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Abstract 

How do people use human-made objects (artifacts) to learn 
about the people and actions that created them? We test the 
richness of people’s reasoning in this domain, focusing on the 
task of judging whether social transmission has occurred (i.e. 
whether one person copied another). We develop a formal 
model of this reasoning process as a form of rational inverse 
planning, which predicts that rather than solely focusing on 
artifacts’ similarity to judge whether copying occurred, people 
should also take into account availability constraints (the 
materials available), and functional constraints (which 
materials work). Using an artifact-building task where two 
characters build tools to solve a puzzle box, we find that this 
inverse planning model predicts trial-by-trial judgments, 
whereas simpler models that do not consider availability or 
functional constraints do not.  This suggests people use a 
process like inverse planning to make flexible inferences from 
artifacts’ features about the source of design ideas.  

Keywords: social cognition; Bayesian inference; explanation; 
social transmission; imitation; artifact; design; inverse 
planning 

Introduction 

We live surrounded by human-made objects, or artifacts. 

These artifacts are crucial to our lives not only as tools, but 

also as an omnipresent source of social information. Based 

on the objects a person owns, people make quick and accurate 

judgments about a person’s traits, interests, and social 

affiliations (Gosling, 2008; Richins, 1994). The artifacts a 

person creates - like novel tools, art, music, or text - provide 

particularly rich information about the person and actions that 

created them (Gosling, 2008). 

    How do people reason about other individuals from the 

artifacts they create? Here we explore the nature of this 

reasoning, a form of intuitive archeology. In the same sense 

that archeologists use objects to make inferences about the 

people and cultures that created them, we propose that people 

also infer complex social-causal information from the design 

of artifacts, by integrating their mental theories of the 

physical-mechanical world with their theories of the social 

world (e.g. Battaglia, Hamrick & Tenenbaum, 2013; Gopnik, 

2012; Baker, Saxe & Tenenbaum, 2009) to infer the most 

probable explanation for an objects’ features. 

Intuitive Archeology as Inverse Planning 

Previous work in the domain of action understanding has 

proposed that people make inferences about the goals of 

others’ actions based on a process of ‘inverse planning’ 

(Baker, Saxe, & Tenenbaum, 2009; Liu, Ullman, Tenenbaum 

& Spelke, 2018). The idea of inverse planning is that people 

have knowledge of the generative process behind actions 

from planning their own – and this planning process allows 

them to know what a rational agent would do, given the same 

goals and environmental constraints. Therefore, when 

reasoning about others’ actions, people invert this generative 

process to infer the goals of another agent from its observed 

behaviors. Here we propose that a fundamentally similar 

inverse planning processing explains how we reason about 

the artifacts people create: People use their own generative 

model of how they would construct an artifact under a given 

set of constraints to infer the goals and decisions that led 

another person to create this artifact and its features. Such a 

reasoning process would allow people to flexibly infer a 

variety of social-causal information about others from the 
physical features of artifacts they create.  

    We focus on a foundational inference in this 

domain:  Inferring whether social transmission of ideas has 

occurred (i.e. imitation, copying), or whether a particular 

aspect of a design was generated independently by an 

individual. The interaction of these two basic processes, 

termed imitation and innovation, account for cultural 

evolution of artifacts’ designs over human history (Henrich, 

2015; Tomasello, 1999; Legare & Neilsen, 2015). This 

inference also has real-world applications for understanding 

plagiarism detection – and what can be reasonably expected 

of jurors in plagiarism cases as they consider two designs and 

determine the likelihood that copying has occurred. Lastly, 

this inference is foundational to understanding how people 

infer social-causal information from artifacts, since designs 

that were created independently license different inferences 

than those that were copied. For example, a highly functional, 

complex design that was independently generated may tell 

you about the intelligence or creativity of a designer 

(Gosling, 2008), whereas a design that was copied may 

instead be informative about the designer’s social history and 

cultural group (their source of shared knowledge; e.g. 

