures, and exclusion crite-
ria for this study were preregistered. See https://aspredicted.org/
blind.php?x�gc8sv2 for details.

Participants. Thirty students were recruited from the Univer-
sity of California, San Diego’s undergraduate subject pool and
received class credit for their participation. All subjects gave
informed consent, and the study was approved by the University of
California, San Diego Institutional Review Board.

Procedure. As in Experiment 1 and 2, participants were asked
to remember the precise color of objects and report this color using
a color wheel. In this experiment, we probed only long-term
memory. We compared memory performance for objects repeated
eight times, shown for 1 s. each time, to those shown one time for
8 s.

Each participant completed 24 blocks of study and test. In each
block, participants studied six to 48 images, consisting of six
objects shown either once or eight times each (48 images). The
studied color for each object was randomly chosen by rotating the
object in color space, but repeated objects were always shown in
the same color each repetition.

After the study period in each block, participants had a filled
delay interval designed to disrupt their ability to use visual work-
ing memory and ensure we were testing visual long-term memory.
In particular, to ensure they could not hold the colors of these
images actively in working memory, as in Experiment 1, during
the delay participants completed two trials of a change detection
task. In the task, adapted from Brady and Tenenbaum (2013),
participants were shown a pattern of black and white squares for
750 ms, followed by a 1,000-ms blank period, and then either an
identical or changed version of the original display. The test
display was shown on screen until participants made a response,
indicating if the test was “same” or “different” from the previous
display (see Brady & Tenenbaum, 2013, for more information on
this task).

Following this filled delay, they were then probed on the colors
of the 6 unique objects using a continuous color wheel, as in
Experiments 1 and 2. As in these experiments, we used the circular
standard deviation as our main measure of performance.

Exclusion. Data from one participant was lost due to technical
error. Following our preregistered exclusion criteria resulted in the
exclusion of 0 out of the remaining 29 participants.

Results and Discussion

Although all items were seen for 8 s, long-term memory for
items repeated 8 times for 1 s each (M � 23.2, SEM � 2.1) was
significantly better than long-term memory for unrepeated items
shown for 8 s (M � 37.5, SEM � 2.3; t(28) � 8.02, p � .001, dz �
1.49). This effect was quite large: participants error was nearly
halved with eight separate 1-s exposures compared with a single
8-s exposure. Thus, repetition allows for stronger encoding than
does a single presentation of the same amount of exposure.

Thus, repetition is a particularly important tool for forming
detailed visual long-term memories. This is consistent with the

broadest goal of the visual long-term memory system: integrating
information over time, both to extract categories and other general
principles (Schapiro et al., 2014), as well as learning about par-
ticular objects and how they vary (Rust & Stocker, 2010). Al-
though working memory is designed to work with objects that
were just present or that are still present, to function effectively,
long-term memory must connect across large time windows with-
out spatiotemporal cues to what objects are the same as ones that
have been previously seen (Schurgin & Flombaum, 2018b), and
repetition and integration across subsequent presentations is a
critical aspect of this.

What processes are at work in explaining the repetition benefit?
There are several nonmutually exclusive possibilities. One possi-
bility is that reexposure to an item that has already been seen
engages a distinct set of cognitive mechanisms compared to ex-
posure to novel information. For example, people may attempt to
recognize it, engaging recognition-specific processes (e.g., Max-
cey & Woodman, 2014) including reinstatement of the previous
memory trace that allows the new information to be integrated
with this previous trace (e.g., Xue et al., 2010). In addition,
repeated exposures may cause our memory system to encode
slightly differential context each time, leading to more robust
memories: classic models of repetition and spacing effects for
verbal memory suggest that since memories are inherently contex-
tual, having more varied context of encoding is likely to create
more robust memories (e.g., Hintzman, 1974; although see Xue et
al., 2010). Finally, it may that repetition allows for stronger en-
coding simply because people “get more” out of the initial part of
any given presentation than the latter part of a presentation (e.g.,
there is some saturation of how much information is processed as
objects remains on the screen; Huebner & Gegenfurtner, 2010). If
the majority of the processing of an item happens in the first few
hundred milliseconds (e.g., Drugowitsch, Moreno-Bote, Church-
land, Shadlen, & Pouget, 2012), there will be significant dimin-
ishing returns to longer encoding times, but repetition will allow
this initial processing to happen repeatedly, resulting in more total
information extraction.

Experiment 4: The Fidelity of Visual Long-Term
Memory for Brand Logos

Can people ever remember items from long-term memory as
precisely as they can remember their very best working memories
(e.g., which we conceptualize as 1 item seen just a second ago)?
Experiment 2 showed one situation where long-term memory for
several items—when active maintenance was prevented—was as
accurate as participants’ very best working memories. However, in
that situation the delay time was by necessity short, and the items
were very recently encoded and so possibly in a more activated
state of long-term memory. Can fully consolidated long-term
memories—those most likely to be stored in a nonperceptual
format—ever be as accurate as our very best working memories?

