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How does information transition from being uncon-
sciously processed to being accessed by conscious aware-
ness? According to some models, information reaches 
awareness in a graded fashion that varies along a con-
tinuum associated with the intensity of the stimulus, atten-
tion, or cortical activity (Elliott et al., 2016; Nieuwenhuis 
& de Kleijn, 2011; Overgaard et al., 2006; Phillips, 2020). 
Under this view, there is a continuous transition from 
unconscious to conscious processing leading to varying 
levels of vague or unclear perceptual experiences. 
According to other models, information reaches aware-
ness in a discrete manner associated with all-or-nothing 
changes in neural activity (Carruthers, 2019; Dehaene 
et al., 2001; Lamme, 2003; Sergent & Dehaene, 2004; Vul 
et al., 2009). In this case, the transition from unconscious 
to conscious is binary; participants either do or do not 
perceive a particular stimulus.

Over the past few decades, researchers on both sides 
of this debate have used numerous experimental para-
digms (e.g., the attentional blink, visual masking) and 
methodologies (e.g., objective measurements, subjec-
tive ratings) to assess this question, often making it 
difficult to compare studies with one another. Recently, 
however, one tool that has been applied to this debate 
is probabilistic mixture modeling. This particular mod-
eling framework takes participants’ responses in a con-
tinuous reproduction task (e.g., what color was this 
stimulus on a color wheel?) and models the errors that 
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Abstract
Does sensory information reach conscious awareness in a discrete, all-or-nothing manner or a gradual, continuous 
manner? To answer this question, we examined behavioral performance across four different paradigms that manipulate 
visual awareness: the attentional blink, backward masking, the Sperling iconic memory paradigm, and retro-cuing. We 
then asked how well we could account for participants’ (N = 112 adults) behavior using a signal detection framework 
that factors in psychophysical scaling to model participants’ responses along a single continuum. We found that this 
model easily accounted for the data from each of these diverse paradigms. Moreover, we reanalyzed the data from 
prior studies that had posited a discrete view of perceptual awareness and found that our continuous signal detection 
model outperformed the models that had been used to support an all-or-nothing view of consciousness. This set of 
data is consistent with the idea that conscious awareness occurs along a graded continuum.
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participants make on this task (Bays et al., 2009; Zhang 
& Luck, 2008). Although it was initially proposed to 
model visual working memory, mixture modeling has 
since been applied to nearly all areas of perception, 
attention, and long-term memory research (Brady et al., 
2013; Golomb et al., 2014; Salahub & Emrich, 2016). In 
its simplest form, the mixture model framework posits 
that the representation of a stimulus often fails com-
pletely (i.e., it is not encoded/remembered, resulting in 
guesses) and that when it does not fail completely, its 
representation varies in precision, which can be quanti-
fied. These two states are often modeled by a combina-
tion of a von Mises distribution and a uniform distribution 
to quantify the precision of represented items and the 
rates of not having a representation of an item. Because 
this modeling approach differentiates between instances 
in which items are and are not successfully represented 
in both a continuous (i.e., precision) and a discrete (i.e., 
guess rate) manner, it is a natural tool for asking whether 
information transitions into conscious awareness in a 
discrete or graded manner.

One example of this approach is the nature of per-
ceptual awareness in the attentional blink (Raymond 
et al., 1992). The attentional blink is a perceptual phe-
nomenon in which participants less accurately perceive 
the second of two targets when it appears close in time 
to the first target. By asking participants to report the 
identity of the second target in a continuous manner 
(e.g., on a color wheel), we can model the precision 
and guess rates of the second target, assessing whether 
the second item sometimes goes unnoticed (i.e., guess 
rate increases) or is always perceived but less precisely 
(i.e., precision degrades). Using this approach, Asplund 
et  al. (2014) found that the guess rate of the second 
target increased while the precision of those responses 
stayed the same. In other words, information reached 
conscious awareness in a quantal, all-or-nothing manner 
(but see Sy et al., 2021). Similar work has been done in 
many other paradigms, including the Sperling iconic 
memory paradigm (Pratte, 2018) and a related retro-
cuing paradigm (Thibault et al., 2016), with each case 
supporting some form of discrete failures of conscious-
ness on the basis of mixture model fits.

Recently, however, theoretical work by Schurgin 
et al. (2020) has undermined foundational assumptions 
of mixture models and shown that in the case of visual 
working memory and visual long-term memory, this 
modeling approach does not reveal two distinct psy-
chological processes. Specifically, Schurgin et  al. 
showed that precision and guess rate do not change 
independently of one another; instead, they always 
change together, as though they are really just different 
reflections of a single underlying construct. Schurgin 

et al. showed how a simple model with only a single 
latent variable—what they call memory strength—can 
account for data that were thought to require a mixture 
of guesses and precision errors. The reason this was 
not previously recognized is that standard mixture mod-
els do not consider the psychophysical similarity of 
items, which is deeply nonlinear. For example, colors 
that are 5° apart on the color wheel appear more similar 
to one another than colors that are 35° apart. However, 
colors that are 120° apart do not appear more similar 
than colors that are 150° apart. By considering the 
psychophysical similarity of items in a given stimulus 
space, Schurgin et  al. showed that performance on 
working memory and long-term memory tasks could 
be explained by a signal detection framework in which 
a continuous representational strength (d′) is the only 
varying parameter. This work forms the basis of the 
target confusability competition (TCC) model, which 
posits that all stimuli in a memory or perception task 
are processed with varying degrees of noise, leading 
to reproduction errors.

In the current work, we asked how well this continu-
ous TCC model fits the data from four different para-
digms that manipulate visual awareness: the attentional 
blink, backward masking, the Sperling paradigm, and 
retro-cuing. For three of these paradigms, we reana-
lyzed data from prior studies claiming to show discrete 

Statement of Relevance

At any given moment, the human senses (e.g., 
vision, hearing) are presented with more informa-
tion than the brain can process. Some of this infor-
mation ultimately reaches conscious awareness 
(e.g., the sight of an animal crossing the road in 
front of you), whereas other information remains 
unconscious (e.g., the pothole on the street that 
you drive right over because you failed to notice 
it). How does information transition from uncon-
scious to conscious? Does it enter in an abrupt, 
all-or-nothing manner? Or does it enter along a 
graded continuum? Here, we used a wide array of 
paradigms that manipulate perceptual awareness 
and found that a signal detection-based model, 
which posits that information reaches conscious-
ness in a graded fashion, easily explains all of 
these results. Moreover, this model outperformed 
other models that have been cited to claim that 
information reaches consciousness in a discrete 
fashion. Thus, we argue that information reaches 
consciousness along a graded continuum.
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failures of conscious awareness. In each of these cases, 
however, formal model comparisons show that the con-
tinuous TCC model outperforms mixture models, which 
suggests that information reaches conscious awareness 
in a continuous, graded manner.