Schachner et al., 2018; Soley & Spelke, 2016). Thus, in the 

current work, we model and test how people infer whether or 

not copying (social transmission) occurred in the design of an 

artifact. 

Inverse Planning, Or a Simpler Cognitive Process?  

A natural alternative theory exists to the rich and structured 

explanation-based reasoning process proposed by inverse 

planning models. People may infer that copying occurred 

457

mailto:ehurwitz@ucsd.edu
mailto:timbrady@ucsd.edu
mailto:schachner@ucsd.edu


using a simple heuristic based on perceptual similarity: If two 

things are more perceptually similar, then copying is more 

likely to have occurred. Notably, past work on detection of 

copying in music has relied on this type of simple similarity 

metric in formal models, to predict jury decisions in music 

plagiarism cases (Savage, Cronin, Müllensiefen, & Atkinson, 

2018). 

     In contrast to these straightforward similarity-based 

models, other work has provided initial evidence that people 

detect copying via a more complex process of inverse 

planning or explanation- based reasoning (Schachner et al., 

2018). In particular, this work found that people expect others 

to have a preference for efficiency, and factor this in when 

making inferences about copying. Thus, when two characters 

create identical train track designs that are also highly 

efficient ways to achieve the intended goal, observers use 

efficiency to ‘explain away’ the similarity – and thus judge 

copying less likely for identical efficient tracks than they 

would otherwise. 

     While this work is suggestive of a system of inverse 

planning, it is possible (and even plausible) that 

understanding of efficiency is unique and privileged in 

people’s reasoning. Reasoning about efficiency, and 

expecting others to act rationally by moving efficiently 

toward their goals, is thought to be foundational to cognition: 

It develops early in infancy (Gergely, Nádasdy, Csibra, & 

Bíró, 1995, Skerry, Carey & Spelke, 2013), is shared with 

other species (Hauser & Wood, 2010), and is a foundation for 

the entire domain of action understanding (Dennett, 1987; 

Baker et al. 2009). Thus, rather than showing a rich and 

flexible process of reasoning that takes into account a wide 

variety of alternative explanations (as proposed by inverse 

planning models), the evidence thus far is consistent with a 

much simpler system, in which similarity metrics are 

selectively overridden by privileged efficiency-based 

explanations. 

The Current Work  

In the current work, we test whether people use a rich and 

flexible process of inverse planning that takes into account 

alternative explanations that go beyond efficiency. In 

particular, we ask whether people rationally consider two 

factors: the range of materials available to build with, which 

we term the availability constraint; and whether each of the 

available materials would function or fail to function to solve 

the problem at hand, which we term the functional constraint. 

Rationally speaking, if a larger set of materials are available 

to choose from, similarity should be seen as stronger 

evidence of copying than if there is a smaller set of materials 

available to choose from (as the probability of selecting the 

same item by chance is lower; similar to the suspicious 

coincidence mechanism sometimes referred to as the ‘size  

principle’; Tenenbaum & Griffiths, 2001). Similarly, if many 

of these materials would solve the problem, similarity is more 

indicative of copying than if only one or a few of the options 

would solve the problem at hand – as clearly non-functional 

materials are unlikely to be used. We first formalize these  

 

    
Figure 1: Left: Tool selection task with example handles 

(which differ in color), and rods (which differ in shape and 

therefore functionality). Right: Example of two identical 

tools people might be shown on a particular trial. 

 

constraints and then experimentally test their usage when 

people make copying inferences.  

An Inverse Planning Model of Copy Detection 

To provide a clear test of the inverse planning account, and 

tease it apart from simpler alternatives, we model and test a 

simple artifact-building task which crucially involved both 

availability and functional constraints. Consider a scenario 

where one is asked to solve a puzzle: A button is out of reach 

in a box, with the front covered by glass, so only the hole in 

the top allows access. You must build a tool to reach the 

button. To do so, you are given two sets of pieces: 10 handles, 

which differ by color; and 10 rods, which differ by shape. 