To test this, we assessed memory for the color of frequently seen
objects—brand logos—as a naturalistic extension of Experiments
1–3. Brand logos are seen in everyday life, and even children show
incredibly high recognition rates for logos (Fischer, Schwartz,
Richards, Goldstein, & Rojas, 1991). They are relatively unique in
that they are often made up of a single or very few colors, and that
there is, at least to a greater extent than most objects, an objective
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answer to the color they are supposed to be (as opposed to say, the
color of an apple or banana—for which there is no truly objective
answer). In addition, most logos have been encoded repeatedly
over long durations of time (months and years), and, because we
do not show the actual color of these logos to participants in the
experiment, they thus provide a test of the fidelity of perceptual
information in truly long-term, fully consolidated memory.

To test memory for the color of such logos, we collected a set
of brand logos that were—based on pilot data—frequently en-
countered by our participant pool. We then asked participants to
both rate their familiarity with these brands and their logos (with-
out seeing them) and then exactly reproduce the color of the logo
given only a grayscale version. We then asked participants their
confidence in their reproduction.

Because the logos are not all taken from a single circular slice
of a color wheel, we cannot directly fit models designed for such
data to our data from this experiment (e.g., mixture models; Zhang
& Luck, 2008; TCC: Schurgin et al., 2018). However, the insight
that there is a single process that explains memory errors even in
color wheel data and that simple descriptive statistics of this error
therefore do a good job of capturing the relevant factors (i.e.,
circular standard deviation in Experiments 1–3) means this is not
likely to be a significant hurdle to understanding memory in this
situation; thus, just as we use the circular standard deviation in
Experiments 1–3, we again focus on a simple descriptive statistic
of memory error in this experiment (root mean squared error
[RMSE]).

Method

Participants. Thirty students were recruited from the Univer-
sity of California, San Diego’s undergraduate subject pool, and
received class credit for their participation. All subjects gave
informed consent and the study was approved by the University of
California San Diego Institutional Review Board. The sample size
was selected to match Experiment 1, as similar power is required
to again compare the highest familiarity stimuli to the lowest in
long-term memory, our main measure of interest. Our post hoc
power in Experiment 1 was even greater than our a priori power
calculation took into account, suggesting a similar sample size
would again be adequate.

Stimuli. The study consisted of three parts: a working mem-
ory color report task, which made use of 140 silhouettes of
real-world objects whose color could be completely manipulated
(from Sutterer & Awh, 2016; see Figure 2); a long-term memory
color report task, using the same stimuli; and a logo color report
task. We could not use the object images of Brady et al. (2013) that
were used in Experiment 1 because the luminance of these images
cannot be manipulated without distorting them, only the hue.

In the brand logo task, participants had to report the exact color
of a given brand logo. Thus, to ensure the logos were well known
and suitable for our subject population, brand logos were selected
via a pilot survey in which University of California, San Diego
undergraduate participants listed brands for which they could
confidently recall a visual memory of the logo. From these re-
sponses, we selected brands that were (a) widely reported and (b)
whose most popular logo consisted of largely a single color (ex-
cluding black, white, and gray). Ultimately, we selected 67 brands,
and from their website found their logo and its’ dominant color

(see stimulus set on OSF: https://doi.org/10.17605/OSF.IO/
AQXPN).

Overall structure of the experiment. Participants completed
three tasks in this experiment (logo memory, long-term memory
for newly encoded objects, working memory). Before the first task,
participants completed three color perception trials in order to
introduce our new color report method. To report colors, in all
three tasks, we presented participants with a stimulus on the right
side of the screen and a 2D slice of CIELAB space (with fixed L)
on the left side of the screen. As participants moved their mouse
around the slice of CIELAB space, the color of the relevant part of
stimulus on the right side of the screen changed (for silhouettes,
this was the entire silhouette; for brand logos, it was only the
relevant colored part of the logo). This method allowed partici-
pants to report colors not just from a wheel but from an entire slice
of color space. The luminance of this slice was always chosen to
match the luminance of the correct color; that is, if the correct
color was dark, this was a low luminance slice; if the correct color
was bright, it was a high luminance slice.

Throughout the experiment, all colors were drawn from the set
of colors of the logos. That is, if one of the logos was a particular
green, this was the correct answer for that logo in the logo
condition; the correct answer for one item in the long-term mem-
ory condition; and the correct color for one item in the working
memory condition. This ensured that all conditions were compa-
rable, as ultimately the exact same colors were the correct answers
and the exact same slices of color space were offered as options in
all cases. This is important because, for example, a color that
happened to be in the “corner” of the CIE LAB slice will likely
elicit a different error distribution than one that happened to be in
the middle of the slice. Because of this method of stimulus control,
we had participants first complete the brand logo condition (so
they would not be preexposed to the colors of the logos), then the
long-term memory condition, and finally the working memory
condition. This was to minimize any potential learning effects of
the specific color spaces being used, and, since we were interested
in how logo memory compared to working memory, this was the
most conservative order (e.g., if any condition would benefit, it
would not be logos, but working memory).