Method

The TCC model

In a standard working memory experiment, participants 
were asked to remember a small number of items (e.g., 
five colors) and respond in a continuous space (e.g., a 
color wheel; Fig. 1a). The resulting data from these 
experiments are a distribution centered around zero 
with long, fat tails with many errors far from zero. Under 
the mixture modeling framework proposed by Zhang 
and Luck (2008) and since elaborated (e.g., Bays et al., 
2009; Pratte, 2018), this distribution is thought to com-
prise two components related to (a) the precision of 
items successfully processed and reported (i.e., the stan-
dard deviation) and (b) how frequently items fail to be 
processed and are not represented (i.e., the guess rate). 
Recent work has strongly questioned this idea that there 
are two distinct factors underlying performance in con-
tinuous reproduction tasks, however (e.g., Bays, 2014; 
Schurgin et al., 2020; van den Berg et al., 2012). In the 
TCC framework of Schurgin et al. (2020), for example, 
this response distribution is thought of as a relatively 
simple outcome of noise being added to perceptual 
signals. In particular, TCC proposes that psychophysical 
similarity (i.e., measuring how perceptually confusable 
each item is with the item to be remembered; target 
confusability) and signal detection theory (i.e., noisy 
decision making, a kind of competition; MacMillan & 
Creelman, 1991) account for performance. Critically, 
according to the TCC model, there is no distinction 
between how precisely and how many items are pro-
cessed—only a single latent variable, the strength of 
the item’s representation, is needed to account for per-
formance in continuous reproduction (Schurgin et al., 
2020). Thus, if the TCC model accurately fits data from 
tasks in which perception is challenging, this would 
suggest that conscious perception can potentially be 
thought of as a graded phenomenon with the strength 
of a given percept varying along a single continuum.

To intuitively understand the TCC model, one may 
consider a situation in which an observer is shown a 
colored item and is asked to report the color of that 
item in a continuous report task with a color wheel. It 
is natural to assume that every color around the color 
wheel would get varying degrees of a “familiarity boost” 
depending on the similarity between the target color 
and the response colors. For example, when the 

presented color is a shade of purple, this color gets a 
big boost in familiarity, and colors almost identical to 
it (e.g., 2° away on the color wheel), which are per-
ceptually nearly impossible to distinguish and which 
activate nearly the same population of neurons in early 
visual cortex (e.g., Bays, 2014), also get a boost in 
familiarity. Other colors nearby to purple (e.g., blue) 
would also get a familiarity boost, approximately in line 
with how likely they are to share neural resources and 
have overlapping tuning functions (Bays, 2014). Mean-
while, colors far from purple (e.g., yellow) would get 
little to no boost from purple having been shown. The 
amount of familiarity boost that each item gets is based 
on a psychophysical similarity function that is strongly 
nonlinear. Thus, the first step of TCC is to empirically 
measure the perceptual similarity of a particular feature 
space (i.e., color, orientation) as an index of familiarity 
spreading (Fig. 1b). When this familiarity gradient is 
measured, the model simply combines this similarity 
space with noise (i.e., via signal detection, with the 
signal-to-noise ratio being d′) that is varied along a 
continuous gradient (Fig. 1c). In this case, d′ is a quan-
tification of the strength of a particular conscious per-
cept (Fig. 1d). A tutorial on the TCC model is available 
at https://bradylab.ucsd.edu/tcc/.

Model details

In general, the TCC model is typical of an m-alternative 
forced-choice signal detection model of memory but 
was adapted to the case of continuous report, which 
we treated as a 360-alternative forced-choice task for 
the purposes of the model. The analysis of such data 
focused on the distribution of errors that people made 
measured in degrees along the response wheel, x, 
where correct responses have x = 0° error, and errors 
range up to x = ±180° for a color wheel (or x = ±90° 
for oriented gratings), reflecting the incorrect choice of 
the most distant item from the target on the response 
wheel. In the TCC model, when a participant is asked 
to report the value of a single item, (a) each of the 
colors on the color wheel generates a memory-match 
signal mx, with the strength of this signal drawn from 
a Gaussian distribution, mx ~ N(dx, 1); (b) the partici-
pant reports whichever color x has the maximum mx; 
(c) the mean of the memory-match signal for each 
color, dx, is determined by its psychophysical similarity 
to the target according to the measured function, f(x), 
such that dx = d′f(x); and (d) the noise is correlated 
across nearby colors according to confusability in a 
perceptual matching task. Because sampling from a 
normal distribution with a standard deviation of 1 (the 
typical framing of signal detection) is equivalent to 

https://bradylab.ucsd.edu/tcc/
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Fig. 1. The target confusability competition (TCC) model. (a) Continuous report working memory task. Participants are shown a stimulus 
display, and after a delay, they are asked to report the exact color of a cued item with the color wheel. In the lower panel is an example 
of a mixture model’s fit to continuous report data. Most results land within a small range centered around the target’s true color, with some 
responses being far off. The standard mixture model (Zhang & Luck, 2008) approach states that these responses can be successfully modeled 
by assuming that errors occur because an observer either remembers nothing about the item (guesses) or has a noisy representation of that 
item (precision). (b) To measure the psychophysical similarity function of a stimulus space, we had participants perform a triad similarity 
task and report which of two colors (bottom left) was more similar to the target (top left). Although the difference between the two colors 
was always exactly the same (30°), d′ decreased as the choices were further from the target. From this, we can plot the global psychophysi-
cal function for all colors using this triad task (right). The key point here is that this similarity function is not linear and is approximately 
exponential when perceptual noise is properly considered. (c) This model can be visualized with a single trial. When an observer encodes 
the color purple with a strength (d′) of 3, the familiarity of purple, as well as nearby/similar colors, is increased relative to the psychophysi-
cal similarity function (b). Then, after adding noise to every color channel, observers make decisions on the basis of which color has the 
maximum signal. (d) Predicted error distributions can be generated simply as a function of varying d′ and combining it with correlated noise. 
Thus, for any observed error distribution, d′ is simply altered until the best fit to the data is found.
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adding standard deviation 1 noise, the model can be 
written straightforwardly:

r argmax f x d epsi VWM x i, ( ) ,= +( )′

where the index i  denotes that the probed item, ri VWM, , 
is the predicted response on the continuous report task 
for that item; ( )f x  is the measured similarity of each 
color x  with respect to item i ; d′ is a free parameter 
that quantifies the signal-to-noise ratio, eps, the noise, 
generated from a multivariate normal with a standard 
deviation of 1 and the correlation derived from the 
perceptual matching task; and argmax  denotes the 
decision rule that memory reports are based on the 
feature that generates the maximum familiarity signal. 
Note that because d′ in the TCC model is always scaled 
by similarity, this parameter represents hypothetical 
two-alternative forced-choice (2AFC) performance 
between a target and a maximally dissimilar foil object 
(e.g., a 90° orientation foil); in a more difficult task 
(e.g., 2AFC between an orientation and one 10° away), 
measured d′ would be worse, but when scaled by simi-
larity, TCC d′ would be the same as in the 90° task (as 
tested by Schurgin et al., 2020). Thus, TCC d′ values 
from continuous report should not be taken to be on 
the same scale with measured d′ in other tasks that may 
not use maximally dissimilar foils.

For f(x), the psychophysical similarity function, in 
the color tasks we used the same function used by 
Schurgin et al. (2020), which was measured in an inde-
pendent similarity task performed by independent 
observers and then held fixed for all fitting in all condi-
tions and all experiments using the same color wheel; 
we also used Schurgin et al.’s perceptual matching data. 
For orientation, we used data that were similar to those 
published in the preprint by Schurgin et al. but removed 
them before the final article because of space consid-
erations; the details of this task are reported both in 
that preprint and, for clarity, in the Supplemental Mate-
rial available online. The psychophysical similarity data 
and code for fitting the models using MemToolbox 
(Suchow et al., 2013) are available on the Open Science 
Framework. It is possible—and even preferable—to fit 
TCC on the basis of the full matrix of similarity (e.g., 
using the similarity to the particular target color or 
target orientation on a given trial, rather than using the 
averaged similarity across distances on the wheel), and 
doing so improves the fit and predicts biases, as shown 
by Schurgin et  al. But doing so gives TCC an unfair 
advantage when comparing it with a standard mixture 
model because the mixture model is generally fitted 
without allowing separate precisions for separate target 
colors or target orientations, and allowing separate pre-
cisions does improve the fit of that model as well (e.g., 
as shown by Pratte, 2018, in orientation). Thus, to keep 

the models simple and on an even footing, we used the 
averaged color and orientation similarity for all trials 
regardless of the target, ignoring inhomogeneities in 
color and orientation space.

Overall, this model combines a measurement of the 
perceptual structure of a stimulus space (i.e., psycho-
physical scaling) with a standard signal detection theory 
of perceptual decision making. It denies the existence 
of discrete failures of conscious awareness and discrete 
failures of memory, instead suggesting that the “long 
tails” of the error distribution are a natural consequence 
of the fact that all items far from the target in stimulus 
space (e.g., all colors far from purple) have effectively 
zero representational overlap with the target (e.g., share 
no neural coding overlap with purple because no tun-
ing functions are so widely tuned). Below, we show 
that this simple model can easily account for perfor-
mance across numerous paradigms that manipulate 
perceptual awareness.

Model comparisons

For each paradigm, we compared the fit of mixture 
models, which propose discrete failures of conscious-
ness, with the fit of the TCC model, which proposes 
that performance reflects a single continuous value of 
strength, and asked whether there was a difference in 
the fit between the two models after accounting for the 
simplicity of TCC. We used a version of the mixture 
model normalized to predict only integer errors to make 
it comparable with TCC (Schurgin et al., 2020). To com-
pare the models per condition, we used the Bayesian 
information criterion (BIC) as our metric to directly 
compare mixture models and the continuous TCC 
model (Schwarz, 1978). This is because we have previ-
ously shown, via model recovery simulations in which 
data are simulated from each model and then refitted 
by both models, that the BIC is well calibrated for 
accurately distinguishing mixture models from TCC in 
continuous reproduction data (Schurgin et  al., 2020, 
Supplement). The Supplemental Material explains and 
expands those model recovery simulations. However, 
in the Across Experiments section below, we highlight 
that comparing the models in each condition can fail 
to capture the main evidence in favor of a simpler 
model such as TCC. Simpler models are far more con-
strained in what patterns of data they can predict across 
all conditions, which is poorly accounted for in con-
sidering only goodness of fit, or even adjusted good-
ness of fit such as the BIC (Roberts & Pashler, 2000). If 
the pattern across all conditions is what is predicted by 
a one-parameter model rather than a two-parameter 
model, in terms of a state-trace plot (Dunn & Kalish, 
2018), this provides even stronger evidence in favor of 
a simpler model such as TCC.



1038 Cohen et al.

Participants

The data from 97 adult participants were reanalyzed from 
previously published studies (Asplund et al., 2014; Pratte, 
2018; Sy et al., 2021; Thibault et al., 2016), whereas 15 
adult participants performed one new experiment (i.e., 
backward masking). Participants gave informed consent, 
and all experimental procedures were approved by the 
Committee on the Use of Human Subjects in Research 
under the institutional review board of the Massachusetts 
Institute of Technology.

Results

Attentional blink

We reanalyzed the data from two articles that used 
mixture modeling to examine responses made during 
the attentional blink. In one article, Asplund and col-
leagues (2014) argued in support of a discrete, all-or-
nothing view of conscious perception, whereas in 
another article, Sy and colleagues (2021) claimed that 
awareness can be discrete or continuous depending on 
task demands. We asked how well these data can be 
accounted for by the simpler TCC model, which allows 
for variation in only a single latent variable, the repre-
sentational strength of the items, rather than a mixture 
model that requires two variables (i.e., precision and 
guess rates) and posits discrete all-or-none failures of 
consciousness.