You can connect one handle to one rod to form a two-part 

tool (see Figure 1). 

     You may be asked to solve one of two puzzle boxes, which 

differ in one respect: How many of the rods would work to 

solve them. In particular, for one box, all of the 10 rods would 

fit through the box’s circular hole and solve the puzzle 

(unconstrained; circle box). In the other case, only 1 of the 

10 rods fits (only the star-shaped rod fits into the star-shaped 

hole), and so only 1 of the 10 rods can be used to solve the 

puzzle (constrained; star box). This box thus introduces a 

functional constraint that applies selectively to rods, and not 

handles (which would all function in both cases). 

     Now, you observe two tools that other people have made: 

for example, two people built the same tool, choosing the 

same star-shaped rod and the same red handle. How likely are 

they to have copied each other? This task provides a simple 

instantiation of relevant issues people confront when making 

complex decisions about copying through inverse planning: 

Reasoning about the range of materials available to the 

builders; which pieces would work; and a multi-part decision 

process (choose a handle, choose a rod). 

     Formally, we can think of this task as having the following 

structure: You see a tool built by person 1, and a second tool 

built by person 2, in order to solve a puzzle box. You wish to 
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infer whether person 2 copied the tool’s design from person 

1, or independently created it. 

     Each tool consists of two pieces linked together – a rod, r, 

and a handle, h – each of which was selected from the set of 

available options. Formally, you are asked to make an 

inference, where if c indicates whether person 2 copied 

person 1, you wish to infer the probability of copying 

 𝑃(𝑐|𝑟1, ℎ1, 𝑟2, ℎ2), given the observed rod and handle of 

person 1’s tool (𝑟1, ℎ1) and the observed rod and handle of 

person 2’s tool (𝑟2, ℎ2). Taking only the case of a rod being 

copied, and assuming copying judgments depend only on the 

rod and handle being identical or different (e.g., a binary 

notion of similarity), the posterior on copying is: 

𝑃(𝑐 ∣ 𝑟1, 𝑟2) =
𝑃(𝑐𝑟) 𝑃(𝑟2 == 𝑟1 ∣ 𝑐)

𝑃(𝑟2 == 𝑟1)
 

    This is the probability that copying has occurred, given 

your prior likelihood on copying and the relative likelihoods 

that such an overlapping design would be generated under 

each of the possible mechanisms (copying, c, vs. independent 

creation, ¬𝑐), where: 
𝑃(𝑟2 == 𝑟1) = 𝑃(𝑐𝑟) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 )

+ (1 − 𝑃(𝑐𝑟)) ( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) 

     In the current task this depends not only on the rod but on 

both the rod and handle, such that, when the rod is identical 

but the handle is not identical, this posterior on copying 

depends on 𝑃(𝑟2 == 𝑟1 ∣ 𝑐, 𝑟1), 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ), 

𝑃( ℎ2 ≠ ℎ1 ∣∣ 𝑐 ), and 𝑃( ℎ2 ≠ ℎ1 ∣∣ ¬𝑐 ). This has the 

structure of a Bayes net, including the key concept of 

explaining away: A given aspect of the design can be 

generated either via copying or independently, and evidence 

for one provides evidence against the other. Thus, if two 

people create identical tool designs, but this design is also 

likely to be created independently (due to either availability 

constraints or functional constraints), this provides weak 

evidence of copying despite the identical tools. 

    To make this model concrete, we need to specify 5 things:  

      (1) 𝑃(𝑐𝑟), 𝑃(𝑐ℎ)  - the a priori estimate of how likely 

person 2 was to have copied either the rod or handle 

(unconditional on the data; i.e. before we see either of the 

built objects). This depends for example on how close or 

distant the two people are from one another (Schachner et al., 

2018). We assume the chance of copying is identical and 

independent for both rods and handles, e.g. 𝑃(𝑐𝑟) == 𝑃(𝑐ℎ), 

and refer to this as 𝑃(𝑐), the prior on copying. 