Task procedures. In the first experimental task, the brand
logo task, there were 67 trials, one per logo. On each trial,
participants were asked to rate their experience with a specific
brand logo. Specifically, there were shown the name of the brand
(in text; with no logo present) and asked how often they see that
logo using a 1 (never) to 6 (everyday) scale. After rating their
experience with the brand, they then reported the color of the logo.
Specifically, the logo appeared in grayscale on the right side of the
screen and a fixed L slice of CIELAB color space appeared on
the left side of the screen. Using their mouse to hover over the
CIELAB color space changed the color of the relevant pixels of the
logo on the screen (only those pixels in the color-to-be-reported
changed as the mouse moved). Once they had selected a color,
participants were asked to rate how confident they were in their
choice on a second 6-point scale, ranging from 1 (unsure) to 6
(sure).

In the second part of the experiment, participants completed a
long-term memory task for newly encoded. Participants were
shown 66 object images (taken from Sutterer & Awh, 2016), one
after the other for 1 s each with a 1-s interstimulus interval. They
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were instructed to remember the color of each object image to the
best of their ability, without using verbal labels. After the object
images were presented, participants completed two trials of a
change detection task to ensure participants weren’t actively main-
taining colors in visual working memory (see Experiment 1 for
details). After the change detection task, participants were asked to
report the color of each object image that they had seen during the
study phase. The color of the object images in the long-term
memory task were randomly matched to colors previously used in
the brand logo task, such that the exact same colors and exact same
slices of CIELAB color space were shown in both tasks.

In the third experimental condition, participants completed a visual
working memory task. Participants were shown 1 colored object for
one second, and after a one second delay were asked to report the
color of the image on the slice of CIELAB color space. They com-
pleted 67 working memory trials. Once again, the colors of the object
images in this task were randomly matched to specific colors used in
both the logo and long-term memory trials of this experiment.

Data analysis. In this task, the error on each trial is quantifiable
as the 2D distance between the correct location on the slice of
CIELAB space and the clicked location. As in Experiments 1–3, we
use a descriptive statistic of all errors to capture how accurate partic-
ipants memory is; in particular, we used the RMSE. The error distri-
bution is significantly skewed, and so to summarize this error for a
given participant and condition we use the median RMSE (e.g., the
median across all trials of a given condition for a given participant).
We then use the mean and standard error of the mean across partic-
ipants’ median’s to show the population distribution of medians, since
the population distribution of medians is expected to be normally
distributed, being itself an aggregate measure.

As noted in the introduction to this Experiment, previous work has
largely relied upon circular color report, in which the angular differ-

ence between the correct answer and reported answer is taken as the
measure of error. This reliance on circular report spaces arose because
some models (in particular, mixture models; Zhang & Luck, 2008)
claimed to be able to differentiate between different properties of
memory using such reports (e.g., precision and likelihood of re-
trieval). However, as noted, it is now clear that even in circular report
spaces, there is really only a single process and thus single parameter
being measured (overall memory strength; see Schurgin et al., 2018).
Thus, we believe nonparametric memory error is sufficient to char-
acterize memory both in circular space (Experiments 1–3) and in
noncircular space (Experiment 4). However, one drawback of the
noncircular space in the current experiment is that chance perfor-
mance is difficult to characterize. That is, it is unlikely that if people
know nothing, they would choose completely at random from the
slice (they might avoid corners, e.g.); and we cannot shuffle responses
across trials, since different trials showed different slices of color
space. However, because many participants report “never” having
experience with some brand logos, these “one” out of six responses on
the frequency of experience measure do provide some measure that
approximates what chance performance would look like. In addition,
a benefit of the 2D approach in the current experiment allows for
much more variety in the set of colors shown and tested, allowing us
to examine memory for logos and memory for a more realistic range
of colors in the working memory and long-term memory conditions.

Results

Figure 4C and 4D show the results across the logo, working
memory, and long-term memory conditions. Figure 4C shows the
errors collapsed across all participants, showing the full distribu-
tion of errors in each condition. This distribution is skewed, with
many responses near 0 error and then a fat tail, as is the case in

Figure 4. Experiment 3. A: Methods for the logo memory condition. Participants were given a 2D slice of
CIELAB color space, that was matched for the luminance level of the brand logo color (B). Methods for the
visual working memory (VWM) and long-term memory (LTM) conditions. Participants encoded an object
silhouette randomly embedded in the same color as one of the logos, and then reported the color of the object
at test by clicking the exact color in a 2D slice of CIELAB color space (C). Error histograms across all three
conditions, with the median error indicated by a solid black line (D) error by condition. For brand logos, error
was calculated as a function of participant’s self-reported experience report with that logo (reported before their
color memory was tested). See the online article for the color version of this figure.
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circular color report spaces (Schurgin et al., 2018; Zhang & Luck,
2008).

