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Individual Differences in Ensemble Perception Reveal Multiple,
Independent Levels of Ensemble Representation
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Ensemble perception, including the ability to “see the average” from a group of items, operates in
numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of
ensemble representations is well established, the large-scale cognitive architecture of this process remains
poorly defined. We address this using an individual differences approach. In a series of experiments,
observers saw groups of objects and reported either a single item from the group or the average of the
entire group. High-level ensemble representations (e.g., average facial expression) showed complete
independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level
ensemble representations (e.g., orientation and color) were correlated with each other, but not with
high-level ensemble representations (e.g., facial expression and person identity). These results suggest
that there is not a single domain-general ensemble mechanism, and that the relationship among various
ensemble representations depends on how proximal they are in representational space.
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The natural world is rife with visual redundancy: For example,
any given blade of grass looks like many other blades of grass.
When seen as a group, overlapping features give rise to an unam-
biguously unified percept (e.g., a lawn). The visual system is adept
at exploiting such featural redundancy, creating compressed codes
in the form of summary statistics (Alvarez, 2011). Seeing the
average or statistical summary of a group, often referred to as
ensemble perception, is a robust phenomenon that operates across
a host of visual domains (Haberman & Whitney, 2012), including
orientation (Dakin & Watt, 1997; Parkes, Lund, Angelucci, Solo-
mon, & Morgan, 2001), size (Ariely, 2001; Chong & Treisman,
2003), position (Alvarez & Oliva, 2008), motion (Sweeney, Haroz,
& Whitney, 2012; Watamaniuk, 1993), speed (Watamaniuk &
Duchon, 1992), number (Burr & Ross, 2008; Halberda, Sires, &
Feigenson, 2006), and faces varying in emotion (Fischer & Whit-
ney, 2011; Haberman & Whitney, 2007) and identity (de Fockert
& Wolfenstein, 2009; Neumann, Schweinberger, & Burton, 2013).
Ensembles are represented across space and time (Albrecht &
Scholl, 2010; Haberman, Harp, & Whitney, 2009), are immune to
outliers (Haberman & Whitney, 2010), come in several statistical
forms (e.g., average, variance, and range; Dakin, 1999; Morgan,
Chubb, & Solomon, 2008; Solomon, 2010) and can be computed
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with minimal attentional effort (Alvarez & Oliva, 2008; Haberman
& Whitney, 2011).

The utility of an efficient ensemble perception system that is
separate from the object-based perceptual system has broad appeal
(Alvarez, 2011; Ariely, 2001; Haberman & Whitney, 2012). The
ease with which the visual system represents visual scene statistics,
such as orientation and color, may help to reconcile the contradic-
tory experience of a sense of visual completeness and the well-
established limitations of the representation of individual items
(e.g., change blindness, attentional blink; Raymond, Shapiro, &
Arnell, 1992; Rensink, 2004; Simons & Ambinder, 2005). Having
access to such global scene statistics may also be instrumental in
identifying relevant features, such as a visual pop-out (i.e., items
that differ substantially from the average; Duncan & Humphreys,
1989), and thus be relevant for guiding attention. Other, higher
level ensembles, such as the average expression of a crowd of
faces (Haberman & Whitney, 2007), may be critical for identifying
potential threats (e.g., the intention of the mob), can be useful for
assessing whether students are confused during a class lecture, and
is related to people’s level of social anxiety (Yang, Yoon, Chong,
& Oh, 2013).

The efficiency of ensemble perception, along with its breadth
and flexibility, has led researchers to propose the existence of
dedicated and specialized ensemble mechanisms. Evidence for the
existence of specialized mechanisms comes from the absence of a
set size effect (i.e., ensemble representation precision is fairly
constant regardless of the number of items in the set; Attarha,
Moore, & Vecera, 2014; Chong & Treisman, 2003, 2005; Haber-
man & Whitney, 2009), the speed at which ensembles may be
derived (as low as 50 ms), and the availability of ensemble
information even when individual item information is unavailable
(i.e., as undercrowded conditions or change blindness paradigms;
Fischer & Whitney, 2011; Haberman & Whitney, 2011; Parkes et
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al., 2001). Although there is some suggestion that ensemble rep-
resentation of size could potentially be explained by sampling just
one or two items from an entire array (i.e., not a specialized
ensemble mechanism; Myczek & Simons, 2008), there is substan-
tial evidence showing that many ensemble types are processed in
a manner akin to textures (Balas, Nakano, & Rosenholtz, 2009),
even when individual item information cannot be resolved (Fischer
& Whitney, 2011; Haberman & Whitney, 2011) and therefore
cannot be individually sampled. Further evidence of the special-
ized nature of ensemble perception comes from neuropsycholog-
ical work, which has revealed a preserved ability to represent the
average expression in patients with prosopagnosia (Leib et al.,
2012).

The seeming ubiquity of ensemble perception suggests that it is
a fundamental visual process; however, little work has focused on
exploring the functional organization of ensemble processing. Crit-
ically, it remains unknown how ensemble representations relate to
one another within the broader cognitive framework. Is there a
single, domain-general mechanism supporting all ensemble repre-
sentation subtypes, or are there multiple domain-specific mecha-
nisms at work?

In the domain-general view, an individual who can precisely
represent one feature, say, the average orientation of a set of
rotated gabors, should also precisely represent other features, such
as the average color and average facial expression. That is, there
should be a performance relationship among disparate ensemble
tasks. This framework has some appeal, as several investigators
view ensemble perception as a form of texture processing (e.g.,
Balas et al., 2009; Parkes et al., 2001). This could lead to consis-
tent ensemble performance across all domains, as observers’ per-
formance on ensemble tasks might depend largely on their general
texture processing ability. There is neuroimaging evidence to
support this view, showing ensemble-specific neural adaptation for
different stimulus types in regions associated with texture process-
ing (Cant & Xu, 2012). Rather than being based on texture pro-
cessing, a domain-general mechanism could also be a dedicated
and centralized “ensemble processor,” agnostic to visual domain,*
receiving and averaging individual item information from multiple
sources (e.g., orientation, spatial frequency, global motion). In
fact, it is possible that a single shared mechanism underlies many
forms of statistical processing, including both ensemble processing
and statistical learning (Zhao, Ngo, McKendrick, & Turk-Browne,
2011).

The alternative, domain-specific framework suggests that there
are multiple ensemble processors specific to each type of visual
domain. In other words, there are separate “units” for extracting
average orientation, average person identity, and so forth. At the
limit, there could be an independent “ensemble mechanism” for
every separable kind of feature information, if the ability to per-
form ensemble processing (e.g., extract an average from a set) is a
basic characteristic of the coding scheme employed by the visual
system. For example, ensemble processing could arise from pool-
ing mechanisms that operate locally, and thus only over specific
sets of features (e.g., with some units pooling over low-level
orientation-tuned cells, and other units pooling over higher level
cells tuned to facial features, and so on). These pooling regions
would act as separate ensemble mechanisms for every kind of
feature.

