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Abstract
Existing knowledge shapes and distorts our memories, serv-
ing as a prior for newly encoded information. Here, we in-
vestigate the role of stable long-term priors (e.g. categorical
knowledge) in conjunction with priors arising from recently
encountered information (e.g. ’serial dependence’) in visual
working memory for color. We use an iterated reproduction
paradigm to allow a model-free assessment of the role of such
priors. In Experiment 1, we find that participants’ reports re-
liably converge to certain areas of color space, but that this
convergence is largely distinct for different individuals, sug-
gesting responses are biased by more than just shared category
knowledge. In Experiment 2, we explicitly manipulate trial
n-1 and find recent history plays a major role in participants’
reports. Thus, we find that both global prior knowledge and re-
cent trial information have biasing influences on visual work-
ing memory, demonstrating an important role for both short-
and long-term priors in actively maintained information.
Keywords: working memory, serial dependence, prior knowl-
edge, iterated learning, reconstructive memory

Introduction
When we perceive the world, and particularly when we store
information in memory, we do not do so independently of
our knowledge and expectations. Instead, our existing knowl-
edge influences our memory (Bartlett, 1932) — resulting in
systematic biases in which types of information we remem-
ber best, and distorting our memories toward our ”priors” or
schemas (e.g. Brewer & Treyens, 1981). This occurs because
our prior knowledge provides an independent source of in-
formation that can help reduce uncertainty about the world,
particularly for memory which is imperfect and noisy. Such
memory distortions can be formalized as Bayesian inference
where new noisy information is incorporated with prior ex-
pectations that originate from our knowledge about the world
(Huttenlocher, Hedges, & Vevea, 2000; Hemmer & Steyvers,
2009) or about the current context (e.g. Brady & Alvarez,
2011). To understand the nature of memory representations;
how they are limited; and how they support our decisions and
behavior, we need to unravel the role of priors in these pro-
cesses.

Isolating people’s ”priors” is not a straightforward task,
as they are likely quite complex and high-dimensional. One
strategy is to borrow methods from the rich tradition in ma-
chine learning and statistical inference; for example, past
work has shown that by modeling tasks after the iterative sam-
pling process known as Monte Carlo Markov Chain (MCMC)
we can utilize systematic biases in behavior to measure peo-
ple’s priors (Sanborn & Griffiths, 2008). Similarly, iterated

learning or iterated reproduction are expected to converge to
people’s priors: by having subjects reproduce or evaluate the
retrieved information from a different subject, it is possible
to measure Gestalt priors in working memory across people
(Lew & Vul, 2015).

To date, these attempts have largely assumed that the biases
caused by such priors are relatively stable — both across and
within individuals. Notably, it is often assumed that memory
judgements are relatively unchanged by recent history, and
so the use of such iterated designs taps into stable long-term
priors. However, the extent to which this is true remains an
open question, as recent history often has a strong influence
on judgments about current stimuli (Huang & Sekuler, 2010;
Fischer & Whitney, 2014). In addition, past iterated learn-
ing studies investigating memory biases have used different
individuals in each iteration (Lew & Vul, 2015), thus investi-
gating only long-term priors that are invariant across people.
This technique may not be suitable for all cases since the ex-
tent to which individuals differ in their prior knowledge will
depend both on the temporal stability of such priors and on
the domain of study.

In the present study we adapt an iterated reproduction
paradigm to investigate how idiosyncratic individual priors
play a role in working memory biases, and do so while con-
sidering not only stable long-term priors of individuals but
also possible trial-by-trial influences of recent history.

We focus specifically on the the case of visual working
memory for color. This domain provides a rich arena for
study, as it has been well characterized; is related to impor-
tant broader concepts (like fluid intelligence; Cowan, Fris-
toe, Elliott, Brunner, & Saults, 2006) and allows for rigorous
psychophysical techniques designed to precisely understand
memory representations (Wilken & Ma, 2004). While the
precise and seemingly perceptual nature of this memory sys-
tem has led some to conclude it is relatively unaffected by
priors and biases (e.g., Lin & Luck, 2012), there is some evi-
dence that this is not the case. For example, there are system-
atic biases that show up on average across individuals, and
seem to align with the use of linguistic color categories (Bae,
Olkkonen, Allred, & Flombaum, 2015; Allred & Flombaum,
2014). This group-level color category memory bias is con-
sistent with Bayesian integration, and can be mechanistically
modeled with a drift-diffusion process wherein color mem-
ories drift towards psychophysical attractor states that corre-
spond to color categories (Panichello, DePasquale, Pillow, &



Buschman, 2019). In addition to such long-term priors, there
are, at least in some circumstances, effects of immediate trial
history in generating interference (Makovski & Jiang, 2008)
and biasing memory (Huang & Sekuler, 2010). Thus, visual
working memory of color is an important domain and one
in which both short- and long-term priors seem to influence
memory retrieval.

