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Abstract 

 
“Similarity” is often thought to dictate memory errors. For 
example, in visual memory, memory judgements of lures are 
related to their psychophysical similarity to targets: an 
approximately exponential function in stimulus space (Schurgin 
et al. 2020). However, similarity is ill-defined for more complex 
stimuli, and memory errors seem to depend on all the 
remembered items, not just pairwise similarity. Such effects can 
be captured by a model that views similarity as a byproduct of 
Bayesian generalization (Tenenbaum & Griffiths, 2001). Here 
we ask whether the propensity of people to generalize from a set 
to an item predicts memory errors to that item. We use the 
“number game” generalization task to collect human judgements 
about set membership for symbolic numbers and show that 
memory errors for numbers are consistent with these 
generalization judgements rather than pairwise similarity. These 
results suggest that generalization propensity, rather than 
“similarity”, drives memory errors. 
 
Keywords: Concepts and Categories, Memory, Generalization, 
Similarity 

Introduction 
 

One of memory’s defining properties is its fallibility and 
tendency for systematic error (e.g., Bartlett, 1932). Thus, 
empirical measures of memory often focus on memory errors 
and the extent to which such errors are made to similar vs. 
dissimilar items.  For example, in low-level domains like 
visual working memory, the pattern of errors people make to 
similar items is often termed memory “precision” and models 
of its properties are leveraged to understand memory 
performance and capacity (e.g., van den Berg et al. 2012). 
Likewise, in long-term recognition memory, the mistaken 
recognition of an item that is similar, but not identical, to a 
previously encountered item is a ubiquitous and robust 
memory error, referred to as gist-based false recognition 
(Koutstaal & Schacter, 1997). One particularly popular 
design to demonstrate this is the DRM paradigm (Roediger 
& McDermott, 1995; Gallo, 2010), which is used to study 
false memory. In the DRM, false memories arise when a 
subject is asked to remember a list of associated words (e.g., 
bagel, eggs, bacon) then, when given a memory test, they 
later recall or recognize related words that were not originally 
on the list (e.g., breakfast). The DRM is critically dependent 

on the relatedness or similarity of the misremembered word 
to the encoded exemplars.  

Formal models have attempted to explain why we make 
such memory errors by connecting “similarity” to memory. 
For example, exemplar-based models of visual recognition 
propose particular functional forms for similarity, and link 
such similarity functions not only to memory but also to 
categorization and generalization (Nosofsky, 1992). 
Likewise, spreading activation models postulate that 
remembered words activate semantically similar items, 
which then are more likely to be falsely recalled (Roediger & 
McDermott, 2000). Even rich patterns of errors can be 
thought of in this way: For example, Schurgin et. al. (2020) 
show that in the domain of visual memory — particularly 
continuous reproduction of simple visual features, like color 
hue — signal detection decisions based on item similarities 
can explain many memory errors. In these simple metric 
spaces, pairwise similarity is well approximated by an 
exponential function of distance in the underlying stimulus 
space (Shepard, 1987), so Schurgin et al. link this similarity 
function to an activation for each item and, via signal 
detection, predict entire patterns of participants' memory 
errors based on these activations.   

Although these examples suggest that some notion of 
“similarity” underlies memory errors, pairwise similarity has 
little explanatory force on its own — and breaks down when 
we consider either high-level domains without well-defined,  
metric perceptual spaces, or presentation of entire sets of 
items.  What defines the similarity between two words, or two 
more abstract concepts?  Although such similarities may be 
empirically measured, they are much harder to predict based 
on distances in a latent space (Mikolov et al., 2013) and other, 
non-metric conceptual structures may be needed (Shepard, 
1980). Furthermore, the rated similarity between two items 
varies as a function of context (Tversky 1977), suggesting 
that the pairwise similarity is not a stable relational property.  
Finally, when considering how items are related to a whole 
set, pairwise similarity is inadequate: although there have 
been many attempts to sum (Nosofsky 1986), average (Ashby 
& Leola Reese 1995), or maximize (Goldstone 1994) 
pairwise similarities to obtain a single score for whole set 
similarity, no stable rule seems to capture human behavior.   