In Experiment 1 by Asplund et al. (2014), participants 
were shown a rapid serial visual presentation of colored 
circles with two square targets (Fig. 2a). At the end of 
each trial, participants first used the color wheel to 
report the color of the second target (T2) and then 
reported whether the first target (T1) was black or white. 
These targets were separated by one, two, four, or eight 
circular distractors. The authors used a two-parameter 
mixture model to estimate the precision and guess rate 
of T2 reports (Zhang & Luck, 2008). Overall, the authors 
found that the attentional blink was characterized only 
by an increase in the guess rate and not by a change in 
precision (see Asplund et al., 2014, Fig. 2). These find-
ings were used to support the claim that conscious 
perception is a discrete, all-or-nothing process.

We fitted the same data using the one-parameter TCC 
model and directly compared its performance with the 
two-parameter mixture model. Overall, we found that 
the d′ parameter of the TCC model recapitulated hall-
mark properties of the attentional blink (Fig. 2b). Spe-
cifically, we found that Lag 2 performance was lower 
than both Lag 4, t(27) = 4.23, p < .001, dz = 0.80, and 
Lag 8, t(27) = 5.99, p < .001, dz = 1.13, after Bonferonni 
correction for multiple comparisons. Although a Lag 1 
sparing was not statistically reliable—Lag 1 vs. Lag 2: 

t(27) = 1.54, p = .134, dz = 0.29—performance did trend 
in the direction of sparing (d′: M = 1.53 at Lag 1, M = 
1.41 at Lag 2, M = 1.65 at Lag 4, M = 1.91 at Lag 8). 
Thus, overall, representations were noisier within the 
attentional blink than outside the attentional blink. To 
address the question of whether there were all-or-none 
failures, we fitted the mixture model and compared it 
with TCC. We found that the fit of the TCC model was 
preferred over the mixture model at each lag. Definitive 
evidence in favor of a model is considered in cases in 
which there is a BIC greater than 20. For each lag, we 
found BIC sums well over this (Lag 1: 92.6, Lag 2: 121.3, 
Lag 4: 142.8, Lag 8: 130.3), suggesting that the data were 
best accounted for by the continuous TCC model rather 
than by a mixture of all-or-none failures and precision 
errors. Summing across conditions, we found that the 
BIC favored TCC in 27 of 28 participants. It is possible 
to take the TCC model and add a “guess rate” to it, 
allowing that although TCC may mostly explain the data 
simply in terms of added representational noise from 
the attentional blink, all-or-none failures may also exist. 
However, this model was not at all favored by the BIC, 
suggesting that a model based solely on added noise 
with no additional all-or-none failures was the best fit 
to the data (BIC differences favoring no guessing: Lag 
1: 182.9, Lag 2: 172.8, Lag 4: 186.5, Lag 8: 182.6). The 
TCC model without guesses was preferred in all 
participants.

In Experiment 1 by Sy et al. (2021), participants were 
shown a rapid serial visual presentation of nonoriented 
noise distractors and searched for two oriented colorful 
gratings (Fig. 3a). These targets were separated by 
either two, four, or nine noise distractors. For this 
experiment, rather than report the color of the targets, 
participants reported the orientation of the second tar-
get in a continuous manner. These responses were then 
modeled using a three-parameter mixture model to 
estimate the precision, guess rate, and confusion error 
of responses for the second target (Bays et al., 2009). 
In the dual task condition, participants reported the 
orientation of both targets, whereas in the single task 
condition, participants ignored the first target and 
reported only the second target’s orientation. In this 
study, the authors found that the attentional blink can 
result in an impairment in the precision of the second 
target. Specifically, they claimed that this occurred 
when attention must be divided across the same fea-
tures for the first and second targets, which was not the 
case in the work by Asplund et al. (2014; see Sy et al., 
2021, Fig. 2). In contrast to this claim about why the Sy 
et al. (2021) work found a precision difference and the 
Asplund et  al. (2014) data did not, the TCC model 
makes an a priori prediction that because of the  
way representational strength changes the memory 
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used in Experiment 1 by Sy et al. (2021). (b) Target confusability competition (TCC) fits to group data (N = 14) with varying lags 
between the first target (T1) and second target (T2). Gray bars signify the error distribution between the target orientation and the 
response orientation plotted as a function of distance in degrees of error. Blue lines signify the model fit to the continuous report 
data. The line graph shows TCC d′ on the y-axis and the lags between T1 and T2 on the x-axis. The dual task condition is marked in 
gray; the single task condition is marked in black.

distribution’s shape, when performance is higher, a 
“precision” difference will arise, whereas when perfor-
mance is lower, only a “guess rate” difference will arise, 
even though both arise from the same underlying rep-
resentational strength and are not in fact distinct (see  
Schurgin et al., 2020, Supplement for simulations). Thus, 
we fitted the Sy et al. (2021) data with the TCC model 
to test this claim that only a single latent variable—d′,  

a measure of representational strength—was relevant to 
performance in this experiment as well.

Because in this experiment, “swap” errors—misre-
ports of the first target as the second—were common 
(for a description of such errors, see Williams et  al., 
2022), we fitted the data using a two-parameter orienta-
tion version of the TCC model that allowed for swaps 
(Williams et al., 2022, 2023) and directly compared its 
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performance with the three-parameter swap-based mix-
ture model (Bays et al., 2009) used by Sy et al. (2021). 
We found that the d′ parameter of the TCC model reca-
pitulated standard properties of the attentional blink 
(Fig. 3b). In the dual task conditions, performance was 
d′ of 1.9 at Lag 2, 2.3 at Lag 4, and 2.8 at Lag 9, with 
swap rates of 0.26 at Lag 2, 0.06 at Lag 4, and 0.004 at 
Lag 9. Lag 2 performance was reliably worse than Lag 
4, t(11) = 3.87, p = .003, dz = 1.12, and Lag 4 perfor-
mance was worse than Lag 9, t(11) = −4.45, p = .001, 
dz = 1.28. Swap rates were also increased at Lag 2 rela-
tive to other lags—vs. Lag 4: t(11) = 3.24, p = .008,  
dz = 0.94; vs. Lag 9: t(11) = 3.19, p = .009, dz = 0.92. 
Moreover, performance on the dual task condition was 
significantly worse than the single task condition—Lag 
2: t(11) = 10.29, p < .001, dz = 2.97; Lag 4: t(11) = 4.27, 
p = .001, dz = 1.23; Lag 9: t(11) = 3.03, p = .011, dz = 0.87. 
It should be noted that each of these analyses reached 
statistical significance after Bonferonni correction for mul-
tiple comparisons. Thus, overall, representations were 
noisier—with lower d′ and higher swap rates—within the 
attentional blink than outside the attentional blink.