There remain many important unanswered questions about
the usage of priors in this domain. For example, the role that
individual differences in color categories play in memory has
remained relatively unexplored. Above and beyond biologi-
cal factors that affect color perception (e.g., color blindness),
individual differences in color categories have been demon-
strated in perceptual matching tasks (Webster & Kay, 2012),
and cultural and linguistic differences in color categories are
well established (e.g., Regier, Kay, & Khetarpal, 2007). In
addition, the relative importance of short-term (Makovski &
Jiang, 2008) vs. more stable (Bae et al., 2015) priors remains
unknown. The case of visual working memory for color is
well suited for studying how biases from recent history inter-
act with individual differences and long-term category priors.
Therefore, in the current study we used an iterated reproduc-
tion paradigm designed to shed light on these issues, includ-
ing two core research questions: 1) How much do individual
differences affect visual working memory? and 2) How do
global category biases interact with short-term biases from
recent trials?

Experiment 1
Experiment 1 is designed to capture individual differences in
how color categories affect visual working memory. We use
a novel iterated reproduction paradigm to reveal participants’
priors.

Methods
Participants N=70 undergraduate students were recruited
to participate in this study (48 female, mean age 20.8) in ex-
change for course credit. All subjects gave informed consent,
and the study was approved by the UC San Diego Institu-
tional Review Board. All subjects had normal or corrected-
to-normal visual acuity and normal color vision as assessed
with Ishihara’s test of color deficiency(Ishihara, 1987).

Procedure Participants were repeatedly asked to reproduce
a single color from memory using a continuous color wheel.
Color stimuli were drawn from a circle in CIE L*a*b* color
space, centered at (L=54, a=21.5, b=11.5) with a radius of
49. Thus, each color can be considered an angle – and er-
rors in reproduction can be quantified by the angular distance
between the studied color and reproduced color.

On each trial, a single color stimulus was presented for
1000ms in one of four possible locations (with equal prob-
ability). After a 1000ms delay, subjects were then cued to
report the color with the continuous report color wheel. The
color wheel was randomly rotated and flipped trial to trial
so that location preferences would not systematically impact

Figure 1: Iterated design: On each trial, participants reproduced 1
color after a delay of 1 second. The color reported on one trial was
later shown as the memoranda on a (much) later trial.

color reports.
The crucial feature of the design was that the colors shown

on some trials were identical to subjects’ reproductions from
previous trials, making an iterated design (Figure 1). These
critical trials were interleaved with an equal number of filler
trials so that this manipulation was not apparent to subjects.

Due to this iterated design, throughout the experiment there
were ‘chains’ of trials: the response from iteration n in a given
chain was used as the stimulus in the n+ 1 iteration of that
chain. This process continued until 15 iterations were ob-
tained for each chain. Each chain began with a predetermined
‘seed color’ displayed on the first iteration. Ten seed colors
evenly spaced 36 degrees apart on the color wheel were used
for all subjects. These initial positions were chosen without
regard to the location of color category centers or boundaries
in this color space, which are not evenly spaced or uniform
on the color wheel (see Figure 4). Each subject completed
two chains for each of 10 unique seed colors, resulting in
20 total chains per subject. Subjects completed blocks of 20
trials (10 chain-iteration trials and 10 filler trials) that alter-
nated between the 2 sets of iterated chains such that no two
chains within a block began with the same seed color. This
alternation between unique chains ensured that presentation
of subsequent iterations were sufficiently delayed so that the
previous iteration was wiped from working memory by inter-
mediary trials.