To address whether ensemble processing is supported by a
domain-general or domain-specific mechanism(s), we employed
an individual differences approach. Individual differences para-
digms are particularly useful for addressing questions of cognitive
architecture because they capitalize on the inherent variability
present in a population sample. Although such studies are tradi-
tionally used to identify clinically relevant subsamples (e.g., au-
tism spectrum disorders), they are also well suited to explore the
functional organization of cognitive processing (Huang, Mo, & Li,
2012; Underwood, 1975; Wilmer, 2008). By examining how per-
formance on different tasks correlate (e.g., Is skill at ensemble
orientation judgments correlated with skill at ensemble face judg-
ments?), we can infer whether such processes are likely supported
by the same underlying mechanism or independently operating
mechanisms.

In Experiment 1, we explore the relationship between averaging
person identity and averaging gabor orientation, because these
stimuli are bookends in representational space—faces are high-
level, meaningful stimuli, whose appearance depends on config-
ural processing of multiple features (Maurer, Grand, & Mondloch,
2002; McKone, 2004; Tanaka & Farah, 1993); gabors are a low-
level stimulus, optimized for mimicking the response properties of
V1 simple cells (Daugman, 1980; Marcelja, 1980). Ample evi-
dence has also demonstrated ensemble face processing as dis-
tinctly high level. For example, average emotion performance is
disrupted when sets are inverted (Haberman & Whitney, 2009),
and sophisticated social information such as the average direction
of eye gaze is readily available (Sweeny & Whitney, 2014).
Should these high-level versus low-level tasks be highly corre-
lated, it would be the strongest test of the claim that ensembles are
supported by a single, domain-general mechanism. If, however,
they were not correlated, it would be an indication that different
ensemble representations are at least partly independent.

In addition to exploring the relationship among different ensem-
ble domains, Experiment 1 was designed to test the relationship
between individual item representation and ensemble representa-
tion. Characterizing this relationship addresses whether individual
item representations and ensemble representations share a com-
mon source of noise (Alvarez & Oliva, 2008), which need not be
the case if they are computed over different features. For example,
it is also possible that average size is computed indirectly using
global spatial frequency information and an estimate of item
number (i.e., bypassing any measures of individual item size;
Seti¢, Svegar, & Domijan, 2007), in which case the precision of
individual size and average size representations could be com-
pletely independent. Alternatively, it is possible that average fea-
tures are computed directly from estimates of individual feature
values (Alvarez & Oliva, 2008), in which case the precision of
item representations and ensemble representations would be highly
correlated. By testing representations at both the individual and
ensemble levels, Experiment 1 allowed us to examine this issue
using an individual differences approach.

1 By “domain,” we mean stimulus category. We use “within domain” to
refer to processes related to a single category type (e.g., faces), whereas we
use “across domain” to refer to processes related to multiple category types
(e.g., faces and oriented gabors).
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In Experiments 2 through 8, we explore a wide range of feature
domains, from low-level features (orientation and color) to high-
level features (person identity, emotional expression). Tasks that
are uncorrelated point to independently operating mechanisms,
whereas tasks that are correlated are at least consistent with the
idea that a common mechanism supports those tasks. To preview
the results, we find that ensemble perception tends to be correlated
among high-level features (person identity, emotional expression)
and among low-level features (e.g., orientation and color), but not
between high-level and low-level features (e.g., identity and ori-
entation). Together these results suggest that ensemble perception
is not supported by a single, monolithic statistical processing
mechanism, and that the architecture of ensemble representation
shows a division between low-level and high-level ensemble pro-
cessing.

Experiment 1

In the first experiment, the items were either faces that varied
continuously in identity, or gabors that varied continuously in
orientation (see Figure 1). Participants adjusted a test item to
match the average of all the items in the set, or to match a single
individual from the set. The objective of these experiments was to
(a) determine whether separate ensemble mechanisms exist for
different stimulus domains, and (b) determine how ensemble rep-
resentations relate to individual item representations. Because one
of our goals was to compare ensemble representations with indi-
vidual item representations, it was important to monitor for eye
movements. For example, if observers fixated the cued individual
item, the representation of the item in the individual task would be
viewed in the fovea, whereas most (or all) items in the ensemble
task would be viewed peripherally. This discrepancy could artifi-
cially decrease any correlation between performance on the indi-
vidual and ensemble tasks, particularly if different observers ad-
opted different eye-movement strategies. Thus, to enable a direct
comparison between individual and ensemble representations, ob-
servers were required to maintain fixation for both tasks and eye
position was tracked using an eye-tracker. Thus, Experiment 1 was
run in the lab with eye-tracking. Subsequent experiments (2
through 8) focused on comparisons between ensemble tasks only,
in which eye movements were not an issue, and were run online,
where a much larger sample could be recruited.

HABERMAN, BRADY, AND ALVAREZ

Method

Participants. Fifty-five affiliates of Harvard University, ages
18 to 35 years, participated in this study. Informed consent was
obtained for all participants, who were compensated for their time
and had normal or corrected-to-normal vision. This research was
approved by Harvard University’s institutional review board.

Stimuli and design.  Stimuli were oriented gabors and identity
face morphs. Gabors were generated using Psychophysics Toolbox
(Brainard, 1997) in MATLAB (94% max Michelson contrast, 1.15
c/deg). Faces were 360 linearly interpolated identity morphs, taken
from the Harvard Face Database, of three distinct male faces
(A-B-C-A; see Figure 1), generated using MorphAge software
(version 4.1.3, Creaceed). Face morphs were nominally separated
from one another in identity units, which corresponded to steps in
the morph space. Prior to morphing, face images were luminance
normalized. Both orientation and identity were circular stimulus
spaces, with orientation spanning 180° (e.g., leftward and right-
ward gabors were identical) and face identity spanning 360°. All
stimuli in this and future experiments were presented in grayscale.

In a block design, observers viewed either four gabors varying
in orientation (always =5° and =15° around the mean orientation)
or four faces varying in identity (always *+10 and =30 identity
units around the mean identity). These parameters were selected
based on pilot studies, with each item in a given set exceeding at
least one just noticeable difference. Differences in discriminability
among the stimulus sets was not explicitly controlled for, although
some of these differences are attributable to the fact that orienta-
tion space ranges from 0 to 180°, whereas the face space ranges
from 0 to 360°. Each individual item subtended 4.3° X 4.3° of
visual angle. Each set contained four items, with one item appear-
ing in each quadrant 3° from fixation. The entire set subtended
8.6° X 8.6°.

Eye-tracking was employed to ensure observers maintained
fixation throughout the trial using an Eyelink 1000 (SR Research
Ltd.). Trial completion was fixation contingent; when observers
broke fixation, the trial was terminated and observers were re-
quired to repeat the trial.