      (2) 𝑃( 𝑟2 == 𝑟1 ∣∣ 𝑐 ) - the likelihood of the particular rod 

being used by person 2 matching that of person 1, given that 

person 2 was in fact copying from person 1’s object. We 

formalize this as perfect copying plus a small error rate term, 

e, to account for the rate at which an individual might intend 

to copy but ultimately select a different rod:  𝑃(𝑟2 == 𝑟1 ∣
𝑐) = 1 − 𝑒. Therefore 𝑃( 𝑟2≠𝑟1 ∣∣ 𝑐 ) = 𝑒. 

     (3) 𝑃( 𝑟2 == 𝑟1 ∣∣ ¬𝑐 ) - the likelihood of rod 𝑟2 being the 

same as 𝑟1, given that person 2 was NOT copying from 

person 1’s object, and independently generated the object 

with no reliance on 𝑟1. When all pieces would function, this 

is simply 1/R, where R is the total number of rod choices 

available. However, functional constraints also affect this 

factor: When only a subset of pieces will function, this 

effectively reduces the number of reasonable options. 

Accordingly, in the context of a functional constraint, the 

model treats only the functional pieces as options, reducing 

the value of R to the number of functional options (if only 

one rod functions, R=1). 

     4) 𝑃( ℎ2 == ℎ1 ∣∣ 𝑐 ) - the likelihood of the particular 

handle being generated by person 2, given that person 2 was 

in fact copying from person 1’s object, and given ℎ1. This 

again is based on the same error rate e. 

      (5) 𝑃( ℎ2 == ℎ1 ∣∣ ¬𝑐 ) - the likelihood of handle ℎ2 

being the same as ℎ1, given that person 2 was NOT copying 

from person 1’s object, and independently generated the 

object with no reliance on ℎ1. In contrast to the rods above, 

the handles differ only in color rather than shape; thus, all 

handles function equally well in both the unconstrained 

(circle box) condition, and the functionally constrained (star 

box) condition. This is therefore simply 1/H, where H is the 

number of handle options. 

Comparing to Simpler Alternatives  

This model of inference as inverse planning posits that people 

consider both the number of available options and the 

functional constraint of the puzzle box when judging whether 

copying occurred. To test whether each of these components 

are needed to predict participants’ judgments, we compared 

this model to three simpler models. 

     These models followed a 2x2 structure, either taking into 

account or not taking into account the availability constraints 

(+/- availability) or the functional constraints (+/- 

functional).  For example, the model that considers 

availability constraints but ignores functional constraints 

does not take into consideration the functional constraint of 

the star box, e.g., assumes people choose among all rods even 

in the star box condition. The model which ignored 

availability constraints did not take into account the number 

of pieces available in a flexible way. Instead, this model 

posited that people had a fixed a-priori idea of the number of 

pieces available to choose from, and that this number did not 

change based on the situation presented. Thus, rather than 

choose a rod with 1/R, where R is the number of options, a 

parameter N quantified this fixed number of imagined 

choices (e.g., regardless of how many were present). This 

model did take into account the functional constraint of the 

star box (assuming people only choose the star rod in this 

case). A final simplified model ignored both functional and 

availability constraints, and thus effectively instantiated a 

simple perceptual similarity heuristic. This model only took 

into account the extent to which the pieces were similar, 

without taking into consideration either functional constraints 

or availability constraints. 

Testing the Models’ Predictions  

These models make quantitative predictions about the 

likelihood of copying for any given pair of tool designs, in a 

wide range of contexts. We next aimed to test how well the 

various models predict human behavior. The inverse 
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planning model predicts that for two identical tools, people 

will infer that copying is more likely to have occurred when 

(a) there were more pieces available as options to build with, 

thus creating more of a suspicious coincidence that the same 

piece was chosen twice; (b) there were no functional 

constraints on which pieces would work or not work, thus 

allowing all of the available pieces to serve as equally good 

options. By contrast, the simplest perceptual similarity model 

predicts that any identical objects will lead people to infer 

copying. Thus, we focused our data collection on these and 

other particularly informative trials.  