Tenenbaum & Griffiths (2001) propose to resolve the 
challenges with defining similarity by suggesting that 
generalization, rather than similarity, is the core concept. 
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That is, when we see a set of items, we consider what 
compressed conceptual representations are consistent with 
that set. When asked how similar a given target is to that set, 
we answer the question “how likely is that target item to be 
an exemplar of the concepts suggested by the set?”  On this 
account, similarity is epiphenomenal to the more general 
process of conceptual generalization, and when asked for our 
subjective similarity we provide ratings by simply indicating 
our generalization propensity. This account removes the 
reliance on pairwise similarity, and substitutes for it the 
notion of set-to-item generalization. Consequently, this 
formulation applies unaltered to abstract categories without 
metric latent spaces, and to sets comprised of multiple items.   
Moreover, this account explains a number of puzzles about 
similarity ratings: why they are often asymmetric, violate the 
triangle inequality, and vary with context (e.g., Tenenbaum 
& Griffiths, 2001). Finally, this account also has the 
appealing property of reducing to known rules about pairwise 
similarity (e.g., Shepard, 1987) in the limiting case where the 
set includes just one item.   

In the current paper, we seek to establish a framework for 
linking generalization directly to memory errors. In 
particular, we suggest that combining a signal detection-
based memory model, like that of Schurgin et al. (2020), with 
a Bayesian framework for generalization, like that proposed 
by Tenenbaum and Griffiths (2001), can bridge the gap 
between models of similarity-based memory errors and 
higher-level tasks with richer, more contextual errors, and 
provide both precise prediction of memory errors as well as 
significant theoretical clarity above and beyond notions of 
“similarity”. 

To test this, we ask if the propensity to generalize from a 
set to a given stimulus underlies the likelihood of false 
alarming to that stimulus in a memory task. We focus on the 
domain of remembering symbolic numbers, where 
generalization is much richer than for simple visual stimuli 
like colors, but can nevertheless be formalized (e.g., 
Tenenbaum & Griffiths, 2001). In this domain, the Bayesian 
framework for generalization naturally subsumes two classes 
of generalization: that based on magnitude (which account 
for exemplar-based “similarity” functions) and rule-based 
generalizations (Tenenbaum & Griffiths, 2001). Then, by 
considering the memory co-activations implied by this 
Bayesian model of generalization, and applying a memory 
model on top of them (Schurgin et al. 2020), we propose that 
it may be possible to predict memory errors in a way that 
cannot be done from pairwise similarity data alone. The key 
predictions of our framework are that: 

(a) Propensity to generalize between items, even when 
such propensity does not follow simple rules of 
similarity (like in a metric space), will predict 
memory errors. 

(b) Multiple observations (e.g. multiple items stored in 
memory) jointly determine this generalization 
propensity and thus these memory errors. 

In the following we outline such a framework and suggest 
theoretical connections between models of generalization and 

memory and highlight what formalisms would be important 
to include in a unifying model. We then introduce a novel 
paradigm with two experiments based on the ‘number game’ 
that bridges the gap between research on generalization and 
research on memory errors. In the first experiment, we 
elicited generalization data from participants in response to 
sets of numbers, asking them to generate other numbers that 
would fit in that same set. Then in a second experiment, we 
used this data to predict memory performance. We gave 
people the same sets of numbers to remember, and probed 
their memory in a 3-alternative forced-choice task. We found 
that the rate at which a particular number elicits memory 
errors for a given set is related to the propensity of that 
number to be generalized from that set in Experiment 1. 

A Framework for Generalization-based 
Memory Errors 

A framework unifying metric and conceptual models of 
memory errors, must rely on two components: (1) A model 
of item co-activation that does not rely on pairwise  similarity 
between items, but instead relies on generalization propensity 
and (2) a model that can predict human memory performance 
on a variety of tasks given the item activations.   
 