To address the question of whether there were all-or-
none failures, we fitted the mixture model and compared 
it with TCC. Critically, we also found that the fit of the 
TCC model was preferred over the mixture model at all 
lags and in both single and dual tasks, with BIC sums 
over 50 at all lags (i.e., extremely definitive). In the single 
task condition, the BIC favored TCC (Lag 2: 56.9, Lag 4: 
30.2, Lag 9: 31.3). In the dual task condition, the BIC also 
favored TCC (Lag 2: 42.3, Lag 4: 57.9, Lag 9: 64.8). Sum-
ming across conditions, we found that the BIC favored 
TCC in nine of 12 participants. In addition to comparing 
TCC with the mixture model, we also compared TCC with 
a modified version of TCC in which there is not only 
added noise (e.g., d′ changes) but also all-or-none 
guesses. This model was not at all favored by the BIC, 
suggesting that a model based solely on added noise with 
no additional all-or-none failures was the best fit to the 
data (BIC differences favoring no guessing: single task—
Lag 2: 88.9, Lag 4: 93.6, Lag 9: 92.9; dual task—Lag 2: 
88.3, Lag 4: 89.3, Lag 9: 106.1). The TCC model without 
guesses was preferred in all participants.

Thus, whereas Asplund et al. (2014) claimed that all-
or-none failures dominate the attentional blink and Sy 
et al. (2021) claimed that precision differences also arose, 
we found that both are better fit by the TCC model, 
which says that “precision” versus “guess rate” differ-
ences are illusory and that a single latent variable—the 
strength of the representation—is decreased by the atten-
tional blink. This simpler model better accounted for both 
the data that were previously claimed as evidence for 
all-or-none representation as well as the data that were 

previously used as evidence for precision differences also 
arising (Asplund et al., 2014; Sy et al., 2021).

Backward masking

Does the better fit of the TCC model, where perfor-
mance degrades in a single dimension (representational 
strength, d′) rather than in two (precision, guess rate), 
hold with other paradigms that manipulate perceptual 
awareness? To answer this question, we collected new 
data that used a visual masking paradigm that rendered 
a target Gabor less visible (Kouider & Dehaene, 2007). 
Here, the target Gabor was presented for approximately 
17 ms and was followed by a series of masks made out 
of white noise and two checkerboard patterns (one 
normal checkerboard and another through a low pass 
filter blended together) that were randomly oriented 
(four total masks, ~17 ms/mask; Fig. 4a). There were 
four blank stimulus duration periods between the target 
and the first mask: 33 ms, 50 ms, 67 ms, and 83 ms. At 
the end of each trial (200 total), participants reported 
the orientation of the target item in a continuous man-
ner (for more details, see the Supplemental Material).

We found that the d′ parameter of the TCC model fit 
the behavioral errors that participants made quite well 
and that d′ steadily decreased as the duration between 
the target and the masks decreased (Fig. 4b), with mean 
d′ of 2.6, 2.0, 1.4, and 0.7 at lags 83 ms, 67 ms, 50 ms, 
and 33 ms, respectively. Thus, shorter stimulus onset 
asynchronies (SOAs) led to noisier representations.

To address the question of whether there were all-
or-none failures, we fitted the mixture model and com-
pared it with TCC. In particular, we directly compared 
the one-parameter TCC model with a two-parameter 
mixture model (Zhang & Luck, 2008) and found that 
the TCC model was strongly preferred over the mixture 
model at every SOA (BIC differences: 33 ms: 48.8, 50 
ms: 40.6, 67 ms: 59.4, 83 ms: 46.3). Summing across 
conditions, we found that the BIC favored TCC in 14 
out of 15 participants. This suggests that a model based 
on noisy representations alone is preferred to one with 
all-or-none failures. In addition to this comparison 
between distinct models, it is also possible to take the 
TCC model and add a guess rate to it, allowing that 
although TCC may mostly explain the data simply in 
terms of added representational noise, all-or-none fail-
ures may also exist. This model of TCC with guesses 
was strongly disfavored by the BIC, suggesting that a 
model based solely on added noise with no additional 
all-or-none failures was the best fit to the data (BIC 
differences favoring no guessing: 33 ms: 86.2, 50 ms: 
86.7, 67 ms: 86.9, 83 ms: 87.1). The TCC model without 
guesses was preferred in all participants.



Psychological Science 34(9) 1041

a

b
Modeling Results

Backwards Masking

(New Data)

Stimulus Onset Asynchrony (ms)
80644833

TC
C 

d
′

33ms 48ms 64ms

Error (°)

0

0.3

0

3

Pr
ob

ab
ili

ty

Target
(16ms)

SOA
(33-80ms)

Mask
(16ms)

Mask
(16ms)

Time

90−90 0 Data
Model

80ms

Fig. 4. Backwards masking task and model fits to the data. (a) 
Structure of backward masking paradigm. Note that in the experi-
ment, the target Gabor was shown at lower opacity but is displayed 
at full opacity for display purposes. (b) Target confusability competi-
tion (TCC) fits to group data (N = 15, which was predetermined and 
based on extensive pilot testing) across the different stimulus onset 
asynchronies (SOAs). Gray bars signify the error distribution between 
the target orientation and the response orientation plotted as a func-
tion of distance in degrees of error. Blue lines signify the model fit 
to the continuous report data. The line graph shows TCC d′ on the 
y-axis and the SOA on the x-axis.

Thus, we found that even in the case of backward 
masking, considering participants’ responses as arising 
from continuous degradation of a single underlying 
strength parameter is a better account of the data than 
an account that supposes a mixture of some “visible” 
and some “invisible” trials (i.e., a mixture model).