Looking at performance across conditions for each participants
(Figure 4D), we find, as expected, that working memory for one
item was much more accurate than long-term memory for items
that were seen only once, t(29) � 7.3, p � .0001, dz � 1.3. We
were primarily interested in how experience with the logos—as a
proxy for stimulus repetition—affected color memory. Thus, we
analyzed the logo data as a function of self-reported experience
with the brands. We found that as a participant’s self-reported
experience with a brand and logo increased, errors in color esti-
mation dramatically decreased, until it was similar to their error for
one item seen one second ago (Figure 4C), F(5, 145) � 38.4 p �
.0001, (�2 � 0.55).

The logos that participants were least experienced with (one out
of six; 16.2% of trials)—those they said they’d never seen; effec-
tively a measure of chance performance—were, as expected, re-
ported less accurately than the single-repetition long-term memory
items, t(29) � 2.2, p � .04. The ones they were most experienced
with (6/6; 17.1% of trials) were still, on average, quite close to
working memory performance even for one item, although they
were statistically reliably different than the 1 item working mem-
ory condition, t(29) � 2.8, p � .01.

We can also examine memory as a function of self-reported
confidence in addition to experience. Although these two factors
were correlated—people tended to have higher confidence in the
color of logos they’d said they had more experience with—they
were also somewhat dissociable, with a correlation of r � .64
(SEM � 0.019) across subjects, corresponding to an R2 � 0.41.
Figure 5 plots error as a function of both variables.

The contrast between Figure 4—which shows that participants
were overall much better when they had more experience with the

logo—and Figure 5, where experience seems to play little role in
error—shows this people had an excellent sense of their own
accuracy. That is, although people are more likely to report higher
confidence when they have more experience, they are approxi-
mately equally accurate at a given confidence level regardless of
their experience (the dominant structure of Figure 5 is vertical
columns, not horizontal stripes). This accurate awareness of their
own memory strength means that the major determinant of error in
Figure 5 is confidence, rather than experience. This is consistent
with a significant amount of work on “estimator variables” in
eyewitness memory (e.g., Semmler, Dunn, Mickes, & Wixted,
2018). For example, cross-race identifications tend to be less
accurate than same-race identifications. However, the confidence-
accuracy relationship is the same for both cross-race and same-
race identifications: not only are participants less accurate, but they
are also (appropriately) less confident in such identifications.
Thus, high confidence reports tend to be equally accurate regard-
less of estimator variables. Our data support this same conclusion
in the case of brand logos.

How did confidence impact memory performance? For logos
where people not only reported being extremely experienced with
the brand (six out of six) but also confident in the color of the logo
(six out of six), performance (12.3% of trials; median error � 11.9)
was as good as working memory for an item they had seen 1 s ago
(median error � 11.6), t(26) � 0.31, p � .76; with a Bayes factor
giving 4.7 to 1 evidence in favor of the null hypothesis that these
two were equivalent (default JZS Bayes factor; Rouder, Speck-
man, Sun, Morey, & Iverson, 2009).

Overall, this demonstrates that increased repetition of a brand
logo in a naturalistic setting leads to more accurate representations
of that logo’s color in a participants long-term memory, with the
logos people have the most experience with and the most confident
memory for being indistinguishable from their memory for an item
seen only 1 s before. This is true even given the possible sources
of noise in our logo color report task: for example, some brands
have changed the color of their logo over time, potentially causing
confusions for participants (e.g., see: https://www.signs.com/
branded-in-memory/); others may have slight differences between
the logo color on their website and their real-life signs due to color
calibration issues. Nevertheless, despite these sources of noise,
brand logo colors were remembered with extremely high fidelity.

General Discussion

Across four experiments, we find that despite the fact that
long-term memory is easily corrupted (e.g., Loftus & Palmer,
1996), in the best case scenario where memory is strong and
uncorrupted by subsequent interference, long-term memory can be
incredibly precise—a memory for something seen minutes, hours
or days ago in the context of many other objects can be as precise
as a memory for a single item seen 1 s ago, and accurately
discriminated even from very similar colors. This provides strong
evidence that participants integrate subsequent exposures into high
fidelity memory traces.

Memory for brand logos offers further credence to this claim, as
items frequently seen in everyday life were remembered as pre-
cisely as the best working memories, despite not having been
encountered for hours or days. Critically, this finding may have
been obscured if no measure of experience had been collected, as

Figure 5. This matrix plots error (root mean squared error [RMSE]) as a
function of reported experience with the brand before being shown any
stimulus, and confidence in their color report after. Confidence in color
report is strongly related to error (more confident responses had less error),
but after taking into account confidence by plotting it separately, there
much less of a relationship between reported experience and error. This
demonstrates participants had an excellent sense of their own accuracy.
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precise logo reports were only observed for items participants
reported experiencing regularly and for which they expressed high
confidence. Along similar lines, in the study of eyewitness mem-
ory high confidence judgments have been shown to be incredibly
accurate, contrary to claims that eyewitness memory is unreliable
(Wixted & Wells, 2017). Thus, these results provide further evi-
dence that memory strength judgments are critical to understand-
ing the contents of memory.