Concept Generalization as the Basis of Memory 
activation. To formalize item co-activation in a manner that 
can apply equally well to metric and more general conceptual 
spaces, we turn to a Bayesian framework for concept 
generalization put forth by Tenenbaum (2000) and later 
extended by Tenenbaum and Griffths (2001).  This account 
unifies two kinds of generalization that were previously 
thought to be distinct processes: abstracting rules and 
generalizing based on exemplars. On this account, the 
probability that a new object 𝑦 is an element of some 
compressed representation (or concept) 𝐶 inferred from 
exemplars 𝑋 =  {𝑥(1), . . . , 𝑥(௡)} can be calculated by 
marginalizing over concepts likely to describe X: 

𝑝(𝑦 ∈  𝐶| 𝑋 )  = ෍ 𝑝(𝑦 ∈  𝑐)𝑝(𝑐|𝑋)

௖∈஼

 

This formalism has the advantage of being applicable to all 
conceptual spaces, metric or otherwise, and is consistent with 
extracting compressed, more abstract representations of 
items in terms of the hypotheses they are consistent with     
(Brady & Tenenbaum 2013).      
    Tenenbaum (2000) first used this formulation in the 
domain of symbolic numbers, because numerical reasoning 
seems to use both rule- and exemplar-based generalization. 
Their model predicted data from an empirical generalization 
task using i) a single exemplar, ii) a set of exemplars 
constrained by a simple conceptual rule, and iii) sets of 
exemplars that were of similar magnitude (Tenenbaum, 
2000). In particular, the task they worked with — ‘the 
number game’ — involved a ‘computer’ that spit out a set of 
numbers, after which participants had to indicate which other 
numbers the computer would likely accept (i.e., they had to 
generalize from the given examples). 
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To model this task, Tenenbaum (2000) assumed that 
people had a structured set of prior knowledge about numbers 
that formed their hypothesis space for generalization. These 
hypotheses included ranges (e.g., numbers 15-30), as well as 
rules (e.g., multiples of 10). Their likelihood function was 
based on the ‘size principle’ reflecting that hypotheses that 
included fewer numbers were more likely to generate any one 
of those numbers. 

 This model captured basic patterns in human data better 
than competing models by unifying rule-based and exemplar-
based generalization. When all the weight ends up on a single 
hypothesis (e.g., powers of 10), the model predicts rule-like 
generalization; however, when many hypotheses are in play 
(e.g., as when a single number is the basis of generalization), 
the model marginalizes over many plausible intervals and 
yields graded, exponential-like fall-off of generalization, as 
in models of pairwise generalization and similarity (e.g., 
Nosofsky, 1992; Shepard, 1987).  

We take this model as our basis for understanding how 
people will generalize from numbers; and thus, how a set of 
observed numbers will yield memory activations. 
 
Predicting Memory from Generalization Propensities  
If you are holding in mind a number — or a set of numbers 
— intuition suggests you will be more likely to falsely 
remember a similar number rather than a dissimilar number. 
A recent model (TCC, Schurgin et al. 2020) suggests that 
such “similarity”-based errors can be formalized using the 
knowledge that when an item is encoded, this causes 
activation or familiarity not only for that item, but also for 
other items in proportion to their psychological similarity to 
the target item. After such activations are corrupted by noise 
(i.e. according to signal detection theory), they serve as the 
decision variable people use to choose which items have 
previously been seen.   

In the simple perceptual spaces that model was applied to 
(Schurgin et al. 2020), the amount of activation that a non-
encoded item receives was an approximately exponential 
function of its distance from the encoded item in 
psychological space, consistent with pairwise notions of 
similarity (e.g., Nosofsky, 1992) and the universal law of 
generalization (Shepard, 1987). In particular, in the domain 
of color, if you see a red item, you get a large boost of 
activation for red; a small boost for orange; and effectively 
no boost at all for green or blue, which are both far enough 
away from red to be approximately maximally dissimilar.  All 
activations are then corrupted by noise, and when faced with 
a choice between multiple colors in a memory probe, 
participants report the largest activation as the ‘old’ item.  

