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When holding multiple items in visual working memory, representations of individual items are often
attracted to, or repelled from, each other. While this is empirically well-established, existing frameworks
do not account for both types of distortions, which appear to be in opposition. Here, we demonstrate
that both types of memory distortion may confer functional benefits under different circumstances.
When there are many items to remember and subjects are near their capacity to accurately remember
each item individually, memories for each item become more similar (attraction). However, when
remembering smaller sets of highly similar but discernible items, memory for each item becomes more
distinct (repulsion), possibly to support better discrimination. Importantly, this repulsion grows stronger
with longer delays, suggesting that it dynamically evolves in memory and is not just a differentiation
process that occurs during encoding. Furthermore, both attraction and repulsion occur even in tasks
designed to mitigate response bias concerns, suggesting they are genuine changes in memory representa-
tions. Together, these results are in line with the theory that attraction biases act to stabilize memory sig-
nals by capitalizing on information about an entire group of items, whereas repulsion biases reflect a
tradeoff between maintaining accurate but distinct representations. Both biases suggest that human
memory systems may sacrifice veridical representations in favor of representations that better support
specific behavioral goals.

Keywords: visual working memory, memory biases, attraction bias, repulsion bias, color memory

Memory is a constructive rather than a passive process. For
example, people will naturally fill in gaps when recalling a story in
an attempt to make the story more coherent (Bartlett, 1920; Loftus,
2005; Roediger & McDermott, 1995). When people study a list of

words, they often falsely recall or recognize associated words that
were not on the original list (Deese, 1959; Underwood et al.,
1965), and later report these words as actual memories (Schooler
et al., 1988). Similarly, visual memory is not analogous to taking a
photo—instead, there are many systematic biases in how visual
attributes are remembered after a sensory stimulus is no longer
available (Alvarez, 2011; Bar, 2004; Brady & Alvarez, 2011; Fi-
scher & Whitney, 2014; Huang & Sekuler, 2010; Koutstaal et al.,
2001; Rademaker et al., 2015; Schacter et al., 2011).

When people are tasked with remembering a visual item, such
memories are often distorted toward existing, learned prototypes
(Hemmer & Steyvers, 2009; Huttenlocher et al., 1991, 2000; Tong et
al., 2019). Such distortion can also occur not toward prelearned pro-
totypes, but toward the central tendency of a group within a single
presentation. For example, when people are asked to remember mul-
tiple visual items, these memories are “attracted” to each other—that
is, different objects are remembered as more similar than they really
were (Brady & Alvarez, 2011; Dubé et al., 2014; Dubé & Sekuler,
2015; Freyd & Johnson, 1987; Huang & Sekuler, 2010; Spencer &
Hund, 2002). It has been proposed that this occurs because object-
level representations are imprecise, so these unstable representations
are constrained by using additional information about the properties
of the set of items as a whole (i.e., group-level representation). Thus,
interitem attraction biases may be the result of weighting the repre-
sentation of each individual object toward the “summary” of the set
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to achieve a more stable memory at the expense of maintaining dis-
tinctions between individual items (Brady & Alvarez, 2011; Hutten-
locher et al., 1991).
Interestingly, attraction biases are not ubiquitous. Under some con-

ditions, when multiple items are shown at once, memories for indi-
vidual specific items have been shown to repel each other, being
remembered as more different than they really were (Bae & Luck,
2017; Golomb, 2015; O’Toole & Wenderoth, 1977; Rademaker et
al., 2015; Rauber & Treue, 1998; Suzuki & Cavanagh, 1997). How-
ever, far less research has been dedicated to understanding interitem
repulsion biases. Repulsion biases have sometimes been proposed to
arise from lateral inhibition, as competition between neurons repre-
senting similar feature values may lead to representations that repel
away from each other (Johnson et al., 2009; Wei et al., 2012), akin to
repulsion resulting from competition during early perceptual process-
ing (Jazayeri & Movshon, 2006; Navalpakkam & Itti, 2007; Puru-
shothaman & Bradley, 2005; Regan & Beverley, 1985; Scolari &
Serences, 2009, 2010; Smith et al., 2005). However, while providing
a possible mechanistic basis, such theories do not straightforwardly
explain why repulsion biases sometimes arise and sometimes do not;
nor why attraction biases occur for similar stimuli under other cir-
cumstances. Despite the importance and pervasiveness of these mem-
ory distortions, to date there have been few attempts to understand
why memories sometimes attract, while at other times they repel.
Because these are rarely studied together, it is still unclear whether

these interitem memory distortions that arise for simultaneously pre-
sented items are due to changes in the representations themselves, or
if they instead reflect demand characteristics that lead to systematic
response biases. For example, repulsion biases can emerge in contin-
uous report paradigms if participants want to actively communicate
that they know two items are different, even if participants have
access to veridical representations, and most work to date has demon-
strated repulsion biases only in such continuous report situations
(Bae & Luck, 2017; Golomb, 2015; Rademaker et al., 2015).
To establish when attraction biases and repulsion biases arise and

whether they are properties of the memory system or a result of stim-
ulus differences or straightforward responses biases that occur only
in continuous report tasks, we present a series of experiments. First,
we determine whether attraction and repulsion are simply properties
of subject’s communicative intent in continuous report tasks. Second,
we examine whether they arise in predictable circumstances, by
manipulating task difficulty and the similarity and distinctiveness of
the memoranda. While these are general issues, related to nearly all
kinds of memory, we tested these ideas in a well-studied domain—
visual working memory for color—where memory representations
can be precisely quantified. Task difficulty was increased or
decreased by changing how many items must be remembered (set
size), how distinctive the colors are from each other (their proximity
in color space), and encoding time and memory delay.
After establishing the empirical phenomena, we adopt the perspec-