Sperling paradigm

Although the Sperling paradigm (1960) does not render 
stimuli invisible, it is one of the most extensively stud-
ied perceptual paradigms in consciousness studies. 
Indeed, it sits at the center of an extensive debate about 
the capacity limits of perceptual awareness, with some 
authors arguing that perception is “rich” (Block, 2011; 

Lamme, 2003; Sligte et al., 2008) and others maintaining 
that it is “sparse” (Cohen & Dennett, 2011; Dehaene, 
2014; Kouider et al., 2010; Phillips, 2011; Sergent et al., 
2013). Given its relevance to the study of perceptual 
awareness, we asked how well the TCC model’s single 
latent representational strength parameter—as opposed 
to a mixture of precision errors and discrete failures 
(e.g., Zhang & Luck, 2008)—could account for perfor-
mance in this paradigm.

Pratte (2018) used the Sperling paradigm with continu-
ous reproduction of both color and orientation and col-
lected large amounts of data per participant. The color 
wheel they used was quite distinct from the color wheel 
for which we had TCC similarity data; therefore, we refit-
ted the data from their orientation experiment (Experi-
ment 2b). In Experiment 2b by Pratte (2018), 10 Gabor 
patches were briefly shown (200 ms) in a circular con-
figuration (Fig. 5a). After a variable retention interval, a 
black line cued participants to one of the 10 locations 
previously occupied by a Gabor. This cue appeared 
between 33 ms and 1,000 ms after the offset of the initial 
display, at which time, participants reported the orienta-
tion of the target item using continuous reproduction. 
Pratte then used a two-parameter mixture model to esti-
mate the precision and guess rate of the cued item (Zhang 
& Luck, 2008). In this study, the author ultimately con-
cluded that iconic memories “die a sudden death” because 
the guess rate changed over time, whereas the precision 
of the remembered items remained approximately the 
same (see Pratte, 2018, Fig. 3). In other words, the model-
ing results of this experiment were taken to support a 
discrete, all-or-nothing view of perceptual awareness. 
Does the TCC model, with just a single strength param-
eter, fit these data better than the mixture model?

We found that the one-parameter TCC model accu-
rately fit participants’ responses quite well, with d′ gradu-
ally decreasing as the retention interval increased (Fig. 
5b), F(7, 42) = 55.9, p < .0001. This is consistent with the 
idea that longer delays result in noisier representations.

To address the question of whether there were all-
or-none failures, we next fitted the two-parameter mix-
ture model and compared it with TCC. We found that 
the fit of the TCC model was preferred over the mixture 
model at every retention interval (BIC differences:  
33 ms: 46.4, 67 ms: 31.3, 100 ms: 39.2, 150 ms: 45.9, 
233 ms: 45.9, 383 ms: 62.5, 617 ms: 53.2, 1,000 ms: 48.9) 
and across conditions in five of seven participants. 
Thus, a model based on noisy representations alone is 
preferred to one with all-or-none failures. In addition 
to this comparison between distinct models, it is also 
possible to take the TCC model and add a guess rate 
to it, allowing that although TCC may mostly explain 
the data simply in terms of added representational 
noise, all-or-none failures may also exist. This model 
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Fig. 5. Iconic memory task from Pratte (2018) and model fits to 
the data. (a) Structure of Sperling paradigm. (b) Target confusability 
competition (TCC) fits to group data (N = 35) across the match and 
nonmatch conditions. Gray bars signify the error distribution between 
the target orientation and the response orientation plotted as a func-
tion of distance in degrees of error. Blue lines signify the model fit 
to the continuous report data. The line graph shows TCC d′ on the 
y-axis and the match/nonmatch conditions on the x-axis.

of TCC with guesses was strongly disfavored by the 
BIC, suggesting that a model based solely on added 
noise with no additional all-or-none failures was the 
best fit to the data (BIC differences: 33 ms: 55.0, 67 ms: 
51.9, 100 ms: 53.8, 150 ms: 52.9, 233 ms: 52.8, 383 ms: 
52.1, 617 ms: 52.8, 1,000 ms: 53.2). The TCC model 
without guesses was preferred in all participants.

Thus, we found that the best account of iconic mem-
ory data is that memory strength drops continuously 
with delay and there is no need to posit discrete failures 

of perceptual consciousness to account for participants’ 
patterns of errors.

Retro-cuing

One paradigm closely related to the Sperling paradigm 
is a retro-cuing paradigm that cues attention after a 
stimulus disappears and subsequently improves percep-
tion of a target at threshold (Sergent et al., 2013). These 
findings have been cited to support the view that the 
initial sensory processing of a stimulus can occur sub-
consciously and then later be elevated into conscious-
ness, consistent with the sparse view of perceptual 
awareness.

One study by Thibault et al. (2016) combined this 
paradigm with mixture modeling to ask whether retro-
cuing attention increases the frequency of conscious 
processing—which is seen as discretely occurring or 
not occurring—or increases the precision of recollec-
tion for those items that were consciously processed. 
In this study, a target Gabor grating was presented in 
one of two circular placeholders at perceptual threshold 
(Fig. 6a). This target was either preceded by a pre-cue 
or followed by a retro-cue, indicated by one of the 
placeholders being dimmed. The cues could be either 
valid (i.e., same side as the target) or invalid (i.e., oppo-
site side of the target). After a brief delay, participants 
were instructed to continuously adjust the orientation 
of a probe item to match the orientation of the previ-
ously seen target. Thibault et  al. (2016) then used a 
two-parameter mixture model to estimate the precision 
and guess rate of the cued item (Zhang & Luck, 2008). 
This modeling claimed to show that the benefits to 
perception from retro-cuing arise by reducing the fre-
quency of guesses, not by changing the precision of 
responses (see Thibault et al., 2016, Fig. 3). In other 
words, these modeling results were taken to support a 
discrete, all-or-nothing view of perceptual awareness. 
Does the TCC model fit these data better than the mix-
ture model, supporting an alternative, graded view of 
performance improvement from retro-cues?