Formally, if item t is encoded, the mean memory-match 
signal for a given item x on the working memory task is given 
by dx = d′ ft(x), where d′ corresponds to memory strength and 
ft(x) is a function describing the pairwise similarity of each 
item to the encoded item t. When x = t, ft(x) = 1, so d0 = d′.  
Then, as noted above, during the memory probe test each 
item that is shown as a possible response option generates a 
memory-match signal, mx, conceptualized as a random draw 

from that item’s memory strength distribution, which is 
centered on dx but, consistent with signal detection theory, is 
corrupted by noise. That is, mx ~ N(dx, 1). The response, r, on 
a given trial is made to the item that generates the maximum 
memory-match signal, r = argmax(m). 

Rather than conceiving of the memory activation function 
f(x) as following a simple pairwise similarity that scales 
exponentially as a function of pairwise item distance, here we 
propose this activation should instead rely on the posterior 
predictive distribution over all possible generalizations 
(integers between 0 and 100) derived from human 
generalization data or the Griffiths and Tenenbaum (2001) 
model. This replaces the concept of pairwise similarity as the 
cause of memory activation with the more general idea of 
generalization propensity as the cause of such activations. 

Griffiths and Tenenbaum (2001), following Shepard 
(1987), showed that with single examples that are largely 
captured by magnitude-based hypotheses (e.g., interval set 
ranging from 50 to 60), the exponentially decreasing function 
of distance that is generally observed in simple stimuli (e.g., 
in TCC) is naturally generated by their model. This is because 
the Bayesian model weights all possible intervals that include 
that item from the prior and weighs the smaller ones more 
heavily than the larger ones (according to the size principle) 
— resulting in an approximately exponential fall-off of 
generalization likelihood. Thus, the Bayesian model of 
generalization as applied to memory is also a true 
generalization of TCC, as it includes TCC as a special case. 
In particular, the predictions made about generalization from 
a single exemplar will approximate the exponential law of 
generalization used in Schurgin et al. (2020) as a model of 
similarity in metric psychological spaces (like the color space 
used in visual memory). 

The generalization function for rule-based compression 
will not approximate an exponential, however. Given 
examples like 10, 20, 30 and 40, people will be unlikely to 
false alarm to 23; instead, the posterior predictive over all 
possible compressions (both interval- and rule-based), will 
instead represent a more rule-like, gist-based representation, 
rather than an exponential distance from exemplars. 
However, the generalized TCC framework still suggests that 
activation in memory will be proportional to the activation 
via the generalization function, such that numbers that are 
more likely to arise in generalization by definition also enjoy 
higher memory co-activations — even if these numbers are 
far from the seen numbers (e.g., 80). 

 
Summary of Framework We propose that combining the 
structured generalization framework of Tenenbaum and 
Griffiths (2001) with the TCC framework for activation in 
memory and subsequent memory decisions (Schurgin et al. 
2020), should allow us to predict memory performance and 
errors from sets of abstract items. In particular, this 
framework provides a way of thinking about false memories 
of related items that arise in a variety of tasks (like the DRM; 
Gallo, 2010), but with a formal framework that defines 
exactly which items are more or less related to a presented 
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set, and how such relations feed into memory decision 
processes. 

To provide preliminary evidence for this framework, we 
used specific sets of 4 numbers to elicit generalizations in 
Experiment 1, then used that generalization data to design the 
stimuli and memory probes in Experiment 2. The sets of 4 
numbers sometimes inspired rule-based generalization, 
sometimes exemplar-based generalization, and sometimes 
were unintuitive according to either rules or exemplars, to 
provide a test of whether generalization would predict 
memory even when generalization was not itself 
straightforward to model. These data provided empirical 
evidence about the structure of number space and the 
activations of the items after seeing each of the sets.  

Experiment 1: Generalization Task 

Methods 
 
Participants. A total of 198 subjects provided responses. 
Subjects were excluded from the final set of data based on 
their performance on the interval sets (excluded if more than 
half of their responses were not within the interval), resulting 
in a total of 171 subjects included in the final data set. 
 