The Fidelity of Long-Term Memory

Humans have remarkable visual long-term memory abilities,
capable of storing thousands of items (Standing et al., 1970), and
previous work has shown that people are extremely good at dis-
tinguishing even extremely similar items in visual long-term mem-
ory (Brady et al., 2008; Hollingworth, 2004, 2005). However,
previous work on these lines has largely used meaningful distinc-
tions between objects to test memory (e.g., a full vs. empty mug),
preventing a quantitative understanding of memory fidelity.

Recent work looking at visual long-term memory fidelity more
quantitatively has often shown worse performance than working
memory, both in terms of memory strength or likelihood of re-
trieval (Biderman et al., 2019; Brady et al., 2013) and in terms of
robustness to noise (Schurgin & Flombaum, 2018a). In some
cases, this has been taken as evidence that visual long-term mem-
ory is intrinsically lower fidelity than visual working memory
(e.g., Biderman et al., 2019), consistent with ideas about neural
(e.g., Serences, 2016) and cognitive representation differences
between the two systems (Baddeley, 1966), which argue that
working memory is inherently more perceptual than long-term
memory. However, in the current work, we show that with suffi-
cient repetition, visual long-term memory can be incredibly pre-
cise—people can accurately reproduce nearly the exact color of
items they have seen multiple times. This provides evidence that
visual long-term memory can be incredibly high fidelity. Thus,
despite long-term memory being structured by semantic similarity
(e.g., Konkle et al., 2010; Collins & Loftus, 1975), and seemingly
relying on an inherently less perceptual neural mechanism of
storage (e.g., Serences, 2016), we find that visual long-term mem-
ory can store as precise a set of visually detailed information as
working memory.

The current work converges with a recent paper by Fresa and
Rothen (in press) that showed that in a perceptual learning situa-
tion, participants can learn to accurately reproduce colors from
visual long-term memory with incredibly high fidelity. In fact,
Fresa and Rothen (in press) even showed some degree of gener-
alization, where participants who practiced visual long-term mem-
ory color reproduction improved not only at memory for the
practiced objects but even at memory for new objects that had been
seen only once. This suggests that in addition to repetition im-
proved the fidelity of individual memories, there may be larger
scale learning that takes place that affects how accurately people
can discriminate items from similar items in memory.

What supports this accurate long-term memory performance?
Visual working memories seem to be maintained in visual cortex
at least to some extent (Serences, 2016), providing a natural basis
for their level of perceptual detail. How can long-term memory
have equal detail without such a neural basis for storage? Inter-
estingly, while long-term memory is clearly not actively main-

tained in perceptual regions, studies have shown that long-term
memory retrieval is associated with reaction of the same percep-
tual brain regions that are activated when perceiving the same
items (e.g., Wheeler, Petersen, & Buckner, 2000; Kahn, Davachi,
& Wagner, 2004), with such reinstatement proceeding memory
retrieval (e.g., Polyn, Natu, Cohen, & Norman, 2005; Xue et al.,
2010). Thus, it is possible that visual long-term memory may rely
on perceptual regions to access perceptual details in a similar
manner to visual working memory, even if it is not actively
maintained in these regions.

“Precision” as Separate From “Likelihood of
Retrieval”: The Relationship Between Working
Memory and Long-Term Memory

Although working and long-term memory are often compared to
one another, the majority of research investigating their relative
fidelity has been limited to encoding items quickly and just once in
long-term memory experiments and comparing this to very strong
working memories (e.g., Biderman et al., 2019; Brady et al., 2013;
Schurgin & Flombaum, 2018a). The current work provides a
suggestion that many of the documented differences between these
two systems may not be due to a system-level distinction between
them, but rather an artifact of comparing strong working memories
to comparatively weak long-term memories.

Indeed, this may explain differences in the results obtained by
Brady et al. (2013) and Biderman et al. (2019), who used different
set sizes of working memory to draw distinctions between working
and long-term memory, with one group arguing for high-fidelity
long-term memories and one arguing long-term memory is intrin-
sically lower fidelity than working memory. Our data lend cre-
dence to the idea that working memory and long-term memory are
fundamentally similar in representational content, with moderately
hardworking memory tasks (e.g., Set Size 3–6) resulting in the
same distribution of both similar and dissimilar errors as many
long-term memory tasks, and long-term memory tasks with many
repetitions giving identical error distributions of similar and dis-
similar errors to easy working memory tasks (e.g., Set Size 1–3).