tive (see Framework section) that these interitem biases for simulta-
neously presented items may be natural consequences of the memory
system attempting to minimize memory error, and that systematic
distortion can be adaptive in particular circumstances (Schacter et al.,
2011). Specifically, when many items are present and memories for
individual items are noisy, attraction biases are known to be optimal
for minimizing error (e.g., Brady & Alvarez, 2011). In this case, rely-
ing on group-level statistics provides an efficient means of retaining

at least some information about all items at the expense of precisely
representing information about each single item. Repulsion biases
can also reduce error in some situations, making them adaptive. In
particular, if items would naturally be blended or confused by our
memory system (Oberauer & Lin, 2017; Swan & Wyble, 2014)—
that is, if similar items would interfere with each other—then repul-
sion can reduce this tendency and reduce error. In this case, the goal
is to distinguish highly similar or noisy representations, by reducing
the confusability between memory items. In particular, if items inter-
fere to the extent they overlap in features, then repulsion is adaptive
when items overlap in representation. In discussing this framework,
we examine whether attraction and/or repulsion occur in the circum-
stances predicted by this framework, and not in circumstances where
biases would be maladaptive to memory performance (i.e., contrary
to the adaptive framework).

Overall, we find that when distinctiveness between two items
goes down, repulsion biases are stronger (up to the point where
two items become indistinguishable, and attraction takes over
as the dominant force). Repulsion biases also grow stronger
with longer delays, suggesting that as memory demands
increase and item representations become noisier, memories are
biased to keep items individuated. In contrast, we observe
attraction biases when individuating items is more difficult due
to a higher memory load (in an experiment with four instead of
two memory items), consistent with sacrificing single-item dis-
criminability in order to remember at least some information
about ensemble-level features. Importantly, by using a two-al-
ternative forced-choice paradigm we were able to test the role
of demand characteristics: the results imply that repulsion
biases are not the result of participants trying to communicate
that they can distinguish two targets in a continuous report task.
Collectively, these studies suggest that, given task-imposed
constraints, attraction or repulsion biases may help to improve
behavioral performance even though these biases may lead to
nonveridical memories.

Experiment 1: Memory Distortion
Versus Response Strategy

Do memory items truly “repel” each other when people hold
in mind a small number of similar items? In Experiment 1 we
sought to replicate this basic repulsion effect and to determine if
previously reported biases (e.g., Bae & Luck, 2017; Golomb,
2015) are more likely to reflect memory distortions, or if they are
a result of changes in response strategy to communicate an
understanding of the continuous reproduction task. That is, when
participants remember a pair of colors, they can communicate
their awareness of the colors being distinct from one another by
exaggerating the difference between the two. When cued to
report one of the two remembered items on a continuous color-
wheel, this strategy would result in an answer repelled away
from the uncued nontarget item—mimicking a repulsion bias.
We directly addressed this possible response strategy by having
participants remember two colored items over a brief delay (Fig-
ure 1a), after which they perform a two-alternative forced-choice
(2-AFC) task comparing the correct (cued target) color to an
incorrect (distorted foil) color (Figure 1a, b). By presenting par-
ticipants with the correct answer on every trial, such response
biases are discouraged as they are detrimental to task
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performance, and an understanding of the task is best communi-
cated by picking the correct color. To distinguish between attrac-
tion and repulsion in this 2-AFC paradigm, the incorrect foil
color was distorted by 6° relative to the correct target color, and
the distortion was either toward the nontarget (i.e., “attracted” to
the nontarget) or away from the nontarget (i.e., “repelled” from
the nontarget). If memories for the two colors were repelled
from each other, a foil color that was distorted toward the

nontarget would be less often confused with the correct answer
(have a higher accuracy) than a foil color that was distorted
away from the nontarget (have a lower accuracy).

Method

The data sets from all of the current studies (plus the code used
to generate the stimuli and analyze the data) are available in the

Figure 1
Task and Results From Experiment 1

Note. (a) Participants remembered two memory items that were always 45° apart in color space. Memory items
were briefly presented for 150 ms at two randomly chosen placeholder locations. After a 750-ms delay, participants
reported the color of the target item (cued with an arrow) by choosing between two options, one always being the
correct color, and the other always being an incorrect foil color that was distorted from the correct color by 6° in a
direction either toward or away from the nontarget color. In the example trial shown here, the correct response is
shown on the left, while the foil on the right is distorted in a direction away from the nontarget color. (b) Two mem-
ory colors were selected to lie within 45° of each other in color-space (at any possible position on the color-wheel).
The target color (cued after the delay) was always one of the response options during the 2-AFC phase of the trial
(i.e. the “correct color”). The other response option was a foil color. The foil color always differed 6° from the cor-
rect target color and could be distorted towards (–6°) or away (þ6°) from nontarget color. (c) Participants preferred
the correct color to the foil when the foil was distorted toward the nontarget color, as indicated by above-chance per-
formance (blue bar; t(44) = 3.73; p = .006). This differed significantly from trials on which the foil was distorted
away from the nontarget color (compare blue and red bars; t(44) = 3.98; p , .001), with a trend towards participants
preferring the incorrect foil over the correct answer, as indicated by numerically below-chance performance (red bar;
t(44) = –1.76; p = .08). This is the expected result when memory for the target is distorted away from the nontarget
(i.e. when there is a repulsion bias). Error bars represent 61 within-subject SEM. Double and triple asterisks indi-
cates p # .01 and p # .001, respectively. See the online article for the color version of this figure.
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OSF repository https://osf.io/qp6xk/?view_only=0559769c587c4c8
294288451e8af239e

Participants

Forty-five naïve participants were recruited from Amazon Me-
chanical Turk. In this and all other experiments reported, all exper-
imental procedures were approved by the University of California
San Diego (UCSD) Institutional Research Board, all online partici-
pants provided written informed consent, and all reported normal
or corrected-to-normal vision without color-blindness. Participants
were naïve to the purpose of the study and received payment ($6
per hour) for their time.