Procedure. Observers’ task was to report the identity of an
individual object, or the average identity of a group of objects. The
objects were either faces drawn from the face wheel or oriented
gabor patches (see Figure 1). Observers completed four tasks in

Figurel. Stimuli consisted of morphed faces or rotated gabors. The faces were morphed continuously between
three different individuals to create a circular identity morph space.
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separate blocks: judging the orientation of an individual gabor,
judging the identity of an individual face, judging the average
orientation of a set of four gabors, and judging the average identity
of a set of four faces. In the individual tasks, observers were cued
to a single item and asked to judge its identity or orientation (see
Figure 2). In the ensemble tasks, observers were cued to all four
items, and asked to judge the average identity for faces, or the
average orientation for gabors. After 1 s, the set was replaced with
a single test item at the center of the screen. Observers used the
mouse to adjust the test stimulus to match either the individual or
the average, depending on the cue. Moving the mouse continu-
ously in one direction altered the appearance of the stimulus, either
rotating the gabor or changing the identity of the face morph
(although the mouse cursor was invisible). The advantage of the
continuous report paradigm employed here is that it provides a
direct measure of how accurately the individual or ensemble was
perceived.

The order of blocks was counterbalanced across observers using
a balanced Latin square, which controls for first-order carryover
effects. Because this was an individual differences design, we
wanted to minimize performance differences caused by trial order
effects, and therefore the trial order within blocks was fixed to a
single random order used for each participant.

1000 ms

1000 ms

G
&y

Figure 2. Experiment 1 tasks. Observers were presented with four faces
(top) or four gabors (bottom) while they maintained fixation at the center
of the screen. In the individual judgment condition (left), observers had to
adjust the test face or the test gabor to match the cued individual and ignore
the other items. In the ensemble judgment condition (right), all four items
were cued, and observers had to adjust the test item to match the perceptual
average of all four of these items.
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To enable us to compute reliability estimates using Cronbach’s
alpha, observers saw a total of 20 unique face sets and 20 unique
gabor sets 8 times each (4 times in the individual condition, 4 times
in the ensemble condition). The sets were equally spaced across
the span of the stimulus set.

Before the experiment began, observers performed 32 practice
trials (eight in each condition) with feedback to ensure they un-
derstood task instructions. Observers then performed 80 test trials
in each of the four conditions, for a total of 320 test trials.

Data analysis. Our primary interest is the degree to which
individual observers’ performance in different tasks correlate with
one another. However, the correlation observed between two vari-
ables is limited by the reliability with which those variables are
measured. In general,

Mmaxxy = "V (o X 0‘y) 1)

where « is the measure of reliability. The maximum observable
correlation between x and y is equal to the geometric mean of the
reliabilities with which they are measured (i.e., the square root of
their product). Thus, reliability places a bound on the maximum
observable correlation (Nunnally, 1970), and therefore must be
taken into account when comparing correlations across tasks.

We computed reliability for each task using Cronbach’s alpha
(Cortina, 1993; Cronbach, 1951). Cronbach’s alpha is a measure of
internal consistency, increasing as the intercorrelations among
items (i.e., the 20 unique displays) increases.

We report the observed correlation value for each pair of tasks
as well as each tasks’ reliability. One could also report the adjusted
correlation, which estimates the correlation between tasks x and y
by taking their reliability into account (defined as the ratio between
the observed correlation and the maximum observable correlation
determined by the reliability). However, such adjustments rely on
assumptions that are difficult to validate (e.g., accurate estimates
of reliability), and also tend to obscure the raw, observed results.
We find that our results with the adjusted correlations are quali-
tatively identical to those with the unadjusted correlations. Thus, in
the interest of simplification and transparency, we report the ob-
served correlation values only.

Results and Discussion

For each observer and condition, we calculated the mean abso-
lute error, which can be used as an index of how precisely
information was represented. Smaller absolute error suggests a
more precise representation. Observers whose performance was
2.5 standard deviations worse than average performance on any
task were excluded from analysis, resulting in N = 47. Five of the
eight excluded had error distributions that did not differ from a
uniform distribution, as determined by a modified Rayleigh test
(Durand & Greenwood, 1958; Fisher, 1995)—an indication that
they were randomly guessing.

Performance was highly reliable for all tasks, as measured by
Cronbach’s alpha (Cortina, 1993; Cronbach, 1951): individual
orientation, a = .80; ensemble orientation, a = .86; individual
face, « = .76; ensemble face, « = .84. These high Cronbach’s
alpha values suggest that our displays were internally consistent
and that our measures were reliable. These reliabilities place limits
on the maximum observable correlations, such that we should not
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expect to see correlation values above approximately 0.80
(range = 0.78 to 0.85), even if our tasks were tapping an identical
underlying mechanism.

Our primary analysis focuses on the correlation in performance
across participants for each pair of tasks (see Figure 3). As shown
in the bottom panel of Figure 3, there was a strong, significant
correlation within feature domains, both for orientation (individual
orientation task vs. ensemble orientation task, r = .43, p < .01;
95% confidence interval [CI] [0.17, 0.63]) and for faces (individ-
ual face task vs. ensemble face task, r = .76, p < .01; 95% CI
[0.61, 0.86]). In contrast, the top panel of Figure 3 shows that the
correlations across feature domains (orientation task to face task)
were weak both for individual judgments (individual orientation
vs. individual face, r = .04, p = .81; 95% CI [-0.25, 0.31]), and
for ensemble judgments (ensemble orientation vs. ensemble face,
r=.05p=.72; 95% CI [—0.23, 0.34]). Thus, accurately seeing
the average facial identity does not predict an observers’ ability to
accurately see the average orientation.

To verify that the correlations within a feature domain were
stronger than the correlations across feature domains, we em-
ployed a statistical test that allows comparisons between correlated
correlation coefficients (Meng, Rosenthal, & Rubin, 1992). To

compare r,, with r,,, it is necessary to take into account the fact
that both correlations share one variable. Thus, using this test, we
can ask whether the ensemble orientation task is more strongly
correlated with the individual orientation task or the ensemble face
task. These statistical tests confirm that both within-domain rela-
tionships (bottom of Figure 3) were stronger than both across-
domain relationships (top of Figure 3; all z scores = 2.17, all p
values < 0.05). The lack of relationship across domains suggests
the presence of separate, independently operating, ensemble mech-
anisms for average identity and average orientation.

The remaining relationships for individual orientation versus
ensemble face and individual face versus ensemble orientation
were not significant (r = —0.12 and r = .14, respectively). The
lack of correlation between these tasks mitigates any concerns that
the strong within-feature correlations are explained by general
factors, such as intelligence or overall effort. Such factors would
have produced significant correlations even for these across-
domain, across-task measures.