One way to show this more quantitatively is to compare visual
working memory performance to visual long-term memory per-
formance by comparing a number of studies that make use of the
same continuous report task using a color wheel. To visualize this,
Figure 6 compares visual long-term memory performance from the
current set of studies and from past studies to previous data on
working memory for color, plotting the parameters of a popular
mixture model framework across a wide range of conditions in
working memory tasks (see Schurgin et al., 2018, for a similar
technique in working memory). This mixture modeling framework
takes the distance between the target color and response and
models these responses using a mixture model, which attempts to
separately quantify memory performance in terms of a precision
and a likelihood of retrieval (or its opposite, a “guess rate”). In the
present article, we do not quantify performance in these terms, as
it has recently been shown that these parameters are not in fact
separable (Schurgin et al., 2018). Nevertheless, such mixture
model parameters are widely reported and provide a window into
how accurately participants can discriminate items in memory for
similar items. Thus, these parameters allow us to easily compare
across memory systems for previous data using the continuous
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color task. They also allow us to directly compare our data to that
of Biderman et al. (2019), who claim that working memory is
inherently lower fidelity than long-term memory based on the fits
of such model.

In Figure 6 are working memory data from a paper that exam-
ines many aspects of visual working memory (Schurgin et al.,
2018), including performance from Set Sizes 1–8 and various
encoding and delay times. Also in the figure are data from the
long-term memory color report tasks of both Biderman et al.
(2019) and the current article. As can be clearly seen, the two
parameters trade-off nearly identically in the two memory systems,
with the curves completely overlapping. In fact, the lowest per-
formance—in terms of both “guess rate” and precision (SD)—
comes from the working memory conditions (Set Size 6 and 8),

where people are less accurate than in any of the long-term
memory conditions tested in the current paper or by Biderman et
al. (2019). Thus, contrary to Biderman et al. (2019), we do not
observe any evidence in favor of the idea that long-term memory
has intrinsically lower fidelity than working memory (e.g., noisier
representations, with larger standard deviations). Instead, our data
show that if you compare a wide range of standard long-term and
working memory tasks, you find identical data distributions and
parameters that fit those distributions.

Importantly, our data also reveal that no individual points alone
are sufficient to understand the relationship between the fidelity of
these two systems, as memory strength can vary greatly in both
systems. Biderman et al. (2019) compared long-term memory data
only to Set Size 3 working memory, thus finding a working
memory advantage; if they had compared long-term memory in-
stead to Set Size 6 working memory data, they would have found
a long-term memory advantage. Only by plotting a wide range of
memory strengths together does it become clear that the two
systems lie on the same curve.

It is also important to note that the strong relationship observed
between the guess and precision parameters in both the working
memory and long-term memory data converge with the proposal
from Schurgin et al. (2018) that these parameters are not distinct,
but tap just a single underlying process. The plot in Figure 6 is a
state-trace plot (Dunn & Kalish, 2018), and is completely consis-
tent with a single process model—where “precision” and “likeli-
hood of retrieval” are just two ways of measuring the same
underlying variable (memory strength). Furthermore, the black
dashed line in Figure 6 is the prediction of the TCC model
proposed by Schurgin et al. (2018)—this model says that by
necessity, when using this color space, the only possible mixture
model parameters that can arise are the ones on that line (subject
to measurement error). The current long-term memory data are
clearly consistent with this prediction. Thus, the current data also
provide additional evidence there is effectively only a single
parameter of memory difficulty observed in continuous reproduc-
tion error histograms. How should we think about the “precision”
of working memory versus long-term memory in this framework?
The TCC model, consistent with the state-trace plot (see Figure 6),
suggests that there is no such concept as the precision of a memory
system. Instead, there is only a concept of memory strength, which
combines with a fixed similarity function for a given stimulus
space (see https://bradylab.ucsd.edu/tcc/). The way this memory
strength manifests in terms of the errors people make, and in terms
of their ability to make discriminations between similar versus
dissimilar items, appears to be the same for working memory and
long-term memory. However, the stimulus space matters quite a
bit: that is, different stimuli spaces (e.g., different color wheels, or
different features) have different characteristic similarity func-
tions, and thus different shaped error distributions and different
mixture model parameter (Schurgin et al., 2018). Thus, rather than
the difficulty of discriminating items from similar ones arising due
to differential limits in the precision memory systems (e.g., Bider-
man et al., 2019), these limits seem to result from differences in the
underlying similarity structure of the perceptual dimensions being
studied (e.g., the color wheel being used). Overall, then, our data
suggest that visual working memory and visual long-term memory
largely overlap in their ability to represent high fidelity color
information—either in terms of mixture model parameters (see