Stimuli and Procedure

All stimuli were drawn on a 5003 500 pixels white background
with a black border around it (1 pixel wide). The fixation cross
was in the middle of the canvas, and 12 small circular placeholders
were shown around fixation, each centered at a distance of 120
pixels. Each placeholder had a radius of 20 pixels, and the inter-
placeholder distances were 62 pixels (center-to-center). Placehold-
ers were positioned such that six of them were on the left, and the
other six were on the right side of fixation. Furthermore, two pla-
ceholders were always presented directly to the left and right of
fixation, centered at 35 pixels from fixation. Memory items were
colors selected from a subset of CIE L*a*b color space (L = 70,
a = 20, b = 38, radius =60). Note, while one of the memory items
was always selected randomly from this color space, the second
item always differed from the first by 45°. The location probe,
cuing participants which memory item to report on, was a small
equilateral black triangle, 20 pixels wide and 20 pixels tall.
Participants were shown two memory items for 150 ms at two

randomly selected placeholders in the display (out of 12 possible
placeholders), with the restriction that there were always at least
two empty placeholders between the two memory items. After a
750-ms delay, a location cue (arrow) indicated which of the items
was the memory target, and two response options appeared in the
placeholders directly to the left and right of fixation. One of
the response options was always the correct color (i.e., identical to
the color that was cued), while the other option was always a foil,
and participants made a 2-AFC judgment between the two
response options. The foil always differed from the correct color
by 6° in color space, either in the direction toward (50% of trials)
or away (50% of trials) from the nontarget memory item. The
positions (left or right of fixation) of the correct and foil response
options were completely randomized. Participants had to press “z”
or “m” to select the choice presented on the left or right of fixation,
respectively, before proceeding to the next trial. There were 60 tri-
als per condition (a total of 120 trials per participant).

Results

As predicted by an account where repulsion is a genuine mem-
ory phenomenon, participants were better at rejecting a foil color
that was distorted toward the nontarget memory item than reject-
ing a foil color that was distorted away from the nontarget memory
item—an indicator of repulsion bias, t(44) = 3.98; p , .001 (Fig-
ure 1c). In other words, performance was higher when a foil was
distorted toward the nontarget memory. This shows that repulsion

biases occur even in a 2-AFC format with an objectively correct
answer versus an objectively incorrect answer, implying that
repulsion is not merely the result of this particular a priori plausi-
ble response strategy.

Experiment 2: Memory Distortion Versus Response
Strategy, and the Role of Task Engagement

We next replicated and extended Experiment 1 with additional
foil colors that were 25° away from the correct memory target. We
added 25° foils in this second experiment to test the possibility
that participants simply favored all colors distorted away from the
nontarget color by way of a response strategy, even though such a
strategy would result in objectively incorrect performance in this
task. After all, if participants meant to communicate their aware-
ness of the two memory colors being distinct, they would prefer
any foil away from the nontarget over the correct answer. In this
were the case, 25° foils would be favored even more than 6° foils,
because they are more clearly away from nontarget color. This hy-
pothesis is schematically shown in Figure 2a (see top panel, Pre-
diction 1). By contrast, if memories of the two colors were truly
repelled from one another, and participants remembered the target
item as further from the nontarget than it actually was, perform-
ance should depend on the degree of foil distortion. Specifically,
participants should be more likely to choose the foil (and give an
incorrect answer) when it closely matches their distorted memory
(e.g., the þ6° foil), but more likely to choose the correct color
when the distortion of the foil becomes irreconcilable with their
memory (e.g., the þ25° foil). This hypothesis is also schematically
shown in Figure 2a (see bottom panel, Prediction 2).

Method

Participants

Forty-five new naïve participants were recruited from Mechani-
cal Turk for Experiment 2. For the control experiment replicating
Experiment 2 (Appendix Figure A1) we recruited another inde-
pendent set of 45 participants from Amazon Mechanical Turk.

Stimuli and Procedure

The stimuli and task were identical to Experiment 1, except that
in Experiment 2 the foil could differ from the correct color by ei-
ther 6° (45% of trials), 25° (45% of trials), or 180° (10% of trials).
As in Experiment 1, on half of these trials the foil was in the direc-
tion toward the nontarget in color space, while on the other half of
trials the foil was away from the nontarget in color space. Given
how easily distinguishable the 180° foils were from the correct
color, these trials served as catch trials. For the control experiment
replicating Experiment 2 (presented in Appendix Figure A1), the
foil could differ from the correct color by either 6° (90% of trials),
or 180° (10% of trials). In Experiment 2, there were 30 trials per
main condition (total of four main conditions, i.e., 6° vs. 25° foils,
crossed with distortion away vs. toward nontarget) plus 12 catch
trials (a total of 132 trials per participant). In the replication study
of Experiment 2, there were 60 trials per condition (6° foils, with
distortion away vs. toward nontarget) plus 12 catch trials (a total
of 132 trials per participant).
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Figure 2
Experiment 2 Hypotheses and Results