This experiment provides evidence that the performance on
ensemble tasks can be predicted from performance on individual
tasks. However, because the present study is correlational, the
cause of this relationship is unknown: We cannot conclude that

Weaker correlations across domain
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Figure 3. Results of the individual difference correlation analysis. Each point represents an individual
observer’s performance on the two tasks. Top panel: There was no relationship across feature domains;
performance on the individual gabor and individual face tasks was not related across observers, nor was
performance on the ensemble gabor orientation and ensemble face identity task. Bottom panel: There was,
however, a strong relationship within a feature domain, such that observers’ performance on ensemble perception
of face identity was related to their performance on individual face identity, and their performance on ensemble
gabor orientation was related to their performance on individual gabor orientation.
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ensemble judgments are the same as individual item judgments, or
that this correlation between individuals and ensembles is solely
caused by the precision of individual representations affecting the
precision of the ensemble representation. There is ample evidence
suggesting that ensemble computations are driven by distinct cog-
nitive processes (Ariely, 2001; Chong & Treisman, 2003), which
can even operate under conditions in which individual items can-
not be discriminated (i.e., crowding; Fischer & Whitney, 2011;
Parkes et al., 2001). Even when the items are discriminable,
psychophysical evidence suggests that averaging is an imperfect
and inefficient operation (Solomon, 2010; Solomon, Morgan, &
Chubb, 2011), above and beyond inefficiency in individual item
representation. Indeed, because the present work is correlational in
nature, it is impossible to know the directionality of information
transfer, and it is likely the case that the ensemble and individual
representations are mutually interactive (e.g., (Brady & Alvarez,
2011; de Fockert & Marchant, 2008; Hochstein & Ahissar, 2002),
for example, if observers’ reports of a particular face were affected
by the average of the set, this could induce a correlation between
individuals and ensembles. Nevertheless, the correlation between
individuals and ensembles in our task does suggest that there are
shared limits on individual item processing and ensemble process-
ing.

These data are also consistent with a domain-specific architec-
ture for ensemble representations, at least for stimuli that divide
along high- and low-level visual features. The ability to see the
average orientation of a set of gabors does not predict the ability to
see the average identity of a crowd of faces. Given that there is a
host of domains over which ensembles may be extracted, however,
the domain-specificity hypothesis requires additional experiments
using varied stimuli. In the subsequent experiments, we test a
range of visual domains to more fully characterize an ensemble
framework.

Experiments 2 Through 8:
Multiple Ensemble Domains

To example the relationships among a wide range of ensemble
feature domains, we deployed a series of experiments online using
Amazon’s Mechanical Turk (MTurk). Using MTurk allowed us to
recruit a large number of participants, and MTurk users form a
representative subset of adults in the United States (Berinsky,
Huber, & Lenz, 2012; Buhrmester, Kwang, & Gosling, 2011).
Data from MTurk are known to closely match data from the lab on
related tasks (e.g., Brady & Alvarez, 2011; Brady & Tenenbaum,
2013).

For each experiment, participants performed two ensemble
judgment tasks (e.g., average orientation and average color), and
the correlation in performance on those tasks across participants
was determined. Of principal interest was whether performance
would be uncorrelated for all pairs of tasks, suggesting that en-
semble processing is entirely domain-specific, or whether certain
pairs of tasks would be highly correlated. Identifying which tasks,
if any, tend to be correlated will provide key insight into the
cognitive architecture underlying ensemble processing.

Overview of Experiments

The basic task for each experiment was similar to the ensemble
task described in Experiment 1: Observers adjusted a test stimulus

to match the perceptual average of a group of objects. The indi-
vidual item adjustment task was not included in these experiments
because the relationship between the individual and the ensemble
was well characterized in Experiment 1, and because we could not
control for eye movements in the online testing environment;
without this control, there could be differences in the way in which
an individual item from the set was perceived (foveated) in the
individual task compared with the ensemble task. Instead, the
focus of these experiments was entirely on the relationships among
various ensemble representations. These experiments were de-
signed to span the visual hierarchy, offering the most complete
picture of the cognitive architecture of ensemble representations to
date.

Experiment 2: ldentity of individuals versus orientation of
gabors. This experiment was a direct replication of the ensemble
portion of Experiment 1.

Experiment 3: Emotional expression of faces versus color of
dots. This experiment examined another example of two ensem-
ble features (distinct from those used in Experiments 1 and 2) that
might be considered bookends in representational space: color and
emotional expression. Color is a basic low-level property that is
processed early and in parallel across the visual field (e.g., Wolfe,
1994), and has recently been identified as a basic ensemble feature
(Maule, Witzel, & Franklin, 2014). By contrast, processing faces is
a high-level process that involves holistic, configural processes
(e.g., McKone, 2004; Tanaka & Farah, 1993). Whereas Experi-
ment 1 examined processing of the identity of a face, the process-
ing of the emotional expression of a face is generally thought to
rely on different systems than those supporting the processing of
face identity (e.g., Bruce & Young, 1986), and thus provides
another, distinct example of a high-level visual property. In par-
ticular, there are different pathways for processing changeable face
properties, like expression and eye gaze, and invariant facial
properties, like identity (Haxby & Gobbini, 2011), and the pro-
cessing of emotional expression is known to involve different
neural mechanisms than identity perception (e.g., amygdala, in-
sula, striatum; Haxby & Gobbini, 2011). In addition, individuals
with prosopagnosia are often impaired at identity perception but
not emotion perception (Tranel, Damasio, & Damasio, 1988;
Young, Newcombe, de Haan, Small, & Hay, 1993). Thus, Exper-
iment 3 provided a different test of high-level versus low-level
ensembles properties.

Experiment 4: Orientation of triangles versus color of
triangles. Orientation and color perception are both available as
a result of low-level visual processing, with cells selective for both
color and orientation present at least as early as primary visual
cortex (e.g., Hubel & Livingstone, 1990; Hubel & Wiesel, 1962).
In this experiment, we correlated performance on ensemble ver-
sions of these two tasks. Triangles were used for both tasks, such
that in one block, observers were instructed to judge the average
orientation of the triangles, and in another block (identical in terms
of stimuli), they were instructed to judge their average color. This
design, combined with the designs of Experiments 5 and 6, allows
us to test whether the relationships among ensemble representa-
tions are dependent upon the visual feature itself (e.g., orientation),
the object within which that feature is embedded (e.g., triangles),
or some combination of both feature and object properties. Given
that both of these features are low level, and are even coded in
some of the same cells in primary visual cortex (e.g., Conway,
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2001), this experiment provides a particularly strong test of do-
main specificity.

Experiment 5: Orientation of gabors versus color of dots.
This experiment provides another test of the extent to which two
kinds of low-level ensemble processing might be related. Here we
examine the relationship between orientation and color with two
different types of objects providing the basis for the features
(gabors vs. dots) rather than both being present on the same object
(as with the triangles in Experiment 4).