In our experiment each chain was completed by a single
subject in order to capture potential individual differences. To
avoid lapses from derailing the entire chain, participants re-
ported value was silently ’rejected’ if it was an unlikely value
for the chain. In particular, we used a fixed rejection rule
which rejected responses with an absolute error greater than
22.5 degrees. This value was chosen as to include 80% of the
error distribution measured from previous studies using the
same stimuli and set size (Schurgin, Wixted, & Brady, 2018).
Ultimately 15% of iteration trials had error greater than 22.5
and therefore were rejected. If a response from a particular
iteration was rejected, the chain would not advance, and the
next trial from that chain would have the same color stimulus
value as the previous one. Because of this rejection criterion



Figure 2: Examples of individual subject iterated chains. Chains
begin in the center of the circle with seed colors evenly spaced. Iter-
ation 1 is shown in the center of the circle, and iteration increases as
chains move outwards. The color of each line changes with the color
reproduced on that iteration which is also indicated by the line’s po-
sition around the circle. As can be seen, multiple chains from each
participant tend to converge to similar areas of color space, but these
areas are not consistent across subjects.

there was not a fixed number of trials per subject. Instead,
blocks were added to the end of the experiment until there
were 15 iterations in all 20 chains for that subject. All sub-
jects completed at least 30 blocks consisting of 20 trials each,
alternating between the different sets of seeds. Additional
blocks were added to compensate for the rejection of trials
as needed. Subjects were given a 1 minute breaks after every
quarter of the experiment and a 2 minute break at the half-way
point.

The filler trials were selected semi-randomly in order to
smooth the distribution of colors presented (e.g., to ensure
that subjects always see examples of each color on the wheel
even if their own chains drift to a subset of the color wheel).
These trials ensure that a consistent and uniform set of col-
ors are shown to all subjects regardless of what occurs in the
subjects’ chains.

Results
Example response sequences are shown in Figure 2. We begin
by collapsing across all trials (iteration-chain and filler trials)
and across individuals (Figure 3). Doing so reveals that there
are global biases across participants. That is, in the overall re-
sponse distribution, collapsing across all subjects and all tri-
als, the reported colors tend to cluster in particular regions of
color space even when these regions are not over-represented
in the distribution of colors shown (Figure 3). To quantify this
tendency, we use Shannon entropy, which is maximized when
a distribution is uniform. Thus, smaller values of Shannon en-
tropy indicate more clustering of responses in certain areas of
the color wheel. For each subject we calculated the Shannon
entropy for the frequency distribution of colors shown and the
frequency distribution of responses binned into ten degree in-
tervals in color space, and found that the response distribution
had significantly lower entropy than the target distribution,
t(69) = 17.3, p < 0.001. This suggests that participants tend
to gives responses focused around a limited number of colors
rather than purely reproducing the target distribution.

The non-uniformity observed in the aggregate data is exag-
gerated in the distribution of responses from the final iteration
of the iterated chains (Figure 4). The iterated design allows us

Figure 3: Participants report some colors more than others, even
though those colors are not over-represented in the colors shown.
This suggests reliable across-participant priors, perhaps based on
color categories.

to treat this distribution from the final iteration as the conver-
gence of the chains to people’s priors. To assess whether the
convergence regions of the iterated chains can be explained
by global linguistic color category priors (e.g., Bae et al.,
2015; Persaud & Hemmer, 2014), we collected color nam-
ing data in two separate tasks. Both tasks were administered
online, so some variance may be accounted for by differences
in screen color calibration. Category labels used in both tasks
were red, orange, yellow, brown, green, blue, purple, and tex-
titpink which were selected from the set of basic color terms
(Berlin & Kay, 1969), excluding black and white. In the first
task, N=124 participants were asked to choose a prototypical
color from the color wheel used in Experiment 1 for a given
color term. In the second task, N=94 participants were shown
a color and asked to choose a color term (from the set of terms
stated above) to describe that color, and did this for each of
360 colors on our color wheel. The raw data from task 1 was
then scaled by the frequency with which each color term was
chosen in task 2 to produce the histogram shown in Figure 4.

The distribution of responses on the final iteration is not
completely explained by color categories. While there are
some consistencies, there are also large discrepancies (e.g.,
in green/blue, purple/pink). In the second color naming task,
these regions were frequently classified as belonging to both
of the flanking categories (green blue, and purple pink re-
spectively). This was not the case for other categories (e.g.,
red, orange and yellow), where classifications had very little
overlap. Thus, the failure to converge to linguistic color cat-
egories could be in part caused by ambiguity in classification
of certain regions of the color wheel.