Note. (a) The two panels show our predictions if participants were trying to strategically avoid nontarget colors
leading to a response bias (Prediction 1, top) versus if participants had memories that were truly distorted away
from one another (Prediction 2, bottom). (b) Data from 45 subjects showed a pattern consistent with true memory
distortions as in Prediction 2. Participants performed significantly below chance (i.e. preferred the foil over the
correct response option) only when the foil was distorted 6° (but not 25°) away from the nontarget color. This is
in line with a true distortion of the remembered color and is indicative of participants finding that the foil more
accurately reflected their memory representation. Presented with any other foil (foils distorted towards the nontar-
get, or a foil distorted farther away from the nontarget), participants chose the correct answer more often than
chance. Error bars represent 61 within-subject SEM. (c) Degree of repulsion bias (indexed as accuracy differen-
ces between all trials with foils distorted toward and away from the nontarget color) plotted against general mem-
ory performance (indexed by performance on catch trials). Each dot represents a single participant. We found
stronger repulsion biases in participants with better general memory performance (Pearson’s r = 0.37, p = .013).
Note that the position of the dots are slightly independently jittered by random noise (65%) to aid visualization
of all 45 data points. The solid yellow line represents the best fit to the unjittered data. (d) Distribution plot of
bootstrapped Pearson’s r between repulsion magnitude and general memory performance (5,000 iterations of
resampling with replacement). Single, double and triple asterisks indicate p # .05, p # .01, and p # .001, respec-
tively. See the online article for the color version of this figure.
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Results

We replicated Experiment 1, as participants were again better at
rejecting a foil color that was distorted toward compared to away
from the nontarget memory item, F(1, 44) = 49.2; p , .001 (Fig-
ure 2b, compare blue and red bars). Interestingly, subjects more
often selected foils that were 6° away from the nontarget color
compared with the correct target color, resulting in below-chance
level performance in this condition, t(44) = 3.41; p = .001 (Figure
3b, compare þ6° bar against chance accuracy). This is consistent
with a strong degree of memory distortion, where participants pre-
fer a repelled foil color relative to the correct answer. In contrast,
subjects successfully rejected all other foils resulting in above-
chance level performance, t(44) = 8.70, 7.70, and 3.05; p , .001,
p , .001, and p .004 for foils that were –25°, –6°, and þ25° rela-
tive to the nontarget color, respectively; Figure 2b). Thus, partici-
pants showed a clear repulsion bias that cannot be easily explained
by response strategy. Instead, the data are consistent with a target
memory that was truly distorted away from the nontarget item by
several degrees.

In addition to replicating Experiment 1 and bolstering the case
in favor of a true repulsion bias (and not a response strategy), we
wanted to know if the degree of repulsion bias was related to the
level of task engagement from our participants. To this end,
Experiment 2 included foils that were 180° away from the cued
memory target on 10% of the trials. We termed trials with a 180°
foil “catch trials,” as subjects should rarely, if ever, confuse these
foils with the correct color. Thus, performance on catch trials pro-
vides a useful measure of overall task engagement and effort. Crit-
ically, if the repulsion bias is adaptive and improves memory, one
would expect the degree of repulsion to positively correlate with
overall performance. In contrast, if biases arise due to lack of
effort or some other nontask related factor like response strategy,
we might expect repulsion bias to be negatively correlated with
performance (or uncorrelated). We quantified the degree of repul-
sion as performance on trials with foils distorted toward the non-
target (both by 6° and 25°), minus trials with foils distorted away
from the nontarget (both by 6° and 25°). This metric will be larger
for participants with stronger repulsion. We found a moderate pos-
itive correlation between the degree of repulsion bias and overall

Figure 3
Experimental Design and Results From Experiment 3

Note. (a) A set of four colors were selected to lie within 60° of each other in color-space (all separated by steps of 20°) and
were presented at random spatial positions (chosen from 12 possible placeholders; see Appendix Figure A2). The cued memory
target color (to be reported after the delay) was always one of the colors on the edge of the set. In this diagram, the target is the
memorandum with the arrow pointing at it. After a 1,000-ms delay, participants performed a 2-AFC memory test. One of the
options was always the correct (cued) target color, while the other choice was an incorrect foil of which the color differed by ei-
ther 10°, 20°, or 30° from the correct target color. The foil could be distorted towards (–10°, –20°, or –30°) or away (þ10°,
þ20°, or þ30°) from the center of the four colors in the memory set. (b) Accuracy was lower when the task was more difficult:
When subjects had to choose between the correct color and a foil color that was very similar to the correct color (for example,
differed by 10°) accuracy was closer to chance compared to when subjects had to choose between the correct color and a foil that
differed more from the correct color (for example, differed by 30°). Importantly, performance was worse when the foil color was
distorted toward the other memory colors in the set (i.e. the blue bars are lower overall than the red bars). This indicates an attrac-
tion of the cued item towards the other nontarget items. Error bars represent 61 within-subject SEM. Asterisks represent signifi-
cance levels of differences between foils that were toward vs. away from nontarget, with the triple asterisks indicating p , .001.
See the online article for the color version of this figure.
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task engagement (Pearson’s r = .37; p = .013; Figure 2c) supported
by a bootstrapping analysis (bootstrapped mean Pearson’s r = .37,
two-tailed p = .048; Figure 2d). This positive correlation between
repulsion bias and overall task engagement was replicated in an in-
dependent set of 45 naïve subjects (Pearson’s r = .39; p = .009;
Appendix Figure A1). Thus, repulsion biases do not appear to
arise solely in participants putting in low or moderate effort,
instead, they are strongest in participants with the highest levels of
task engagement.
Overall, Experiments 1 and 2 provide evidence for a repulsion