Experiment 6: Orientation of gabors versus orientation of
triangles. In this experiment, observers performed ensemble
judgment tasks on identical visual features but with different
objects as the carriers of those features (orientation of gabors or
triangles). This design, combined with Experiment 4, helps to tease
apart whether the visual feature or the object itself determines the
relationships among ensemble representations. There is some rea-
son to believe the orientation of a gabor is stored and processed
differently than the orientation of a triangle. In particular, the
orientation of a gabor is a surface feature (determined by a texture
within a circular boundary), whereas the orientation of a triangle is
a boundary feature. Boundary representations are likely higher
level, as they seem to provide the access point to visual working
memory representations (e.g., Alvarez & Cavanagh, 2008), and
show more spatial heterogeneity across the visual field than non-
boundary judgments (e.g., Afraz, Pashkam, & Cavanagh, 2010),
which is a signature of how high-level feature processing is within
the visual system.

Experiment 7: Identity of individuals versus emotional ex-
pression of faces. In the same way that color and orientation are
considered low level, this experiment examined two high-level
ensemble feature domains (identity and emotional expression).
These feature domains are closely related, as they are both prop-
erties of faces, but are supported by ostensibly separate cognitive
and neural systems (Bruce & Young, 1986; Haxby & Gobbini,
2011). Finding a lack of correlation between these dimensions
would provide strong support for domain-specific hypothesis.

Experiment 8a: Orientation of high spatial frequency gabors
versus orientation of low spatial frequency gabors. In this
experiment, we compared two highly related ensemble tasks: av-
erage orientation of high- and low-spatial-frequency gabors. Given
these stimuli are nearly identical, we should observe a high cor-
relation. Thus, this experiment was used to establish a theoretical
ceiling on an observable relationship in an online testing environ-
ment. Unlike the r,,, which is estimated from the reliabilities of
each task, this task offers an empirical estimate of the upper bound
of r when observers are performing nearly identical tasks and are
doing so across two different blocks separated in time.

Experiment 8b: Orientation of gabors versus letter span.
In this experiment, we compared an ensemble task with a verbal
working memory task that depended only minimally on visual
processing and had no ensemble component. These tasks were
used to establish a theoretical floor on an observable relationship
in an online testing environment. Any relationship observed be-
tween these two tasks should reflect only correlations in general
factors, such as motivation, general skill at computer usage, work-
ing memory capacity, and so forth. By examining this relationship,
we can take these general factors into account.

Our letter span task used an adaptive procedure to determine the
letter span for each participant, an index of working memory
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ability that should not depend on ensemble processing or even
visual processing (e.g., Logie, Zucco, & Baddeley, 1990).

Method

Participants. For each experiment, 100 participants from the
United States were included. We chose 100 participants because
that number provides 92% power to detect a correlation of 0.3, a
value we considered to be importantly different from the null
hypothesis. Participants were excluded from final analysis if their
adjustment performance did not differ from a uniform distribution
(as described in Experiment 1). Therefore, different numbers of
participants were excluded from each experiment and replaced
with new participants (ranging from 0 to 35 depending on the task)
in order to achieve the desired N = 100. Informed consent was
obtained for all online volunteers, who were compensated $1.50
for approximately 10 min of their time. We did not prevent
participants from participating in more than one ensemble exper-
iment, although fewer than 10 observers overlapped between any
given pair of experiments. This research was approved by Harvard
University’s Institutional Review Board.

Stimuli.  Stimuli were gabors (medium-, high-, and low-
spatial-frequency versions), faces varying in identity, faces vary-
ing in expression, colored isosceles triangles, isosceles oriented
triangles (grayscale), and colored dots. Gabors were created in
Matlab’s Pscyhtoolbox (Brainard, 1997; Pelli, 1997). Stimuli were
all 250 x 250 pixels in size, but actual retinal image size depended
on participant viewing distance. Gabors and faces were identical to
those described in Experiment 1 (except the low-frequency gabors
had a spatial frequency of approximately 0.40 cycles/degree, and
the high-frequency gabors had a spatial frequency of approxi-
mately 1.8 cycles/degree; these values may have differed slightly
depending on a given observer’s screen resolution and distance
from the screen; however, what matters for our purposes is the
relative difference in spatial frequency between the two condi-
tions). The procedure for creating faces varying in expression was
the same as for identity, except the source faces were of a single
individual displaying either a happy, neutral, or sad expression
(Ekman & Friesen, 2003). Each facial expression was separated by
120 linear morph steps, so the face wheel comprised 360 unique
“expressive units.” All stimulus sets adhered to a circular space.

Variance of the sets was as described in Experiment 1. For
orientation judgments (gabors or triangles) and color judgments,
the set items were +5° and +15° from the mean. For face
judgments (identity or expression), the set items were =10° and
+30° from the mean.

Procedure. The task for all experiments, except letter span,
was to report the perceptual average of a group of objects. Each
participant saw two kinds of objects in a given experiment, as
described above. The objects were faces drawn from the “face
wheel” (identity or expression), oriented gabor patches, oriented
colored triangles, or colored dots drawn from a color wheel. On a
given trial, observers were shown four items and asked to judge the
perceptual average. The items appeared for 1 s and then disap-
peared. After 1 s, a single test item at the center of the screen was
shown. Observers used the mouse to adjust the object (e.g., the
orientation of the gabor or the identity of the face) to match the
average of the initial set. Moving the mouse continuously in a



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

INDEPENDENT LEVELS OF ENSEMBLE REPRESENTATION 439

circle would alter the appearance of the stimulus (e.g., rotating the
gabor or changing the identity of the face morph).

The letter span task differed from the other tasks. In the letter
span task, observers initially saw a sequence of three consonants
presented sequentially for 500 ms, with a 500-ms interstimulus
interval, and then typed those letters after a brief delay (1,000 ms).
If they remembered all the letters correctly two trials in a row, they
were shown one additional letter on the next trial. If they inserted
an extra letter or missed a letter that was presented two trials in a
row, they were shown one less letter on the next trial. The mean
number of letters they were shown throughout the task then served
as our estimate of their letter span.

Observers completed all trials of one kind (e.g., orientation of
gabors) before moving on to all trials of the other kind (e.g.,
identity of faces). The order of each pair of tasks was counterbal-
anced across individuals. Before an experiment began, observers
performed eight practice trials (four in each condition) with feed-
back to ensure they understood task instructions. Observers then
performed 60 test trials in each of the two conditions, for a total of
120 test trials.

Reliability for these tasks was assessed using Cronbach’s alpha,
as described in Experiment 1. Participants saw three instances of
each of the 20 unique ensemble sets (as opposed to four instances,
as was the case in Experiment 1). As before, we report the
correlation between observers’ performance on a given pair of
ensemble tasks.

Results

Analyses were carried out as described in Experiment 1. Each
participant’s average error (i.e., how far off participants were from
the true set mean on average) was calculated. The smaller the
average error was, the more precise was the ensemble representa-
tion. The relationships among each pair of ensemble tasks are
depicted in summary form in Figure 4 and Table 1, individually in
Figures 5 and 6, and schematically in Figure 7.