Method 

Full study design/analysis plan including model code was 

preregistered on the Open Science Framework (OSF), and is 

available at https://osf.io/y8u7t.  

Participants 

Using a pre-registered design, N=108 adults from the U.S. 

(57 male, 50 female, 1 other gender identity; M age=37.9, 

SD=10.9, range=20-72) were recruited through Amazon’s 

Mechanical Turk. Sample size was preregistered and 

determined from power analysis of a pilot dataset with a 

slightly different design (N=20; tested a subset of the current 

test trials; with each subject completing all trials). The R 

“pwr” package was used to conduct a paired t-test power 

calculation on participant-level BICs with the goal of 90% 

power (Champely et al., 2018). Based on pre-registered 

exclusion criteria, additional participants were excluded due 

to: 1. Appearing to be non-native English speakers or a bot 

(n=13; determined by 2 independent coders’ rating of free-

response text answers) 2.  Incorrectly answering any memory 

check question (n=49) 3. Incorrectly answering 50% or more 

of the attention check questions (n=12). The number of 

participants failing the preregistered memory check questions 

was higher than expected, thus we reanalyzed the data with 

these participants included, and found that our model results 

and conclusions remain unchanged in this case (see Results). 

Design 

Participants were shown tools that two target individuals 

designed, and were asked to judge whether or not one of those 

individuals copied the other’s tool. Across trials 

we manipulated (1) the number of rod options available (2 

versus 10); (2) the number of handle options available (2 

versus 10); (3) The presence or absence of a functional 

constraint, i.e. whether they were trying to solve the circle or 

star puzzle box; (4) The extent of similarity of the two tools 

that were built (both rod and handle identical, one part 

identical and one part different, or both rod and handle 

different). As all designers were assumed to have 

successfully solved the puzzle, we did not include trials in the 

star box condition which had different rods, as this would 

involve building a tool that would not function. Thus in total 

there were 24 unique test trials. Because of the possibility of 

demand characteristics if all participants saw the full design, 

each participant completed only a randomly-selected subset 

of 4 trials, resulting in 18 unique participants completing each 

trial.  

Procedure 

Participants first received instructions regarding the puzzle-

box task, and that they would see pairs of tools that people 

had built to reach the button. Instructions described an 

ambiguous situation, where copying may or may not have 

occurred (“While designing the tools the people were in the 

same room, facing away from each other”). They were 

instructed that different pairs of people had different numbers 

of handles and rods to choose from (10 or 2), received either 

the circle box or star box to solve, and that only one of the 

rod pieces could fit into the star-shaped opening.   

     On each trial, participants saw (1) the two tools that the 

two people had built; (2) which puzzle box the people were 

trying to solve; (3) the materials they had available to build 

with. Participants were asked to judge as a 2-alternative 

forced choice: Do you think someone copied, or they made 

them independently?  

     After each trial, an attention check question asked either 

what puzzle box was present, the number of rod options, or 

number of handle options. At the end of the task, memory 

check questions asked participants to select which rods would 

work, and which handles would work, to successfully solve 

each of the two puzzle boxes. Lastly, participants were asked 
to describe what they did in the experiment and guess the 

point of the study in free-response format, and complete 

demographics questions. 

Analysis Plan 

For each model, the best fitting parameters and likelihood of 

our data given those parameters were assessed via maximum 

likelihood estimation (MLE). We decided a priori that the 

prior on copying (range:  0-1) and number of imagined 

choices (for models that do not use the real number that 

participants were presented with; range 0-infinity) should be 

fully free to vary, while the copying error rate e was bounded 

from 0 to a maximum of 0.1. For all models, using this a priori 

specification, the MLE-derived value for the copying error 

rate was at max (0.1). To make sure this boundedness was not 

responsible for our findings, we also reran analyses letting the 

error rate parameter vary (0-1), and found the same results for 

comparative model fits in this case. To compare models, we 

use BIC (Schwarz, 1978), which penalizes models for 

complexity according to their number of parameters. We used 

bootstrapping to calculate standard errors (SEs) for each BIC. 