bias that cannot be explained by these straightforward, a priori rea-
sonable communicative strategies resulting in simple response
biases, or a lower amount of effort.
It is still possible that the repulsion bias is the result of a

response strategy whereby the participant is trying to signal not
only an understanding of the task (leading to repulsion), but also
wants to communicate which of the two items was being recalled
(leading to repulsion only for the probed item).
Such an account would naturally predict a disappearance of the

repulsion bias when not one, but both memory items were probed.
To investigate this possibility, we reanalyze an existing open data
set (Adam et al., 2017) where participants were required to repro-
duce the colors of two memoranda in a random order. To quantify
the repulsion bias, we took the absolute difference between the
two stimulus colors presented and compared this with the absolute
difference between the two responses participants made. In case of
repulsion, response errors will be further apart in color space than
the actual stimuli were. Indeed, we found that differences between
the response errors were significantly larger than the stimulus dif-
ferences, t(1,16) = 3.11, p, .01. This suggests that also in a whole
report task, items at Set Size 2 repel each other systematically.
Overall, while it is never possible to rule out all possible

response strategies. Some aspects of these effects could still be
happening at response stages, even if they are not explainable by
the response strategies we test here and that are most plausible a
priori. However, we have shown they apply not only in continuous
report where a single item is probed, but also in continuous report
where both items are probed, and in two kinds of forced-choice
tasks, including one where there is a single objectively correct an-
swer and a single objectively incorrect answer. While different
response strategies could be at work in each task, giving rise to
this pattern, this work provides significant evidence in favor of a
mnemonic shift account.

Experiment 3: Attraction Versus Repulsion

We next sought to manipulate task factors to test if we could sys-
tematically flip distortions from repulsion to attraction, even for the
same kind of stimuli. We used the same experimental paradigm as
in Experiments 1 and 2, but increased the number of colors partici-
pants had to remember from two to four items (see also Appendix
Figure A2). Given well-documented limits on the amount of infor-
mation that can be retained in working memory (e.g., Bays, 2015;
Bays et al., 2009; Luck & Vogel, 1997; Ma et al., 2014), remember-
ing four items should be quite challenging for the majority of partic-
ipants. Our adaptive framework suggests that when it is challenging
to maintain individuated representations of all memory items, a par-
tial reliance on group-level statistics (Brady & Alvarez, 2011) or
partial blending between items (Oberauer & Lin, 2017; Swan &

Wyble, 2014) is optimal, because it supplements the noisy informa-
tion available about each of the individual items with information
from the other items. In this context, when participants are pre-
sented with a foil that is distorted toward the colors of the other
items in the set (Figure 3a), they should be more likely to confuse
the foil with the correct (cued) target color (i.e., show an attraction
bias)—the exact opposite of the repulsion bias observed in the pre-
vious experiments. To test this, in this experiment the four to-be-
remembered colors spanned 60° of color space (in 20° steps), and
we always cued one of the colors on the “edge” of this set. There
were six possible foil conditions, of which three were distorted to-
ward the other nontarget items, and three were distorted away from
the other nontarget items (Figure 3a).

Method

Participants

A total of 72 naïve participants were recruited from Amazon Me-
chanical Turk. This is more than in Experiments 1 and 2 due to the
increased difficulty of the task associated with the higher set size
(thus requiring more power). Participants received $8 per hour for
their time.

Stimuli and Procedure

Stimulus and task presentation was identical to Experiments 1 and 2
with the following exceptions: Participants were shown four color
items for 800 ms, memory item locations were random (could be any
four placeholders out of the possible 12) with the restriction that there
was always at least one empty placeholder between each of the mem-
ory items. The four items were remembered over a 1,000-ms delay.
The four colors were within 60° from each other in color space, and
all colors were equally spaced from one another (i.e., the shortest pos-
sible color distance between two items was 20°; see also Figure 3a).
The memory target probed at the end of the delay was always one of
the colors at the edge of the set. Again, the correct color was always
included as one of the response options, while the foil color differed
by either 10°, 20°, or 30° from the correct target color option. The foil
color could be either toward the colors of the other memory items
(note how a –20° foil is identical to one of the other colors in the dis-
play, and a –30° foil is exactly the mean of all four colors), or it could
be away from the other colors. There were 20 trials per main condition
(total of six conditions, 10° vs. 20° vs. 30° foils, and distortion away
vs. toward nontarget) which means a total of 120 trials per participant.

Results

We performed a 33 2 repeated-measure ANOVA, and found a sig-
nificant main effect of the distances of the foils from the target,
F(2, 142) = 13.14; p , .0001, and a significant main effect of the
direction of the foil, F(1, 71) = 15.48; p, .0001. There was no signifi-
cant interaction, F(2, 142) = 1.93; p = .15. Specifically, we found that
participants were more accurate when the foil colors were more dis-
similar from the correct color, making discrimination easier: Accuracy
was 53%, 57.4% and 60.1% correct for foils that were 10°, 20°, and
30° away from the correct color, respectively (Figure 3b, compare bars
with smaller vs. larger target-foil distances). Importantly, participants
were also better at choosing the correct answer when the foil color was
distorted away from the other nontarget colors in the set (60.4%
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correct) compared with when the foil color was distorted toward the
other nontarget colors (53.2% correct; Figure 3b, compare blue and
red bars). This implies an attraction bias toward the remembered non-
target items, and stands in contrast to the repulsion bias found with Set
Size 2 (in Experiments 1 and 2). Previous work has demonstrated that
attraction biases in visual working memory arise from slight shifts to-
ward the gist, and not solely from swaps or guesses based on the aver-
age color (e.g., Brady & Alvarez, 2011). Consistent with this, we
found little evidence for swaps and guesses in our data as well: In par-
ticular, the –20° foil was the same color as one of the nontarget items;
and the –30° foil was the mean of all colors in the set. Nevertheless,
neither the –20° nor the –30° foils were selected as often as –10° foil
—indicative of only a slight attraction toward the other colors.