Our primary analysis focuses on the correlation in performance
across participants for each pair of tasks. The pattern that emerges
(see Figure 4) is a near absence of a relationship between high- and
low-level ensembles (e.g., average identity and average orienta-
tion; average expression and average color), juxtaposed with
strong correlations between low-level domains (e.g., color and
orientation) and high-level domains (face identity and emotion).

Performance was reliable for all tasks, as measured by Cron-
bach’s alpha (Cortina, 1993; Cronbach, 1951), with all but two
values ranging between 0.77 and 0.88 (the exception was for
averaging emotional faces and averaging color in Experiment 3,
with o of 0.63 and 0.68, respectively, although the very same
stimuli in Experiments 5 and 7 elicited higher reliabilities, o of
0.84 for emotional faces and « of 0.89 for color). Although
reliability places an upper bound on the observable correlation
between two tasks, we also employed a more conservative estimate
of this upper bound by empirically deriving the correlation be-
tween two highly related tasks (Experiment 8a): Average orienta-
tion of low-and high-spatial-frequency gabor sets. This experiment
allows us to estimate how large a correlation we could expect to
see hetween two tasks, given that they are limited in reliability and
they also occur in different blocks of the experiment several
minutes apart. The processing of the average orientation of high-
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Figure 4. Correlation between observers’ performance in each pair of
tasks (Experiments 2 to 7). Correlations between high- and low-level
features are in light gray (between levels), and correlations between either
two low-level or two high-level features are in dark gray (within levels).
The dashed line representing the expected ceiling on correlations is based
on the result of Experiment 8a, and the line representing the expected floor
on correlations is based on the result of Experiment 8b. The between-level
correlations were low, and neither was greater than floor. The within-level
correlations were higher in general and were significantly greater than floor
(with the exception of face-identity vs. face-emotion, in which the com-
parison with the floor was marginal, p = .10; * p < .01). See the online
article for the color version of this figure.

and low-spatial-frequency gabors showed a high correlation (r =
.73, p < .0001; 95% CI [0.62, 0.81]; Figure 5), establishing a
reasonable ceiling for how correlated we could expect any two
tasks to be. Note that, as expected, this correlation is below the
ceiling we would calculate if we only took into account reliability
(rmax = 0.88).

Whereas Experiment 8a established an empirical ceiling for the
correlation between two different tasks, Experiment 8b empirically
derived the expected floor. This experiment was designed to es-
tablish a floor by estimating the correlation between an ensemble
task and a task that does not require ensemble processing or even
significant visual processing (letter span). The correlation between
average orientation processing and letter span was 0.21 (p = .04;
95% CI [0.02, 0.39]). Thus, we can conclude that the expected
correlation for two unrelated ensemble processes should be ap-
proximately 0.21; that is, if two ensemble tasks do not share any
more processing than an ensemble task and a verbal memory task,
they should show a correlation of approximately 0.21.

With these bounds in mind, we can examine and contextualize
the correlations between the different ensemble tasks (Experiments
2 through 7). We find that the correlation between average identity
and average orientation (Experiment 2), stimuli putatively pro-
cessed by high- and low-level visual mechanisms, respectively, is
small (r = .16, p = .11; 95% CI [—0.04, 0.34]). This value was
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Table 1
Descriptive Satistics Across All Experiments
Task 1 Task 2
Format Experiment (Task 1 vs. Task 2) r Mean SD Mean SD
In-lab expts Ens. identity vs. Ens. oriented gabor 0.05 46.7 117 124 44
Ind. identity vs. Ind. oriented gabor 004 470 100 91 22
Ind. identity vs. Ens. identity 0.76° 47.0 100 46.7 117
Ind. oriented gabor vs. Ens. oriented gabor 0.43* 9.1 22 124 4.4
Online expts (all ensemble) Identity vs. Oriented gabor 0.16 476 127 155 65
Expression vs. Color circle 029 348 71 137 41
Oriented triangle vs. Color triangle 0.57% 105 44 144 6.0
Oriented gabor vs. Color circle 054* 143 69 143 47
Oriented gabor vs. Oriented triangle 0578 127 48 96 32
Identity vs. Expression 042 487 130 356 75
HF oriented gabor vs. LF oriented gabor 0.73* 141 6.7 126 64
Oriented gabor vs. Letter span 021 132 61 61 1.0

Note. All units are in 360° space, except orientation units, which are in 180° space, and letter span units, which
is the number of letters recalled. expts = experiments; Ens. = ensemble; Ind. = individual; HF = high spatial
frequency; LF = low spatial frequency.

2 Significantly above zero or floor for in-lab and online experiments, respectively.

significantly lower than our expected ceiling on correlations, as
determined by comparing Fischer z-transformed r values (p <
.001), but was not significantly different than our expected floor
(p = .72). This replicates the results of Experiment 1, showing the
disconnect between ensemble processing of low-level and high-
level properties.

In Experiment 3, examining two additional low- and high-level
domains (average color vs. average expression), we once again
found that the correlation was small (Experiment 3; r = .29, p =
.003; 95% CI [0.10, 0.46]). This value was significantly below our
expected ceiling on correlation (p < .001), but not significantly
greater than our expected floor (p = .59). Taken together, Exper-
iments 2 and 3 point to independent mechanisms supporting low-
and high-level ensemble representations. Gabor orientation and
face identity are no more correlated than an ensemble task and a
verbal memory task; similarly, ensemble perception of the average

Experiment 8a

color and average face expression are also no more correlated than
the two baseline tasks.

The relationship among ensemble tasks within their respective
high- and low-level domains revealed a very different pattern of
results (see Figure 4, dark bars). Low-level ensembles clustered
together (color, orientation), as did those that may be regarded as
high-level (i.e., the face expression task and the person identity
task). In particular, Experiment 4 revealed a strong and significant
relationship between average color of triangles and average orien-
tation of triangles (r = .57, p < .0001; 95% CI [0.43, 0.69]), a
value significantly above floor (p = .001), and marginally signif-
icantly different from ceiling (p = .05). Both ensemble features
appeared on triangles, allowing us to use identical sets of objects for each
ensemble judgment. However, this design leaves open the possibility that
these two ensemble tasks were related, because the features ap-
peared on the same object type and not because the ensemble

Experiment 8b
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Figure5. Results of Experiment 8. Each point represents a single observer’s performance on the two tasks. The
correlation between perception of low- and high-frequency gabors serves as our empirical ceiling (left), whereas
the correlation between a verbal memory task and the gabor orientation task serves as our empirical floor (right).
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Weaker correlations across high- and low-level stimuli
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Figure6. Scatterplots for Experiments 2 to 7. Each point represents a single observer’s performance on the two
tasks. The correlation values for these experiments are plotted separately in Figure 4. See the online article for

the color version of this figure.

representations themselves are related. We addressed this in Ex-
periment 5.