Results 

We first checked that participants took into account the 

perceptual similarity of designs in their assessments of 

copying, as predicted by all four models. As expected, 

participants inferred copying most often when the two tool 

designs were identical (M=51.4%, SEM=9.8%), and least 

often when the two tools were most different (M=5.6%, 

SEM=2.3%; p<.01).  
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Table 1: Maximum likelihood parameters for each model 

 

Model Copying 

Prior, p(c) 

Error 

Rate 

Imagined 

# Options 

+Availability +Functional 0.09 0.10  

+Availability -Functional 0.06 0.10  

-Availability +Functional 0.09 0.10 5.31 

-Availability -Functional 0.11 0.10 2.76 

 

We next compared the fit of the four alternative models. 

The full model out-performed all competing models, with a 

difference in BIC of 35 (∓ SEM: 11-25) in comparison to the 

next-best-fit model and >400 to the other models (Table 2). 

Approximately the same results held when including 

individuals who failed the memory check: difference in BIC 

of 38 to next-best-fit model and >700 to the other models. In 

addition, the full model provided a good overall fit to 

participants’ responses across trials (R2= 0.75, Fig. 2A). 

   Note that while the model is relatively straightforward to 

specify, the predictions it makes are quite nuanced: because 

the model weighs and combines several factors, it predicts a 

continuous gradient of how likely copying should be, rather 

than simply saying people should never assume copying took 

place if there is any alternative explanation. The model thus 

goes well beyond verbal theories.  

Use of Availability Constraints 

Participants’ judgements showed sensitivity to availability 

constraints (i.e. the number of pieces available to build with), 

and the use of availability constraints as an alternative 

explanation for similarity. For example, on trials where two 

people made identical tools and no functional constraint was 

present, participants judged copying more likely as the 

number of available options increased (circle box condition: 

2 rods; 2 handles: 33% judged copied; 2 rods, 10 handles: 

72%; 10 rods, 2 handles: 72%; 10 rods, 10 handles: 83%). 

Use of Functional Constraints 

Participants also showed sensitivity to functional constraints, 

and used functional constraints as an alternative explanation 

for similarity. In particular, on trials where two people used 

identical rods, participants judged copying less likely on 

trials where they were solving the star box (which added a 

functional constraint; Mean copied=21.5%), vs. when they 

were solving the circle box (Mean copied=52.8%, p=0.02, 2 

tailed t-test). In contrast, on trials where two people used 

identical handles, participants’ judgements did not differ for 

the star vs. circle box (Star box: Mean copied=36.8%, Circle 

Box: Mean copied=37.5%; p=0.97, 2 tailed t-test), as 

predicted since all handle pieces would function equally well 

for both puzzle boxes. Although the model without functional 

constraints did not perform that poorly as measured by BIC, 

it did systematically miss this aspect of the data (see also 

deviations of this model in Figure 2). 

 
Figure 2: Fit of models’ predictions to participants’ ratings 

of whether copying occurred; each point represents one trial. 

The full inverse planning model appears top left; other plots 

show three simpler alternative models that do not consider 

either the availability constraints (-availability) or the 

functional constraints (-functional). 

 

Table 2: Difference in BIC from best fitting model 

(higher BIC indicates worse fit) 

 

Model BIC Δ to 

full model 
∓ SEM 

+Availability -Functional 35 11 - 25 

-Availability +Functional 467 422 - 490 

-Availability -Functional 491 468 - 512 

 

Participants’ judgments deviated slightly from the full 

model’s predictions in one regard: Participants appeared to 

under-weight the similarity of the handles, relative to the 

rods. For instance, the largest deviations between 

participants’ judgements and the full model’s predictions 

came on trials when the tools had different rods, but the same 

handle. To demonstrate this differential weighing of the rod 

vs. handle, consider trials where there are an equal number of 

rod and handle options, no functional constraint, and the built 

tools had only one similar piece. On these trials, people were 

considerably more likely to say the design was copied if the 

rod was similar than if the handle was (2 options: 0% vs.17%; 

10 options: 17% vs. 56%).  Thus, participants seemed to 

overweight evidence from the functionally-relevant 

component of the tool, even when functional constraints were 

not present.  