We found that the one-parameter TCC model accu-
rately fit participants’ responses quite well, with d′ being 
higher for the valid cue in the shorter cuing intervals 
and this effect decreasing as the cue arrives later (Fig. 
6b). In particular, we observed a main effect of SOA, 
F(2, 16) = 15.5, p < .001, a main effect of cue validity, 
F(1, 32) = 76.3, p < .0001, and an interaction between 
these two factors, F(2, 32) = 43.1, p < .0001. These results 
closely matched the model-free (i.e., non-mixture 
model) analyses done by Thibault et al. (2016; Fig. 4).

To address the question of whether there are all-or-
none failures, we then compared the fit of the TCC 
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model with the two-parameter mixture model and found 
that the fit of the TCC model was preferred over the 
mixture model at every retention interval in both valid 
cues (BIC differences: –100 ms: 50.1, 100 ms: 71.8, 1,400 
ms: 22.7) and invalid cues (–100 ms: 26.1, 100 ms: 37.5, 
1,400 ms: 59.1). Summing across conditions, we found 
that the BIC favored TCC in 15 out of 17 participants. 
Thus, a model based on noisy representations alone is 
preferred to one with all-or-none failures. In addition 
to this comparison between distinct models, it is also 

possible to take the TCC model and add a guess rate to 
it, allowing that although TCC may mostly explain the 
data simply in terms of added representational noise, 
all-or-none failures may also exist. This model of TCC 
with guesses was not at all favored by the BIC, suggest-
ing that a model based solely on added noise with no 
additional all-or-none failures was the best fit to the data 
(BIC differences—valid: –100 ms: 123.8, 100 ms: 124.4, 
1,400 ms: 122.9; invalid: –100 ms: 122.9, 100 ms: 121.8, 
1,400 ms: 120.2). The TCC model without guesses was 
preferred in all participants.

Thus, simple degradation of performance with delay 
to the cue, combined with a benefit of valid cues, is 
sufficient to account for these data without any discrete 
failures of consciousness or discrete reactivation of 
items into consciousness.

Across experiments

The fact that the results from the attentional blink, 
backward masking, iconic memory, and retro-cuing can 
all be fit by varying a single representational strength 
parameter appears to falsify the idea that errors in these 
paradigms represent changes in two psychologically 
distinct constructs (e.g., precision vs. guess rate). In the 
current data sets as a whole (71,123 data points), fitting 
all conditions and subjects separately, mixture models 
require 876 parameters to fit approximately as well as 
TCC fits with only 474 parameters, which considered 
all together gives TCC a BIC advantage of 3487.4. 
Another way to test this, in line with what was done 
by Schurgin et al. (2020) for working memory and long-
term memory, is to fit the mixture model to data from 
these data sets in a single stimulus space and plot the 
guess rate and standard deviation of the results against 
one another in state-trace plots (Dunn & Kalish, 2018). 
In this case, the TCC framework posits that as long as 
the stimulus space is held constant, the perceptual con-
fusion structure is constant, and so the guess rate and 
standard deviation should always change together 
along a single continuum. By contrast, the mixture 
modeling framework posits that precision and guess 
rate are genuinely separate constructs. Thus, there are 
many patterns of data possible in a state trace that 
would strongly falsify TCC by virtue of them simply not 
falling along the TCC continuum.

Figure 7 shows the state-trace plot for all orientation 
data, which is the dominant stimulus in the data that 
we have refit, from the current article (i.e., the 24 con-
ditions using orientation shown above). As can be 
clearly seen in this plot, the guess rate and standard 
deviation parameters of the mixture always change 
together along the zero-free-parameter prediction of 
TCC (e.g., TCC’s prediction across a range of d′ values). 
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Fig. 6. Retro-cuing task from Thibault et al. (2016) and model fits 
to the data. (a) Structure of retro-cuing paradigm. (b) Target con-
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ISIs on the x-axis.
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Fig. 7. Target confusability competition (TCC) makes a strong coun-
ter prediction to mixture models about their own parameters: that 
if the stimulus space, and thus psychophysical similarity function, 
is held constant, memory report distributions vary in only one way, 
in memory strength. To visualize this, we show a state-trace plot of 
mixture model parameters across the wide range of experimental 
results that we have refit, focusing only on the orientation data. We 
found that despite the huge number of different ways that represen-
tational strength is varied, all the points lie approximately on a single 
line, consistent with only a single parameter being varied, which is 
well predicted by the 0-free-parameter prediction of TCC. TCC can 
predict only an extremely small part of the possible space that the 
mixture model can predict, and only a very particular relationship 
between the two mixture model parameters, and the data from all 
of these conditions land directly on this line. This provides strong 
evidence against mixture models measuring two distinct parameters 
and in favor of the TCC conception of memory. Note that data from 
the work by Asplund et  al. (2014) are not plotted because that 
experiment used color stimuli, whereas the other experiments used 
oriented Gabors, and stimuli from different stimuli spaces cannot be 
put on a single state-trace plot.

Although their relationship is not linear, they are nearly 
perfectly related. Again, it should be stressed that any 
pattern of data that falls far off the TCC continuum 
would be completely incompatible with TCC. For 
instance, (a) precise perception but many guesses (the 
top left corner) or (b) imprecise perception and no 
guesses (the bottom right corner) could not be 
accounted for under this framework. These results lend 
further support to the idea that TCC’s single parameter 
conception of performance is correct and that mixture 
models are not measuring distinct psychological con-
structs. With respect to studies of perceptual awareness, 
this means that there is no need to posit discrete, all-
or-none failures of perceptual access (guesses) to 
account for the errors that participants make in these 
paradigms.

Thus, we found that greater standard deviations are 
associated with greater guess rates, in a predictable 
nonlinear pattern, and in line with the prediction of the 
TCC model. Note that this is in the opposite direction 
from what is predicted by noisy fits to data: Uncertainty 

or noisy fits in mixture models lead to the reverse of 
the trend that we report in the current results: Larger 
standard deviations lead to lower guess rates and vice 
versa (Suchow et al., 2013, explained that his occurs 
because the data right at the edge of the “von Mises” 
part of the mixture model can be seen as either arising 
from a larger standard deviation or arising because of 
guesses, resulting in a trade-off between these two 
parameters with noisy data). Thus, imprecise estimates 
of these parameters due to insufficient data result in a 
negative correlation between them, in contrast to the 
particular positive, nonlinear pattern predicted by TCC 
that we observe here.