In Experiment 5, we once again tested ensemble representations
of color and orientation, but in this design, color appeared on sets
of dots and orientation appeared on sets of gabors. Replicating our
findings in Experiment 4, we found a significant correlation be-
tween color and orientation (r = .54, p < .0001; 95% CI [0.38,
0.66]), a value significantly above floor (p = .007), and signifi-
cantly below our ceiling value (p = .02). These data rule out the
idea that the correlation in Experiment 4 was driven by driven by

the fact that color and orientation appeared on the same object type
(triangles). Rather, this correlation suggests some overlap among
low-level ensemble representations in general. It is not the case,
however, that seeing the average color is mechanistically identical
to seeing the average orientation or that such data prove these two
features are processed by an identical and fully shared ensemble
mechanism. High correlations are consistent with the idea of a
shared mechanism but do not necessitate complete overlap in
processing; rather, another possible explanation for a correlation
between the two features is a shared source of noise. Although
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Figure 7. Schematized summary of Experiments 2 to 7. The correlations
have been converted to a “percent overlap” score, which normalizes the
correlation value to the empirically defined floor and ceiling, that is,
(" = o) (Nceiting = 1) * 100, so that values range from 0 to 100. There is
reliable overlap within low-level features and high-level features, but little
overlap between levels. See the online article for the color version of this
figure.

there are clearly well-defined and distinct cognitive mechanisms
supporting color and orientation perception (Hubel & Livingstone,
1990; Hubel & Wiesel, 1962; Wolfe, 1994), the current data
suggest that ensemble tasks on these stimuli share more variance
than, for example, orientation and person identity.

In Experiment 6, we had participants judge average orientation
embedded within two different object types: gabors and triangles
(see Figure 7). This design allowed us to explore whether stimulus
type influences the ensemble representation of a single feature
domain (orientation). Consistent with the previous experiments,
our results revealed a strong relationship between the average
orientation of triangles and the average orientation of gabors (r =
.57, p < .0001; 95% CI [0.42, 0.69]), again significantly above
floor (p < .001) and marginally significantly different than ceiling
(p = .05). These data suggest the precision of the representation of
the ensemble feature (i.e., average orientation) is consistent across
observers regardless of the object on which it appears. This is true
despite the fact that boundary features (like triangle orientation)
seem to be treated differently by the visual system than surface
features (like gabor orientation; e.g., Afraz et al., 2010; Alvarez &
Cavanagh, 2008).

High-level ensembles (i.e., the face expression task and the
person identity task) also clustered together. In particular, average
identity was significantly correlated with average expression (Ex-
periment 7, r = .42; p < .0001; 95% CI [0.24, 0.57]); significantly
lower than ceiling, p < .001). Although this correlation was only
marginally greater than our floor (p = .10), it was significantly
greater than the correlation between average identity and the gabor
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task (p = .05). These correlations thus suggest a stronger relation-
ship among high-level ensemble representations than between
high-level and low-level ensembles. The greater correlation ob-
served within low-level domains (mean r = .56) than within
high-level domains (r = .42) was not significant (comparing with
all within low-level experiments; all ps > 0.10). However, the
observed correlations do raise the possibility that there might be a
stronger relationship within low-level domains than within high-
level domains, perhaps related to greater overlap in the regions
responsible for primary processing of the low-level stimuli (e.g.,
primary visual cortex) compared with the two kinds of face infor-
mation (e.g., identity information in anterior temporal cortex and
emotion information in amygdala, insula, and striatum; Haxby &
Gobbini, 2011).

The results are summarized in the bar graph in Figure 4. This
visualization confirms the disparate nature of high- and low-level
ensemble representations. The correlation between ensemble rep-
resentations across disparate visual levels approach the theoretical
floor estimated in Experiment 8a (lower dotted line in Figure 4). In
contrast, the correlation between ensemble representations that are
closer in representational space are above floor and approach the
ceiling estimated in Experiment 8b (upper dotted line in Figure 4).
Finally, we schematize these results in Figure 7, normalizing the
correlations between floor and ceiling to highlight the relative
strength of the relationships between tasks.

General Discussion

To begin to define the functional organization of ensemble
perception, we employed an individual differences approach to
explore the relationships among various ensemble features. This
approach has proven useful for making distinctions between core
cognitive processes (Huang et al., 2012; Underwood, 1975; Vogel
& Awh, 2008; Wilmer, 2008), with tasks that are uncorrelated
suggesting independently operating mechanisms. Our results re-
vealed two examples of independence: between average identity
and average orientation, and between average expression and
average color, both of which highlight a lack of relationship
between high- and low-level ensembles. Interestingly, ensembles
tended to cluster within their respective high- and low-level do-
mains, such that putative high-level stimuli (e.g., individual iden-
tity and facial expression), as well as low-level stimuli (e.g., color
and orientation), showed high correlations. In addition, the results
of Experiment 1 revealed a strong relationship between individual
item representation and ensemble representation, suggesting that
these two processes are mutually dependent.

The independence between high- and low-level ensemble repre-
sentations offers the strongest evidence to date that ensemble percep-
tion is not a monolithic process. The correlation between average
identity and average orientation did not significantly differ from our
empirically derived correlational floor. The same was true between
average expression and average color. This points to the existence of
at least one major division in ensemble processing, with little to no
relationship between high- and low-level ensemble computations.

The relationships among ensemble features were considerably
stronger within their respective high- and low-level visual do-
mains. For example, judging the average identity in a crowd of
faces was related to judging the average expression from a differ-
ent crowd of faces. Likewise, judging the average orientation of a
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set of gabors was related to judging the average color of a set of
dots, and judging the average orientation of triangles was related to
judging the average color of those same triangles. These experi-
ments show that the relationship between two ensemble features
persists regardless of how it is presented (i.e., on different objects
or within the same object). Furthermore, the strong relationship
between average orientation of triangles and average orientation of
gabors shows that embedding the same ensemble feature (e.g.,
orientation) on objects belonging to discrete levels within the
visual hierarchy (e.g., triangles, which use edge features to carry
orientation, and gabors, which use surface features; Afraz et al.,
2010; Alvarez & Cavanagh, 2008) does not disrupt the strong
relationship between these ensemble judgments.