Overall, however, the good fit of the inverse planning 

model – and the continuous range of predictions it makes – 
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supports the idea that participants use an inverse planning 

strategy in judging copying from artifacts. 

Discussion 

We find strong evidence that when reasoning about artifacts, 

people use a rich, flexible system of explanation-based 

reasoning to infer whether a design idea was copied or 

generated independently. We formalized such reasoning in a 

Bayesian model as a form of inverse planning. We compared 

this model to three simpler alternatives in a task where 

participants had to judge whether a pair of artifacts was 

copied or designed independently, to test whether each 

component of the full model was needed to predict 

judgments. 

     We found that the full inverse planning model best 

predicted participants’ judgments of whether copying had 

occurred. In line with the model, we found that people 

considered two broad classes of alternative explanations for 

artifacts’ similarity: the range of materials available to build 

with (availability constraints), and which of these materials 

would work to solve the problem (functional constraints). 

Both of these constraints ‘explained away’ similarity, making 

similarity weaker evidence of copying. This pattern of 

responses is the signature pattern of a Bayesian reasoner, in 

which a design can have different alternative explanations, 

and evidence for one provides evidence against the other 

(e.g., Gopnik et al. 2004).  

     The success of this model suggests people use a process 

of inverse planning to infer the source of design ideas from 

artifacts’ features. In other words, people consider the 

generative processes involved in building the artifacts, 

including what the goal would be, what constraints they 

would be subject to, and what (as a result) they would be 

likely to build. By inverting this generative process, people 

rationally infer the source of other people’s design ideas, 

taking into account goals and multiple kinds of constraints. 

    These findings show that inferences about the source of 

design ideas do not boil down to various simpler heuristics, 

or more limited systems of reasoning. First, copying 

judgments are not just based on the extent of perceptual 

similarity of the two objects, but take into account rational 

explanations for this similarity. This has implications for 

understanding how laypeople detect plagiarism in court 

cases, which has been previously formalized as a process of 

simple similarity detection (Savage et al., 2018). 

    Second, we show that this system of reasoning goes 

beyond efficiency: People can take into account multiple 

types of constraints as explanations for similarity, and are not 

limited only to reasoning about design efficiency as the only, 

privileged type of alternative explanation. This simpler 

efficiency-only account was consistent with previous 

findings, and plausible given the foundational role of 

efficiency in reasoning about intentional action (Schachner et 

al., 2018). The current data falsify this simpler account, 

showing that people flexibly take into account the materials 

available and the functional constraints of the puzzle boxes, 

which do not map to an efficiency metric (e.g. the length of a 

train track from A to B, used in Schachner et al., 2018).  

     More broadly, we provide evidence for a novel theoretical 

and formal framework for artifact cognition, as a form of 

inverse planning. Previous work has shown that people use 

inverse planning to understand the causal processes 

underlying others’ actions (Baker et al., 2009; Liu et al. 

2018). The current work extends this framework by 

conceptualizing artifacts as the products of intentional action. 

We suggest that people use fundamentally the same inverse 

planning process to understand artifacts as they do to 

understand actions themselves. Specifically, they rationally 

take into account people’s goals and constraints not only 

when observing actions, but also when observing artifacts 

generated by these actions – even when the actions 

themselves are not observed. This work thus links together 

artifact cognition and theories of action understanding in a 

new way, points to a deep connection between reasoning 

about actions and artifacts, and provides a foundation for 

formalizing the processes underlying a domain of ‘intuitive 

archeology’ – social-causal reasoning about artifacts, as 

products of intentional action. 
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