Stimuli and Procedure. There were 60 stimuli sets in total. 
Stimuli sets were generated by quasi-randomly sampling four 
numbers from the positive integers between 0 and 100 that 
belonged to one of 6 set classes described in Table 1. The ten 
rule-based sets were sampled from each class of type interval 
(8-span, 16-span, and 32-span). All 9 multiple and all 11 
digit-1 classes were used to generate stimuli. The non-
intuitive classes of sets follow the same symbolic form as the 
multiple and digit-1 sets, but are more difficult to describe 
verbally (for example “a number whose remainder when 
divided by 8 is equal to 6”). The stimuli used to represent 
each set were 4 numbers sampled from the set using a 
normalized exponential distribution, such that the numbers in 
the set with smaller magnitude were more likely to be chosen 
as exemplars Each subject completed 60 trials, one for each 
of the stimuli sets. The order of presentation was randomized 
across subjects. For each set, four specific exemplars were 
presented that were identical for each subject. The order in 
which the exemplars appeared on each trial was randomized. 

On each trial, subjects were shown 4 exemplar numbers 
simultaneously and were asked to generate another number 
from this set, and gave two unique responses before receiving 
feedback about how many of their responses on that trial were 
in the predetermined set. A response was considered correct 
if it belonged to the set from which the exemplar stimuli were 
sampled. A running tally of their correct responses were also 
displayed as an overall score for feedback. 

Results and Discussion 

The data collected in Experiment 1 was broadly consistent 
with the patterns observed in Tenenbaum (2000). Example 
sets of responses collected from four of the stimuli sets are 
shown in Figure 1. The interval sets followed the expected 
exponential decrease in generalization as a function of 
distance from an exemplar (Fig. 1A; Shepard, 1987).  

The rule-based sets of class “multiples” showed the 
expected all-or-none pattern of generalization, with very few 
responses failing to meet the class rule (Fig 1B). An 
interesting pattern of results here that was not observed in the 
data presented by Tenenbaum (2000) is that while the reports 
follow the rule, there appears to be a distance effect as well: 
there is an approximately exponential decrease in reports 
within the category as a function of distance from the center 
of the shown examples. This is likely a consequence of our 
task asking participants to generate only 2 samples, rather 
than rate how good of a fit a variety of numbers were (as in 
Tenenbaum, 2000). 

The “non-intuitive” class sets had unexpected qualitative 
patterns. While there appear to be consistent patterns of 
generalization for these sets, they do not necessarily reflect 
the pattern implied by the non-intuitive rule. Some of these 
consistencies may come from other rule-based hypotheses. 
For example, in the data shown in Fig. 1C the most frequent 
response followed the non-intuitive rule, but many other 
responses did not. This is likely because participants inferred 
the more intuitive rule “multiples of 3” instead of inferring 
that the sequence of numbers incrementally increased by 6.   

The consistent generalization patterns may also come 
from generalizing from subsets of the exemplars. For 
example, in Figure 1D many frequent responses followed the 
rule 𝑥ଶ, when this rule applied to only three of the exemplars. 
This suggests that generalizations could be made from a 
subset of exemplars or that outlier exemplars are discounted 

Table 1: Classes of sets used to generate stimuli. 
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a)

 
b)

 
c)

 
d) 

 
 

Figure 1:  Sample response distributions to the number 
game generalization task shown in gray. Shown examples 
are indicated by blue dashed lines. From top to bottom the 
distributions are representative of the classes:  a) interval 

[48,72]; b) rule multiples [x mod 10=0]; c) rule non-
intuitive [x mod 6 = 3] d) rule non-intuitive [x mod 12 = 1]. 
 

 

 
in generalization (as is observed for gist representations of 
visual stimuli, for example Whitney, & Yamanashi Leib, 
2018).  

The novel qualitative results observed in this data likely 
resulted from the changes in the number game task design 
relative to Tenenbaum (2000) (e.g., eliciting 2 responses; 
using less likely and harder to define rules). Overall, 
however, these empirical distributions are consistent with 
past work. Thus, we next asked whether these generalization 
responses predicted memory performance. 