While the final iteration suggested that there are regions
of color space that are, at least to some extent, converged to
across participants, the extent to which individuals iterated
chains converge to these reliably is not clear from this anal-
ysis. To determine if individual’s chains are converging, we
looked at how likely subjects are to report very similar colors
on different trials of the same iteration. To quantify this we



Figure 4: top: The distribution of responses for the final iteration
of the iterated-chains in Experiment 1. bottom: Color naming data
collected from two color term matching tasks.

used the average nearest neighbor index (ANN). The nearest
neighbor distance for a single response within an iteration is
the distance (in degrees around the color wheel) to the clos-
est other response in that iteration; we then take the mean
of the nearest neighbor distance for each response within an
iteration to get a single number (the ANN) to approximate
’clustering’ of responses in certain areas of color space across
trials. Since the clustering will be relative to the number of
responses within an iteration, we simulated the ANN distance
that would occur by chance alone with 10,000 samples from
a uniform distribution and used this as a baseline. The ra-
tio of the ANN distance within iteration to that which would
occur by chance will be greater than 1 if the responses are
more separated than would occur by chance (i.e., if they were
regularly spaced) and will be less than 1 if the responses are
more clustered than would occur by chance. Note that the
’seed’ colors shown to participants at the beginning of the ex-
periment are maximally anti-clustered, since they are spaced
equally along the color wheel (the ANN ratio for the starting
seeds was equal to 2).

So that the ANN is not confounded by having two re-
sponses originating from the same seed, we find the ANN
ratio across iteration for each set of chains separately within
each subject. We find that the ANN ratio decreases as a func-
tion of iteration, with iteration being a significant predictor of
ANN distance, F = 1485.8, p < 0.001 (Fig. 4). This suggests
that within individuals, responses tend to cluster in particular
regions of the color wheel, and this tendency increases over
iteration. In the last iteration we find that the ANN ratio is
significantly less than 1, t = 6.0, p < 0.001, meaning that the
responses are more clustered than what would be expected by

Figure 5: The distribution of seed colors starts out maximally non-
clustered (equally-spaced), and the amount of clustering increases
over time within-subject. The amount of clustering also increases
over time between subjects (”shuffled”), but to a lesser degree than
within-, and ultimately a large amount of the clustering that is
reliable within-subject (”original”) is not present between subject
(”shuffled”).

chance (despite having started out anti-clustered).

The clustering is largely driven by within-subject consis-
tency, as opposed to the global consistency across subjects
(as in Fig. 3). This is revealed by simulating what global
clustering would exist if subject were not a factor. We sim-
ulated 10,000 samples shuffling across subjects and find that
the ANN ratio of the last iteration of the shuffled null hy-
pothesis is significantly higher than that of the original data,
t = 4.7, p < 0.001. This procedure removes nearly all clus-
tering, making the results look like they converge to near ran-
domness (Fig. 4). Thus, people converge reliably to smaller
parts of the color space, but these parts are not entirely the
same across all individuals. The global effects (Fig. 3, Fig.
4) thus account for only a small part of the reliable pattern of
convergence within individuals.

To provide a preliminary assessment of whether these in-
dividual differences were accounted for by language, we di-
vided the subjects into self-identified native English speakers
(N=37) and non-native English speakers (N=33). We com-
puted the Kullback–Leibler (KL) divergence between the dis-
tribution of responses from the iterated chains of native and
non-native English speakers. KL divergence can be inter-
preted as the number of extra bits needed to encode one dis-
tribution given you already know the second distribution; it
will be zero if the distributions are exactly the same. Since
KL divergence is not symmetric we computed both the KL
divergence between native and non-native English speakers
and visa versa.

We found that KL(native||non−native) = 0.0576 and that
KL(non− native||native) = 0.0588. Given that the entropy
of these distributions are H(native) = 8.35 bits and H(non−
native) = 8.34 bits, these are extremely low values of KL
divergence, showing the two distributions barely differ, on
average. Thus, the significant heterogeneity in which areas of
the color wheel participants responses converge to is not well
accounted for by differences in native languages.



Discussion
What causes this heterogeneity across participants? Why do
participants converge to particular areas of the color wheel,
but not necessarily the same ones as each other? There are
several possibilities, including individual differences in color
categories, and language differences too subtle to be picked
up by our analysis of native vs. non-native English speakers.

If it were the case that inconsistencies in the convergence
locations of individuals could be explained by variation in
individual’s color categories, we would expect the final itera-
tion responses to roughly resemble the color naming data, as
both are pooled across a large number of individuals. Thus
variation in color categories should still result in convergence
centered around the modal colors of basic color terms. The
discrepancy between the color naming data and the distribu-
tion of final chain iteration colors suggests that the conver-
gence patterns arise from something more complicated than
just individual, cultural, or linguistic variation in color cate-
gories.