Figure 6. Working memory data reflect visual working memory for color
across a range of set size (1–8), encoding times and delays from Schurgin
et al. (2018). Unfilled working memory circles come from Set Sizes 1 and
3; filled working memory circles come from Set Size 6 and 8. The
long-term memory data in circles are from the long-term memory condi-
tions of Biderman et al. (2019); the long-term memory diamonds are data
from the current article. The black line represents the prediction of the
Schurgin et al. (2018) target confusability competition (TCC) model,
which argues that both parameters derive from a single process rather than
being dissociable psychological components The tight coupling of the two
parameters (“guess rate” and “SD”) across a wide range of conditions is
strongly consistent with the idea that the parameters of the mixture model
reflect one process, not two (as separately shown by Schurgin et al., 2018).
The red LTM points falling on the same line as gray working memory ones
provides evidence that this coupling is the same for working memory and
LTM. Note that the long-term memory conditions in both the current paper
and Biderman et al. (2019) are both better—down and to the left—than the
Set Size 6 and 8 working memory conditions (filled gray circle), and
several conditions in the current article are as accurate as even the best
working memory conditions observed in Schurgin et al. (2018). LTM �
long-term memory. See the online article for the color version of this
figure.
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Figure 6) or simple descriptive statistics of error. Thus, difficult
long-term memory tasks and difficult working memory both result
in the same “standard deviation” and same “guess rate”; easy
working memory and easy long-term memory tasks likewise result
in identical memory parameters. This suggests that not only can
long-term memory hold precise memories, but that memory fidel-
ity functions similarly in the two memory systems.

Are Working Memory and Long-Term Memory the
Same System?

There is significant evidence for shared principles between
working memory and long-term memory, particularly for verbal
stimuli (Jonides et al., 2008; McElree, 2006; Nairne, 2002). For
example, items putatively held in active storage are not accessed
any faster than those held in passive storage (McElree, 2006), and
both systems can be integrated in some temporal context views of
memory (Brown, Neath, & Chater, 2007). Similarly, there appear
to be shared principles of access and refreshing between working
memory and long-term memory (e.g., Ranganath, Johnson, &
D’Esposito, 2003), resulting in some claims that there may be no
need to posit two distinct memory systems (Ranganath & Blumen-
feld, 2005).

The current work is consistent with another important way in
which working memory and long-term memory are not distinct:
representations in both systems appear to have the same fidelity,
and, indeed, asking participants to reproduce colors in both sys-
tems not only produces similar distributions, but seemingly iden-
tical ones, both in terms of the “heavy tail” and the width of the
central part of the distribution (see Figure 6). Does this mean
working memory and long-term memory are not in any way
distinct?

We find the evidence from neuroscience that there are different
processes going on when accessing actively maintained informa-
tion versus passively stored information compelling. For example,
there is clear continued firing in the form of the contralateral delay
activity (Vogel & Machizawa, 2004) when participants actively
maintain color information in working memory, but this is not
present if the information has already been stored in long-term
memory (e.g.,Carlisle, Arita, Pardo, & Woodman, 2011). fMRI
evidence also strongly suggests active storage during the working
memory delay for visual stimuli (e.g., Xu & Chun, 2006; Harrison
& Tong, 2009). Similarly, hippocampal damage seems to, at least
in some instances, selective impair long-term memory access but
not working memory access, particularly for small numbers of
items (e.g., Jeneson & Squire, 2012). How can these ideas—on
one hand, evidence for a unified system, with similar fidelity; and
on the other hand, clearly distinct and more active neural substrates
for working memory—be reconciled?

One possibility with significant support in the literature is that
working memory and long-term memory are different processes
for working with the same underlying memory representations.
That is, although the representations are themselves the same, it is
possible to keep these representations actively accessible with
attention—working memory—or to allow them to become pas-
sive, and then retrieve them later (long-term memory). These
different ways of working with memories are importantly distinct,
but the memories themselves may not be. This is broadly consis-
tent with the view of working memory as “activated” long-term

memory representations (e.g., Cowan, 1999; Lewis-Peacock &
Postle, 2008).

Conclusion

We show that repetition, either in the lab or naturalistically,
leads to incredibly high fidelity long-term memories, such that
items with which we have significant experience can be repro-
duced in a continuous report task as accurately as if they had just
been seen. In particular, with more repetitions, people are able to
accurately reproduce a color extremely precisely—as precisely as
an item seen one second ago in visual working memory. Despite
the fundamentally different neural substrate of visual working mem-
ory, with items stored and maintained in perceptual regions (e.g.,
Serences, 2016), visual working memory does not seem to have an
intrinsic advantage in making fine-grained discriminations compared
to visual long-term memory. Instead, memory strength—which
varies a large amount in both working memory and long-term
memory—is the main driver of the ability to make fine-grained
judgments about the exact perceptual features of previously seen
objects, independent of memory system.
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Appendix

Fits of Mixture Model and TCC Model

Target Confusability Competition Model Fits to the
Long-Term Memory Data

Previous research comparing the fidelity of color memory
across working and long-term memory, such as Brady et al. (2013)
and Biderman et al. (2019), relied on mixture models, which
quantify memory performance in terms of two putatively distinct
concepts: a precision (strength of information in memory), and a
guess rate (probability an item is in memory; Zhang & Luck,
2008).