Experiment 2: Memory 

In Experiment 2, we use the generalization data from 
Experiment 1 to evaluate whether numbers that were 
generated more often in response to a set are  more likely to 
be falsely remembered. We rely on our empirical 
generalization data, rather than a model, to avoid dependence 
on a particular set of priors and hypotheses (like those 
formalized by Tenenbaum, 2000). This allows us to ask a 
more general question about whether propensity to generalize 
from a set predicts memory errors from that set to that 
number. 

Methods 

Participants. A total of 100 participants completed this task. 
Subjects were included in the final data set if their number of 
correct responses over the experiment was significantly 
greater than chance (p < 0.05 in a 1 tailed binomial test), 
which resulted in the exclusion of 9 subjects, leaving a total 
of 91 participants in the final sample.   
 
Stimuli and Procedure. The same stimuli sets described in 
Experiment 1 (60 sets of four exemplars) were used as stimuli 
for memory displays. To create memory errors, we showed 
the stimuli only briefly. In particular, on each trial, 4 numbers 
arranged in a circle (randomly placed in one of 8 possible 
locations) were briefly shown (150ms) and participants were 
asked to remember the numbers over a delay (2000ms). After 
the delay, memory was probed in in a 3-alternative forced 
choice (3-AFC) format, where one choice was the correct 
item (chosen at random from the 4 encoded items) and the 
other two choices were sampled from the empirical 
generalization distributions collected in Experiment 1. The 
likely generalization foil was chosen to be the most 
frequently generated number for that set of exemplars, and 
the unlikely generalization foil was chosen to be one of the 
least frequently generated numbers, i.e. at least one subject 
reported the number in Experiment 1 (in the case of a tie in 
frequency, the foil was selected at random from the set of 
numbers with lowest frequency).  Choosing an item that was 
generated at least once provides a conservative test of 
whether generalization frequency in Exp. 1 predicts memory 
errors in Exp. 2. 
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Results and Discussion 

Figure 2 shows the proportion of correct responses and the 
proportion of choices for foils that were likely generalizations 
vs. unlikely generalizations in the 3-AFC task. The 
proportion of correct responses in the memory task was 0.638 
(95% CI [0.623, 0.654]), as compared to a chance level of 
0.33.  

The effect of people’s propensity to generalize on memory 
errors was measured by looking at the proportion of incorrect 
responses that were to likely, as opposed to unlikely, foils. A 
paired sample t-test found the proportion of likely responses 
to be significantly greater than that of unlikely responses 
(t(90)  = 9.058, p < 0.001), meaning that memory errors were 
more likely when the foil was one of the numbers generated 
more frequently by participants in Experiment 1.  
 

 
Figure 2: Proportion of responses plotted with 95% 

confidence intervals. Memory was accurate, and participants 
chose foils that were likely generalizations more than foils 

that were unlikely generalizations. 
 

To test whether this was specific to the shown set, or just 
because some numbers are frequently produced in both Exp. 
1 and 2 regardless of set, we next asked whether this result 
held when considering only situations where the ‘unlikely’ 
foil was generated more often in Exp. 1 in sets other than the 
target set. We found it still held (t(90) = 4.933, p<0.001).  

Was this result only caused by interval sets, where 
generalization tends to be consistent with simple exponential 
functions of similarity (e.g., Shepard, 1987)? No: A one-way 
ANOVA found no significant difference in choosing ‘likely’ 
(vs. ‘unlikely’) foils across the 6 classes of sets, while the 
intercept was significantly different from 0.5 (t(53) = 4.668, 
p<0.001) indicating that for all classes the likely foil was 
chosen more often than the unlikely foil. Figure 3 shows the 
data for the 6 classes of stimuli. This result shows that there 
was little difference in the effect across different types of sets, 
so numbers that are likely generalization targets are more 
likely to be falsely remembered, even when that 
generalization is based on high level conceptual rules, rather 
than metric distance to exemplars, and even when the basis 

of such generalization is not straightforwardly modeled (as in 
the ‘unintuitive’ sets).  