Experiment 4: Biases Depend on the Degree of
Distinctiveness Between Items

In a fourth experiment (Figure 4a) we sought to determine if reduc-
ing the distinctiveness between items (by making items increasingly
similar or noisy) impacts the amount of repulsion bias in a manner
consistent with our framework. In particular, if the memory system
naturally blends together similar items (as in the models of Oberauer
& Lin, 2017; Swan &Wyble, 2014), then two items that are recogniz-
ably distinct (i.e., can still be told apart) but still similar enough to
likely be blended, repulsion should arise (see Framework section). To
this end, we asked participants to remember two colors, and we inde-
pendently manipulated both memory encoding time (50 ms, 150 ms,
and 500 ms) and distance in feature space between the two colors (0°,
20°, 45°, 90°, and 135°). If less easily distinguishable colors need to
be differentiated from one another in order to improve behavioral per-
formance, a higher degree of similarity between the two memory
items should result in a stronger repulsion bias—but critically, there
should be an exception for colors that are so similar that they are per-
ceived as the same color and are thus put into a single “chunk” or
group. Furthermore, the color distance that creates maximal repulsion
should depend on how precise the representations are: Two very pre-
cise representations at a given color distance may not require repul-
sion to be differentiated, while two more imprecise representations at
that same color distance could be more easily differentiated with
repulsion. In other words, when two memory representations are not
too similar or too distinct, the magnitude of repulsion bias will depend
on the precision of the memories. Repulsion bias might be necessary
if the memory representations are relatively less precise. Representa-
tional precision should vary with encoding time (i.e., memory should
be more precise at longer encoding times). Because Experiments 1
and 2 suggest that repulsion biases reflect changes in encoding and
memory as opposed to response strategy, here we used a continuous
report task where subjects had to report the remembered color by
choosing from a continuous 360° color-wheel. The use of a continu-
ous report task allowed us to generalize our findings beyond the 2-
AFC paradigm, and to gain insight into how memory biases manifest
in response error distributions.

Method

Participants

Twenty-four healthy volunteers (15 female, mean age of
19.75 61.52) from the UCSD community participated in the

experiment in person. All procedures were approved by the UCSD
Institutional Research Board and all participants provided written
informed consent, and reported normal or corrected-to-normal vision
without color-blindness. Participants were naïve to the purpose of the
study and received partial course credit for their time.

Stimuli and Procedure

Stimuli were rendered on a CRT monitor with a 60-Hz refresh rate
and a screen size of 40 3 30 cm. Stimuli were generated using
MATLAB and the Psychophysics toolbox (Brainard, 1997; Pelli,
1997). Participants were instructed to maintain fixation throughout,
aided by a white central fixation dot (.5° diameter) presented on a
dark-gray background of 2.37 cd/m2. Memory items were colors ran-
domly selected from a subset of CIE color space (L = 70, a = 20, b =
38, radius = 60), as was done in the previous three experiments. Six-
teen white placeholders (4.3° radius, .2° thick line) were positioned
around the fixation point (centered at 10.5° from fixation). The loca-
tions of the two memory targets were selected at random with the
exception that (a) they were always presented in the same hemifield
to maximize interitem competition (Alvarez & Cavanagh, 2005;
Cohen et al., 2016; Störmer et al., 2014); and (b) there were always
two empty placeholders between the two memory items (i.e., they
were spaced�4° apart, center-to-center).

On each trial (Figure 4a), two colored stimuli were presented
for either 50 ms, 150 ms, or 500 ms and participants had to
remember the colors as precisely as possible. The colors of the
two memory items could be either 0°, 20°, 45°, 90°, or 135° apart
in color space (with 63° random jitter). After a 750-ms delay, one
of the two colors was probed via a spatial cue (the rim of the pla-
ceholder in one location got thicker). Along with the spatial probe,
a randomly oriented color-wheel (with 10° radius, 1° wide) was
presented around fixation, and a crosshair appeared at the fixation
point. Participants used the mouse to move the crosshair to the hue
on the color-wheel that most closely resembled the remembered
color at the probed location. The next trial began �1 s after partic-
ipants clicked the mouse and this procedure was repeated 96 times
per experimental condition (i.e., a total of 1,440 trials per partici-
pant). Presentation of the five different color distances and three
different encoding times was fully counterbalanced.

Analyses

We calculated the difference between the cued target color and the
reported color (reported° – target°) on each trial. To investigate the
systematic relationship between the cued color and the nontarget
color, we flipped the sign of the error such that the nontarget color
was always counterclockwise to the cued target in the error distribu-
tion. The circular standard deviation was used to quantify subjects’
response precision (i.e., larger deviations indicate less precision).
Biases in subjects report were quantified by computing the proportion
of responses on the “clockwise” side of the error distribution (i.e., the
side opposite to that of the nontarget). We centered this bias onto 0
to get a percentage score for the bias as follows (see also Figure 4b):

bias ¼ responses away�100
total responses

� 50

We expect this bias metric to be roughly 0% if no biases exist,
.0% if there is repulsion away from the nontarget, and ,0% if
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there is attraction toward the nontarget. Note that this metric
reflects relative repulsion/attraction biases rather than being an
absolute metric because potential “swap” errors (where the target
and nontarget colors are confused, and a subject mistakenly
reports the nontarget) would be counted as “attraction.” Thus, this

metric is conservative to the extent that potential swap errors
would inflate attraction biases and underestimate repulsion biases.
To benchmark our model-free metrics of memory precision and
bias, we also fit a von Mises (circular analogue of a normal distri-
bution) to our error distributions using two parameters: standard