In the present article, we do not quantify performance in these
terms, as it has recently been shown that these parameters are not
in fact separable (Schurgin et al., 2018). That is, large errors—
which result in a “long tail” often interpreted as evidence of
discrete guessing—appear to arise from the same process as do
small errors. In light of this finding, separately modeling different
aspects of memory is unnecessary—an item’s memory strength
can be quantified in signal detection terms as d= (Schurgin et al.,
2018) or nonparametrically (e.g., using the circular standard devi-

ation of participants’ errors)—but in either case, there appears to
be no separate process of ‘guessing’ that needs to be accounted for.
Thus, to summarize errors across trials and estimate overall mem-
ory performance in the present article, we calculated the circular
standard deviation of responses by condition. The circular standard
deviation (sometimes known as the angular deviation) has been
recommended as a measure because despite being straightforward
and nonparametric, it is closely related to model-based measures
like d= (Schurgin, Wixted, & Brady, 2018).

However, rather than simply using the circular standard deviation,
it is also possible to fit the target confusability competition (TCC)
model to the data from the experiments we do with continuous report,
to obtain d=, a measure of memory strength. Doing so reveals that the
model accurately fits both the working memory and long-term mem-
ory data and gives substantially similar conclusions to the circular
standard deviation analyses (e.g., Figure A1).

The average and SEM of the memory strength (d=) values for
each condition are reported in Table A1.

(Appendix continues)

Table A1

Experiment
WM: Set

size 1
WM: Set

size 3
LTM: 1
repeat

LTM: 2
repeats

LTM: 8
repeats

LTM: 1 repeat
of 8 s

LTM: 8 repeats
of 1 s

Experiment 1
d= 3.73 (0.09) 2.54 (0.10) 1.42 (0.11) 1.94 (0.12) 2.81 (0.15)
Guess 0.01 (0.003) 0.11 (0.02) 0.44 (0.03) 0.29 (0.03) 0.10 (0.02)
SD 15.3 (0.4) 20.6 (0.9) 23.8 (1.4) 21.4 (1.1) 18.3 (0.97)

Experiment 2A
d= 3.70 (0.12) 2.53 (0.15) 3.90 (0.08)
Guess 0.01 (0.003) 0.29 (0.04) 0.21 (0.05)
SD 15.2 (0.7) 24.9 (1.6) 19.9 (1.4)

Experiment 2B
d= 1.52 (0.09) 3.73 (0.14)
Guess 0.39 (0.03) 0.04 (0.009)
SD 23.8 (2.0) 13.9 (0.7)

Experiment 3
d= 2.29 (0.13) 3.30 (0.17)
Guess 0.20 (0.03) 0.07 (0.02)
SD 20.6 (1.1) 17.0 (1.1)

Note. WM � working memory; LTM � long-term memory.
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Mixture Model Fits for Experiments 1, 2, and 3

Although we no longer have reason to believe that previously
reported evidence supports the mixture model’s distinction be-
tween two separate aspects of memory (number of items; precision
of those items), our preregistered analysis plan suggested the use
of not only the nonparametric angular deviation but also mixture
model parameter estimates. Thus, we report the mixture model
parameters here for Experiment 1–3. Note that they are consistent
with the claim we make using nonparametric methods: both in
terms of guess rate and standard deviation, repetition improved
long-term memory, and 8 repetitions improves performance to
approximately the level of Set Size 3 working memory. Data is
formatted as mean (SEM).

They also show, as previously reported by Schurgin et al. (2018)
and visualized in Figure 6, a strong relationship between SD and
guess estimates, consistent with the idea that they vary along a
single dimension and in fact reflect the outcome of only a single
process (see General Discussion).

Replication of Experiment 2

In another experiment (Experiment S1), participants performed
only the long-term memory task, for items repeated either once or
eight times. N � 33 participants (seven excluded per preregistra-
tion criterion, final sample � 26) saw 24 objects per block. The
task was blocked such that in some blocks participants saw 24
unique objects, whereas in others they saw only three objects, each
presented eight times. Immediately following the last object (e.g.,
with no change detection task), we found that angular deviation
was 51.8 (SEM � 2.2) for items seen once, and 16.6 (SEM � 1.1)
for items seen eight times. This is consistent with the results of
Experiment 2B.

Received May 9, 2019
Revision received March 3, 2020

Accepted March 5, 2020 �

Figure A1. Fits of target confusability competition (TCC) to Experiment 1 data. Blue is the fit of the
1-parameter (d=) TCC model that assumes a single process generates all errors (e.g., that there is no discrete
guess state). Gray is the histogram of participants errors. The d= values are the fit to the data collapsed across
all participants; the average and variation in d= across participants for all experiments is reported in Table A1.
Note that the d= of the fit to the average data is not the same as the average d= of fits to individual subjects.
WM � working memory; LTM � long-term memory. See the online article for the color version of this figure.
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