This provides support for the broad framework of using 
generalization distributions instead of pairwise similarities in 
models of memory and suggests formal frameworks for 
understanding generalization could help make sense of gist-
based memory errors. 

 
 

 
Figure 3: The proportion of incorrect responses that were 

likely generalizations from the examples in Experiment 1. 
Chance levels correspond to 0.5.  The mean effect is plotted 

with 95% confidence for each class of stimuli. 
 

General Discussion 
 
We proposed a framework for broadening the scope of 
theories of memory that are based on “similarity”. In 
particular, while previous work has applied formal models of 
activation and similarity to memory (e.g., Nosofsky, 1992; 
Schurgin et al. 2020) this approach is significantly limited in 
its generalizability by its dependence on simple metric 
similarity structures. Here we propose that such models can 
be used more broadly to study memory by combining them 
with a framework for generalization. Our framework 
suggests a Bayesian model of generalization as the basis for 
memory activation, which can then be fed into this memory 
and decision model (e.g., TCC; Schurgin et al. 2020) to 
predict memory errors in both exemplar-based and rule-based 
scenarios. We demonstrated the feasibility of this account by 
empirically connecting the ‘number game’ generalization 
task to a task designed to elicit memory errors.  

To evaluate our framework, we must consider what the 
data tell us about the two primary assumptions. The first 
assumption is that generalization based on concepts or rules 
will predict memory errors in the same way that similarity in 
metric spaces predicts memory errors. The data presented 
provides preliminary support for the idea that generalization 
in the number game model can predict memory errors. We 
found that memory errors occurred more often for numbers 
reported most frequently in the generalization task. This was 
true across all classes of stimuli, including rule-based 
situations and non-intuitive rules, suggesting that the 
distributions of responses generated experimentally in a 
generalization task predict memory errors even in situations 
that go well beyond standard conceptions based solely on 
exponential fall-off in a metric space. 
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The second assumption of our framework is that 
observations are used jointly to determine generalization, and 
thus memory. This assumption has been previously shown in 
at least some cases of generalization (Tenenbaum & Griffiths, 
2001) but is less straightforward to assess with the empirical 
memory data,  and future work will need to fully formalize 
the proposed framework to better evaluate this assumption. 
However, some interesting qualitative patterns were 
observed in Experiment 1. In particular, we see a sort of 
hybrid generalization behavior in the intuitive rule-based 
stimuli sets. For example, the set of “multiples of 10” had its 
most common response near the exemplars; the number of 
responses that belong to the rule drop off towards the higher 
end of the number range. Our sampling process for 
generating exemplar sets was proportional to an exponential 
distribution, so this pattern seems to approximate that 
process. One potential issue with creating stimuli in this 
manner is that the subjects may infer the data generating 
process which could distort measurement. Further 
experimentation with different sampling processes is needed 
to determine the limitations this could impose on our 
framework. 

Another interesting qualitative finding comes from the 
patterns observed in the response distributions for “non-
intuitive” rule-based exemplar sets. These sets exhibited 
properties similar to visual ensemble processing, where 
“outliers” are discounted in the gist representation (see 
Whitney, & Yamanashi Leib, 2018), broadly consistent with 
weighted cue combination (Landy et. al. 1995). This pattern 
provides some support for the idea that multiple examples 
jointly determine generalization.  

The main limitation of this study is that empirical data 
cannot provide unequivocal support for the theoretical 
framework, only preliminary evidence. Future work should 
focus on formalizing a model of memory errors through the 
framework proposed — with memory responses explicitly 
arising from noise-perturbed activations derived from a 
Bayesian model of generalization. Our experimental 
paradigms demonstrate the plausibility of this model and the 
qualitative patterns observed in the data can provide future 
directions of research. The next step for this project is to 
develop and implement a computational model that can be 
applied to data collected in these paradigms and design 
experiments within them that test specific predictions of the 
model. The broad goal of our framework is to create a 
unifying theory of memory that can capture behavior in both 
low- and high-level domains of cognition.  
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