An alternative explanation for this pattern of convergence
is that the global prior guiding convergence of the chains is
not derived from linguistic color categories, but from percep-
tual inhomogeneities (which may correspond to some extent
to linguistic color categories); that is, from the color wheel
not being perfectly perceptually uniform. Preliminary analy-
ses of perceptual similarity data, beyond the scope of the cur-
rent paper, suggest that this may partially explain the shape
of the final iteration response distribution.

Since there are other contextual factors that also bias mem-
ory, this pattern of convergence could also arise from an inter-
action between the global priors and contextual information.
It may be the case that the structure of the colors seen within
an experiment has a large influence on subsequent memory,
significantly obscuring the influence of stable category struc-
ture. For example, there may be local serial dependence
such that the color from the previous trial has a major at-
traction effect on the current trial (e.g. Fischer & Whitney,
2014), which would lead responses in an iterated design like
ours to converge over time but in idiosyncratic ways. In this
paradigm, we used filler trials to smooth the distribution of
colors seen by participants. The clustering of iterated chains
in certain regions in color space resulted in the filler trials
in later blocks being systematically different from the itera-
tion trials. If there are indeed strong local effects of context,
this systematic difference between filler and iteration trials in
later blocks could have altered the convergence path of iter-
ated chains. In Experiment 2 we explore how recent history
affects convergence to see if this could have contributed to
the individual differences in convergence patterns observed
in Experiment 1.

Experiment 2
In Experiment 2 we performed a similar iterated color repro-
duction experiment but explicitly manipulated the colors par-
ticipants saw on trial n− 1 to examine the effect of recent

Figure 6: The relative position of each iterated chain, relative to the
starting color of that chain, is strongly modulated by the direction of
the prior influence trial — chains preceded by clockwise influence
trials tended to drift clockwise (positive direction), and vice versa.
The baseline drift is caused by having only 5 seed locations.

trial-by-trial history.

Methods

Participants Seventy (N=70) undergraduate students were
recruited to participate in this study (57 female, mean age
20.2) in exchange for course credit. All subjects gave in-
formed consent, and the study was approved by the rele-
vant Institutional Review Board. All subjects had normal
or corrected-to-normal vision acuity and normal color vision
as assessed with Ishihara’s test of color deficiency(Ishihara,
1987).

Procedure The memory reproduction paradigm used in Ex-
periment 2 was almost identical to that of Experiment 1. The
same iterated reproduction procedure was used to collect a set
of chains. However, only a subset of the original seed colors
was used: Five seed colors evenly spaced 72 degrees apart
on the color wheel were shown on the first chain-iteration
trial for every participant. Each participant again completed
2 chains for each seed color, resulting in 10 iterated chains
per participant. Participants completed blocks of 15 trials (5
iteration trials and 10 non-iteration trials), which again alter-
nated between the 2 sets of iterated chains such that no two
chains within a block began with the same seed color.

Non-chain trials came in two types: filler and influence
trials. The filler trials were generated in a similar manner
to those in Experiment 1 to smooth the distribution of color
stimuli. Influence trials were trials that immediately pro-
ceeded the iteration trials, and whose color was manipulated
to always be exactly 20 degrees clockwise or counterclock-
wise of the chain-iteration trial that would follow. The itera-
tion trial always appeared in the same spatial location as the
influence trial, with the position of influence trials and filler
trials remaining random. We manipulated the influence trials
such that of the two chains for each seed color, one was al-
ways proceeded by a clockwise influence trial and the other
by a counterclockwise influence trial.



Figure 7: The axes are the same as Figure 6 (iteration x relative position, as a function of baseline vs. influence direction), but here the results
are broken down by the particular seeds. The effect of the influence trials depends on the starting seed color.

Results
For each participant we again calculated the Shannon entropy
for the frequency distribution of colors shown and the fre-
quency distribution of responses (binned into 10 degree inter-
vals in color space). As in Experiment 1, we found that the re-
sponse distributions had significantly lower entropy than the
target distributions, t(63) = 4.2, p < 0.001.

To determine if the influence trials indeed had an effect
on the trajectory of the iterated chains, we look at the rel-
ative position of the chain-iteration responses to their start-
ing seed across iteration (Fig. 6). We used a repeated mea-
sures ANOVA and found that iteration, influence direction,
and their interaction are all significant predictors of relative
position (Table 1).