Figure 4
Experimental Design, Analysis and Results From Experiment 4

Note. (a) In Experiment 4, participants remembered two memory items that were either 0°, 20°, 45°, 90°, or
135° apart in color space (each with 63° of jitter), and that were briefly presented for either 50 ms, 150 ms, or
500 ms. Participants reported the color of the cued item (indicated by a thicker outline at one of the placeholder
locations) by choosing the remembered color on a color-wheel. (b) While nontargets could have a color that
was either counterclockwise or clockwise in feature-space relative to the cued color, error distributions were
constructed (for each subject and condition) by always plotting the nontarget color as counterclockwise from
the cued color. This cartoon depicts one such error distribution. Attraction and repulsion biases were operation-
alized as the difference in the percentage of responses that were toward (dark gray shading) versus away from
(light gray shading) the nontarget color. (c) The three-dimensional (3D) bar plot (right) shows repulsion as a
function of both encoding time (z-axis) and interitem distance in color space (x-axis). Repulsion at each encod-
ing time is replotted in the three subpanels (left) to show the within-subject standard error (61 SEM) for each
condition, and to show the data from trials with a 0° interitem difference (not shown in the 3D bar plot) where
no repulsion or attraction should exist. Overall, repulsion biases were more prevalent when the two memory
colors were more similar. Especially when encoding time increased, and responses become more precise, did
the remembered colors need to be very similar to observe maximal repulsion. Single, double, and triple aster-
isks indicate p # .05, p # .01, and p # .001, respectively (tested against no-bias; uncorrected for multiple
comparisons). See the online article for the color version of this figure.
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deviation (vmSD) and bias (m). We used repeated-measures analy-
sis of variance to evaluate the impact of encoding time and color
similarity on both the model-free (circular standard deviation and
percentage bias metric) and estimated (vmSD and m) parameters.

Results

We confirmed that memory precision was higher at longer
encoding times, with circular standard deviations of 26.5°, 25.0°,
and 22.0° for encoding times of 50 ms, 150 ms, and 500 ms, respec-
tively, F(2, 46) = 65.17, p , .001. Memory precision also differed
as a function of color distance, with circular standard deviations of
17.4°, 21.4°, 25.3°, 29.1°, and 29.4° for color distances of 0°, 20°,
45°, 90°, and 135°, respectively, F(4, 92) = 69.49, p , .001, show-
ing increasingly noisy responses as two colors differed more.
To quantify the repulsion bias, we used our model-free bias

metric (as discussed above), where values .0 indicate repulsion,
and values ,0 indicate attraction. We found differences in repul-
sion at longer encoding times, with biases of .8%, 3.4%, and 2.4%
for encoding times of 50 ms, 150 ms, and 500 ms, respectively,
F(2, 46) = 9.19, p , .001; compare the three panels on the left in
Figure 4c). The amount of repulsion also differed as a function of
distance in color space between the two memory items, with biases
of –2.2%, 3.8%, 7%, 3%, and –.6% for color distances of 0°, 20°,
45°, 90°, and 135°, respectively, F(4, 92) = 13.14, p , .001; com-
pare values along the x-axis in the left panels in Figure 4c).
Importantly, there was an interaction between encoding time

and color distance, F(8, 184) = 3.78, p , .001; Figure 4c). For
example, the strongest repulsion bias shifted from 45° at the short-
est encoding time (50 ms) to 20° at the longest encoding time (500
ms). This is in line with the idea that the maximum amount of
repulsion depends on both color distance and representational pre-
cision. Note how two very similar colors presented at very short
encoding times show a decreasing amount of repulsion (with
repulsion disappearing when two items were 20° apart and shown
for only 50 ms). This pattern likely emerges because people are no
longer able to individuate the two items, as shown in a control
experiment (Appendix Figure A3). Interestingly, the repulsion of
two memory representations away from one another is not a sim-
ple lateral shift, but instead leads to significantly skewed response
distributions (Appendix Figure A4).
Together, these results are consistent with our framework and

suggest that representations are biased to become more distinctive
in order to maintain individuated representations (although in the
limit people need to be able to dissociate item colors during encod-
ing before any repulsion can occur). This means that with shorter
encoding times we see maximal repulsion when two items are suf-
ficiently distant in feature space (i.e., at 45° but not 20°). It also
means that when longer encoding time leads to representations
that are more precise, items must be very similar (i.e., differ by
20° in color space) to achieve maximum repulsion.
Note that the above analyses, based on nonparametric quantifica-

tions of precision and bias, were confirmed with an additional analy-
sis based on the standard deviation and bias parameters of a von
Mises distribution fit to the error distributions (Appendix Figure A5).
In Experiment 2 we had found that the degree of repulsion bias

was related to the level of task engagement (Figure 2c). This indi-
cated that a lack of effort was not the source of the repulsion
biases found in that experiment. To make sure this finding was not

due to the specific 2-AFC or online nature of Experiment 2, we
also analyzed the data from the current experiment, which was col-
lected in the lab using a continuous report paradigm. Here, base-
line performance was quantified by the circular standard deviation
of each subject (with lower circular standard deviation indicating
better performance), while bias was quantified by the percentage
of responses away from nontarget color (values .0 indicating
repulsion). We found strong negative correlation between circular
standard deviation and bias (Pearson’s q = –.81, p , .001, Bayes
factor = 3872; Figure 5) supporting and extending our findings
from Experiment 2. In the current analysis, the correlation is very
prominent, possibly due to the high number of trials (1,440) per
subject. Participants with better performance (smaller circular
deviation) tended to have stronger repulsion bias (responses away
from nontarget colors were higher than 0), showing that repulsion
biases are strongest in participants with the highest levels of task
engagement.