General Discussion

Does information reach perceptual awareness in a con-
tinuous or discrete manner? A common tool used to try 
to answer this question is probabilistic mixture modeling 
(Zhang & Luck, 2008). This technique separates how 
often an item does or does not reach awareness (i.e., 
the guess rate) from how precisely that item is repre-
sented in awareness (i.e., the standard deviation), using 
continuous reproduction tasks. Contrary to this mixture 
model approach, however, recent work with the TCC 
model has shown that when one considers the nonlinear 
way that familiarity spreads through a stimulus space, 
there is no evidence for separate concepts of precision 
and guessing (Schurgin et al., 2020). Instead, the TCC 
model states that memory and perception can be mod-
eled by taking the spread of familiarity through a stimu-
lus space and adding noise, with d′ being the only free 
parameter. In the current work, we asked how well this 
continuous model captures responses across a variety of 
paradigms that manipulate perceptual awareness. Spe-
cifically, we reanalyzed data from prior studies (Asplund 
et al., 2014; Pratte, 2018; Sy et al., 2021; Thibault et al., 
2016) and one new backward masking experiment. 
Across four paradigms and two stimulus classes, we 
found that the TCC model easily fit the data and outper-
formed mixture models in every single instance. We also 
found that across these studies, the putative precision 
and guess rate parameters were nearly perfectly con-
founded, always changing together (Fig. 7), as would be 
expected if there is only a single construct—representa-
tional strength—changing as the tasks are made more 
difficult. Together, these results suggest that a large part 
of the literature taken to support all-or-none access to 
awareness does not actually do so and instead supports 
a framework in which information enters conscious 
awareness in a continuous manner.

What exactly does it mean for information to reach 
consciousness along a continuum? Instead of the claim 
that there is no merit to the discrete, all-or nothing view 
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of perceptual awareness, one unifying possibility is that 
performance on tasks such as those studied here is more 
sensitive to the strength of information representation 
than to whether stimuli have reached “awareness,” 
which could be an all-or-none state, but one that is not 
necessary to support performance (Lau & Rosenthal, 
2011). For example, consider the backward masking 
paradigm described above (Fig. 4a). An intuitive descrip-
tion of participants’ experience is that the content of 
that information varies along a continuum and can be 
reported regardless of awareness, whereas the mecha-
nisms that allow information to be accessed by aware-
ness could still be all-or-none (i.e., “I am certain I saw 
something, but I have only a vague sense that it was 
oriented to the right”). This idea was previously pro-
posed by Kouider et al. (2010), who argued in favor of 
a “partial awareness” hypothesis in which the represen-
tations of an object can be continuous, whereas the 
mechanisms that allow those representations to be 
accessed by consciousness are discrete. This particular 
framework is supported by prior studies showing that 
observers will sometimes provide “intermediate” reports 
about the contents of their experience (i.e., a brief 
glimpse or a vague sense of what was present) when 
given several options on a perceptual awareness scale 
(Sandberg et  al., 2010). A similar idea has been pro-
posed by Michel (2019), who made a critical distinction 
between the graded contents of consciousness and 
graded consciousness overall. Of course, in spite of 
these claims, there are still those who maintain that 
consciousness itself (not just the contents of conscious-
ness) is fundamentally graded (Morales, 2021).

In each paradigm examined here, observers fre-
quently felt as if there were instances in which they 
completely failed to perceive the target and were simply 
guessing when asked to make a judgment about it. This 
feeling appears to be captured under a mixture model-
ing framework because one of the parameters of the 
model is the guess rate, which is thought to correspond 
to the instance in which the target was not successfully 
encoded. However, previous work has shown that this 
is not accurate: People often give highly confident 
reports of items that are extremely dissimilar to the 
actual item (Adam et al., 2017), which mixture models 
would classify as guesses. The TCC framework, by con-
trast, is based on signal detection theory, which explains 
the feeling of guessing as one of low subjective confi-
dence, which is expected to regularly arise when a task 
is difficult (as modeled by Schurgin et al., 2020). In other 
words, although TCC claims that there are rarely situa-
tions in which an observer has a discrete failure with 
no information and is objectively guessing, it easily 
accounts for the subjective feeling of guessing and poor 

performance—and how they are linked—by appealing 
to noisy variation in the familiarity signal (Wixted, 2020). 
This conception of perceptual awareness also helps 
unite the current behavioral results with established 
findings from neuroscience. Indeed, one reason that 
researchers have argued for a discrete view of con-
sciousness is that studies have shown an all-or-none 
change in neural activity in response to stimuli that 
observers report having seen, which is not present for 
unseen stimuli (Dehaene et al., 2001; Sergent & Dehaene, 
2004). This nonlinear processing is referred to as the 
“ignition” of consciousness and is characterized by a 
sudden, coherent, and exclusive activation of neurons 
associated with conscious processing (Dehaene, 2014). 
Under the framework described here, information may 
be “ignited” into conscious awareness in an all-or-none 
manner, but the content of what is elevated into con-
sciousness varies along a continuum, and even in the 
absence of this spark of conscious awareness, noisy 
information is still accessible for report.

Finally, there are two points worth stressing about 
TCC’s success in modeling perceptual awareness. First, 
TCC’s success with these tasks is surprising given the 
different mechanisms that limit awareness across these 
paradigms. For example, the attentional blink prevents 
stimuli from reaching consciousness because of limita-
tions of attention (Raymond et al., 1992), whereas mask-
ing renders stimuli invisible by disrupting feedback 
between higher and lower level visual areas (Lamme, 
2003). In addition, the attentional blink is a limitation 
across time, whereas the Sperling paradigm is more lim-
ited across space (Pratte, 2018). The fact that behavioral 
performance across these tasks is captured by TCC is a 
testament to the versatility of an approach based on con-
tinuous variation in a population of signals in understand-
ing visual cognition. Moreover, TCC’s success with these 
perceptual tasks was not a given considering that it was 
initially conceived as a model of visual memory (Schurgin 
et al., 2020). Altogether, this collection of results high-
lights how a simple signal detection theoretic framework 
can capture numerous aspects of human cognition.
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