Next, we examined the effect of influence trials relative to
non influence trials. There were no iterated chains without
the influence manipulation in Experiment 2. Therefore, to
make the comparison, we used Experiment 1 as a baseline
(where iteration trials were preceded by random trials). We
used only the iterated chains from Experiment 1 with seeds
identical to those used in Experiment 2. The +20 and -20
influence conditions deviated by the same magnitude from
the Experiment 1 baseline (albeit in different directions).

The degree to which global category biases and contex-
tual dependence biases interact can be seen when we look at
the relative position of chain-iteration trials within a starting
seed. The ability of the prior trial to influence the trajectory
of the chain appears dependent on where the chain began. For
some seeds, the influence trials have little to no effect, but for
others the direction of the influence trial is large. To quantify
this interaction, we used a repeated-measures ANOVA with a
full model including fixed effects of iteration, influence direc-
tion, and seed. We found that all fixed effects and their 2-way
and 3-way interactions were significant (Table 1).

General Discussion
We examined the role of recent history and long-term priors
(color categories) in visual working memory. We used a strat-
egy of iterated reproduction to elicit these effects. We find
strong effects of both: while there are across-subject, global
effects of color categories, there are also significant individ-
ual differences in the convergence behavior we elicit within

Predictor F-statistic p-value
Iteration 21.5039 p < 0.0001

Influence Direction 221.0766 p < 0.0001
Seed 141.8787 p < 0.0001

Iteration*Influence Direction 143.4129 p < 0.0001
Influence Direction*Seed 16.0732 p < 0.0001

Iteration*Seed 28.2703 p < 0.0001
Iteration*Influence Direction*Seed 3.4631 p < 0.01

Table 1: Repeated measures ANOVA statistics and significance for
all fixed effects.

subject — both because they may differ in their stable priors
(e.g., color categories) and because of the overriding effect of
recent history on where their memories converge to.

Previous work using iterated reproduction has focused
solely on eliciting stable long-term priors (e.g. Sanborn &
Griffiths, 2008). Similarly, mechanistic accounts of attrac-
tor dynamics assume that attractors are a fixed property of a
stimulus space (Panichello et al., 2019). However, memory
and cognition are filled with examples where people are un-
duly influenced by recent history — for example, in decision
making (Yu & Cohen, 2009), perception (Fischer & Whitney,
2014) or memory (Huang & Sekuler, 2010). Here we show
that such recent trial history has a strong effect on memory,
in some cases overpowering the effect of long-term category
priors. Existing work has also found that contextual effects
from additional items (e.g., if asked to store 3 colors in mind
at once) can similarly overpower long-term category priors
(Brady & Alvarez, 2015). In understanding working memory
it will be important to consider a hierarchical range of pri-
ors operating at different time scales — both the most stable,
long-term priors (our general world knowledge), as well as
priors based on recent history and even those based on the
general structure of the current visual input (e.g., ensembles;
Chong & Treisman, 2003). To the extent the world is gen-
erally stable, long-term priors should dominate; to the extent
that the world changes over time, it is optimal to give more
weight to recent history; and to the extent nearby items tend
to arise from the same generative process, priors based on
local context should be important.

Our findings agree with previous work that to some ex-
tent, these visual working memory biases may arise from in-



homogeneities in the underlying stimulus space; specifically,
CIELab color space, and other similarly constructed ”uni-
form” color spaces, do not capture the true underlying psy-
chophysical landscape in which we represent color (Bae et
al., 2015; Panichello et al., 2019). However, this is not solely
because participants rely on a single set of established pri-
ors that are derived from perceptual categories (e.g. Hem-
mer & Steyvers, 2009). Instead, our results show that recent
history can impact our memory for a recently experienced
color and interact with stable long-term effects, suggesting
non-stationary attractor states can be induced by contextual
information. Importantly, our research suggests that while re-
cent exposures have a strong influence on memory, they do
not entirely dominate global biases (see Fig. 7).

Overall, our work has demonstrated that considering the
multicausality of biases is crucial in studying memory. Mem-
ory is necessarily impacted by priors. Stable, long-term pri-
ors provide the basis for the psychophysical similarity that
memory builds upon (Schurgin et al., 2018), and local priors
such as recent history and spatial context provide useful con-
straints that help — in a spatially and temporally ”smooth”
world — to construct reliable representations with the very
limited working memory capacity that we are afforded. Thus,
while our work is a case study in visual working memory, we
believe that the implications of this study extend to a much
broader body of work. In memory, perception, and decision
making, it is necessary to take into account prior knowledge,
including both long-term, global priors and local priors aris-
ing from recent exposure, which combine and interact to in-
form these inherently noisy cognitive processes.
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