These results offer at least two possible characterizations of ensem-
ble perception: One possibility is that there are two ensemble mech-
anisms, one for all types of high-level stimuli and one for all types of
low-level stimuli. This is different than a domain-general model
because there is more than one mechanism at work, but within the
high- and low-level distinction, the mechanism may be agnostic to the
visual stimulus. Another possibility is that ensemble representations
are entirely domain-specific, and the individual differences approach
is not sensitive enough to detect all of the distinctions between
different ensemble mechanisms. For example, ensembles that reside
close together in some representational space (e.g., color and orien-
tation, both being low-level features) could share more perceptual
noise than stimuli that are more representationally distinct (e.g., color
and faces). This common source of perceptual noise may introduce
correlations that do not reflect mechanistic overlap in the computation
of ensemble averages. For example, if observers had a source of
shared noise throughout their primary visual cortex, but this was not
shared with high-level object cortex, this could induce a correlation
between color and orientation judgments but not face judgments.
However, although there may exist other, distinct mechanisms of
ensemble representation that are difficult to isolate (e.g., separate for
every feature; or separate for low-level, high-level, and maybe
midlevel surface properties; Nakayama & Shimojo, 1992), the evi-
dence for clearly independent low- and high-level ensemble represen-
tations make it unlikely that ensemble representations all arise from a
single, monolithic, statistical averaging structure.

Our results additionally show that ensemble perception is linked
to individual item perception within a feature domain, but not
across feature domains. For example, accurate perception of indi-
vidual faces predicted accurate perception of the average face, but
not the average orientation. It is tempting to conclude that this
relationship exists because ensemble representations are computed
over sets of individual representations, and thus that ensembles
inherit their noise directly from individuals. However, our corre-
lational analysis does not allow us to determine the directionality
of the dependence, and so we cannot conclude that individual
object representations necessarily feed directly into ensemble rep-
resentations. Other plausible interpretations include the notion that
individual and ensemble representations are computed separately,
but are both limited by a common source of perceptual noise, or
that the ensemble level actually interacts with the individual level
representations. Indeed, there is strong evidence of a hierarchical,
bidirectional relationship between items and ensembles (Brady &
Alvarez, 2011; de Fockert & Marchant, 2008). Integrated, hierar-
chical representations would allow for simultaneous activation of
individual item information and global ensemble information, per-

haps enabling observers to guide attention to critical aspects of the
set (Alvarez, 2011), and perhaps to maintain stability in a dynamic
perceptual world (Haberman & Whitney, 2012).

Our high-level stimuli only involve judgments about faces.
Faces are often granted “special” status as a visual object because
of the abundance of behavioral and neuroimaging evidence show-
ing face-specific processing (e.g., Kanwisher, McDermott, &
Chun, 1997), and the fact that face processing is particularly
susceptible to inversion and configural effects (e.g., Farah, Wilson,
Drain, & Tanaka, 1998; McKone, 2004; McKone, Martini, &
Nakayama, 2001). Indeed, the “faces are special” proposal is the
very reason faces are an ideal high-level stimulus in our experi-
ments: Whether face processing is high level is not in question.
However, a reasonable alternative interpretation of our data is that
face processing requires certain face-specific computations that
introduce noise above and beyond any noise in low-level feature
representations, decorrelating the relationship between orientation
and identity (indeed, this seems to be confirmed by the individual
item data from Experiment 1). Under this view, the seeming
independence between high- and low-level ensembles might actu-
ally arise at the individual item level, before ever reaching a
putative domain-general ensemble processor.

There are several pieces of evidence that speak against this
view. First, our data reveal minimal correlations between two
separate low- to high-level ensemble tasks (orientation vs. identity
averaging and color vs. expression averaging). For this to have
resulted from specialized face processing and not separate ensem-
ble systems, one must assume that identity and expression are
supported by identical networks, despite the evidence showing
some level of independence (e.g., Haxby & Gobbini, 2011; Tranel
et al., 1988). Certainly, there is significant overlap between these
processes, but they are nonetheless dissociated in both the neuro-
psychological and the neuroimaging literatures. Second, it is im-
portant to consider the ensemble computation itself, specifically,
the idea that it is an imperfect, noisy process (Solomon, 2010;
Solomon et al., 2011). Under a domain-general view of ensemble
representation, any noise associated with the averaging process
would be injected into all computations, regardless of stimulus
domain. Therefore, the process of extracting the average orienta-
tion from a set of gabors would produce noise similar to that
created while extracting the average identity from a set of faces,
resulting in a significant and observable correlation. The correla-
tions we observe, however, are either not different from zero or not
different from an empirically derived correlational floor. In short,
a domain-general ensemble mechanism would introduce correla-
tions between low- and high-level ensemble tasks that we do not
observe (see Figure 8 for a schematic summary).

Although our data are most consistent with a model composed
of multiple, independent ensemble processors (at least two, per-
haps more), it is nonetheless important to consider whether there
exist other examples of high-level stimuli that might fit into our
ensemble framework. An operational definition of high-level could
be developed based on sensitivity to inversion and configural
effects, invariance across the visual field (Afraz et al., 2010), or
long-range spatial interference (Cohen, Rhee, & Alvarez, 2013).
Using such an operational definition, future work can establish the
level of representation supporting recognition of different types of
objects, and can then make a priori predictions for which ensemble
representations will be supported by shared mechanisms based on
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A. A single, domain-general ensemble processor would introduce correlations
across high- and low-level ensembles, inconsistent with out results

High-level
visual processing

Face processing
noise reduces r

Domain-general
ensemble processor

Common source of inherited
noise produces r > floor

Low-level

visual processing

Introduces noise uniformly Wil
to all ensemble processes \
11!

B. However, multiple, independent ensemble processors introduce independent
noise, which leads to no ensemble correlation, consistent with our results

High-level
visual processing

Face processing
noise reduces r

Low-level
visual processing

High-level
ensemble processor

ensemble processor

Independent noise from
averaging produces r@floor

Low-level

Figure 8. Competing process models for ensemble perception. (A) Even though initial input is uncorrelated
(because of independent noise introduced by face processing), a domain-general ensemble mechanism will
necessarily introduce observable correlations because of a shared source of noise related to the ensemble process.
However, our ensemble correlations are at floor, which can only arise from the existence of (B) multiple
ensemble mechanisms. The noise introduced by the ensemble process remains uncorrelated because there is
more than one independently operating ensemble system.

this classification. Although this is an exciting direction for further
investigation, the present work alone supports the conclusion that
ensemble representations are not derived by a single, domain-
general ensemble module.

Conclusions

Using an individual differences design, we found that ensemble
processing operates independently across high-level and low-level
feature domains. Although having a domain-general mechanism
would perhaps be more economical, having multiple ensemble mech-
anisms makes some intuitive sense: An all-encompassing, domain-
general ensemble mechanism would have to be remarkably flexible,
and able to titrate information from a wide array of stimulus catego-
ries ranging from simple oriented gabors to complex faces. If ensem-
ble representations were coarse and imprecise, such a mechanism
might be plausible. However, ensemble representations are remark-
ably precise; thus, they might be “embedded computations,” derived

somewhat independently across the visual hierarchy. Thus, the pres-
ent results suggest the possibility that ensemble representation is a
canonical computation that operates separately across multiple feature
domains represented by the visual system, underscoring the funda-
mental and ubiquitous nature of ensemble perception.
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