Experiment 5: Repulsion Biases Grow With
Longer Delays

Finally, we tested whether repulsion biases become stronger with
increasing memory noise. In Experiments 1–4, biases emerging dur-
ing encoding cannot be dissociated from those emerging during the
delay. Therefore, here we focus on memory noise that arises during
the delay. To manipulate memory noise, we compared performance
across different memory delay durations. Note that while some have
argued that memory noise does not change as a function of delay
interval (e.g., Huang & Sekuler, 2010; Magnussen & Greenlee,

Figure 5
Correlation Between Memory Performance and Systematic
Biases
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Note. A strong negative correlation between bias (y-axis) and memory per-
formance (as indexed by the circular standard deviation on the x-axis) demon-
strates that repulsion is stronger in participants whose performance is better.
This replicates the correlation between task performance and magnitude of
repulsion biases in Experiment 2 (Figure 2c; and see also a replication experi-
ment in Appendix Figure A1), and clearly demonstrates that a lack of effort
cannot explain repulsion biases. See the online article for the color version of
this figure.
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1992; Regan & Beverley, 1985; Zhang & Luck, 2009, 2011), subse-
quent studies have since demonstrated that, with adequate power,
representations do become noisier over time (Rademaker et al., 2018;
Shin et al., 2017). We reasoned that if repulsion bias functions to
keep two memory representations distinct, then this repulsion bias
should grow stronger as the memory delay (and thus memory noise)
increases. Alternatively, it is possible that when the two representa-
tions become increasingly noisy over time, responses may instead
become biased toward the average of the two colors, and thus repel
less, or even attract. We tested these predictions in an experiment
where we manipulated delay duration (250 ms, 750 ms, or 5,000 ms;
see Appendix Figure A6 for stimulus presentation details) as partici-
pants remembered two items. Encoding time was fixed at 250 ms,
and color distance between the two items was fixed at 45° (i.e., val-
ues that yielded the largest repulsion bias in Experiment 4). Subjects
recalled the target color using a continuous report paradigm. We
quantified bias in a model-free manner as in Experiment 4.

Method

Participants

A total of 60 naïve participants were recruited using Amazon
Mechanical Turk. For the control experiment (presented in Appen-
dix Figure A7), an additional 50 naïve participants were recruited
from Amazon Mechanical Turk. All participants provided their
informed consent, and were paid approximately $8 per hour for
their time. Five participants out of 60 were excluded because of
poor baseline performance (mean circular standard deviation more
than 70° which was . 2 SD of the group). For the control experi-
ment, three participants were excluded for the same reason.

Stimuli and Procedure

Stimuli and task procedures were identical to Experiments 1–2 (i.e.,
two stimuli at a 45° color distance were briefly shown at two of 12 pla-
ceholders on the screen and remembered over a delay before respond-
ing) with the following exceptions: There were no placeholders next to
fixation, instead, there was always a light gray circle visible (237 pixel
radius, 2 pixels wide, #d3d3d3 hex color) outside of the placeholders
(see Appendix Figure A6). This gray circle turned into a randomly
rotated color-wheel during the response period (color-wheel of the
same dimensions as the gray circle). The two memory stimuli were
presented for 250 ms and participants remembered the color of each
stimulus for a 250-ms, 750-ms, or 5,000-ms delay period. After the
delay, one of the two colors was probed, and participants reported the
cued color by moving a white circle along the color-wheel (i.e., via a
continuous recall procedure as in Experiment 4). This procedure was
repeated 60 times for each of the three delay period conditions (i.e.,
180 trials per participant in total). For the replication experiment (Ap-
pendix Figure A7), the procedure was identical, with the exception
that stimuli were only presented for 150 ms (instead of 250 ms).

Results

First, we found that the width of recall error distributions signif-
icantly differed across the three memory delays (Figure 6a), with
circular standard deviations of 33.8°, 34.5°, and 38.6° for delays
of 250 ms, 750 ms, and 5,000 ms, respectively, F(1, 54) = 38.33,
p , .001. This is consistent with the notion that there is an

increase in memory noise as items have to be remembered over
longer delays. We also found that the repulsion bias grew monot-
onically with delay duration, from 2.5%, to 3.6%, and 5.6% for
delays of 250ms, 750ms and 5000ms, respectively (Figure 6b and
6c; F(1, 54) =5.36, p = .025), suggesting larger repulsion biases
with increasing delay duration. This effect was replicated in a con-
trol experiment using an independent set of subjects (Appendix
Figure A7) and cannot be explained by changes in swap rate with
delay (i.e., swaps happen when subjects mistakenly report the non-
target color instead of the target color; see Appendix Figure A8).

Thus, when two similar (but dissociable) items have to be
remembered, we observe repulsion. As the items are held in mem-
ory for increasingly longer durations, they repel further apart as
they become noisier (we do not observe a switch to attraction
biases). The increase in repulsion with longer delays suggests that
the repulsion bias is at least partly related to the storage of infor-
mation in memory, and is not purely due to perceptual factors or
response strategies.

An Adaptive Framework

In five main experiments (and three control experiments), we
found that memory representations were repelled from each other
when the memoranda were highly similar (Experiments 1–2),
when memory representations were noisier (Experiment 4), and
more when representations were remembered over longer delay
intervals (Experiment 5). We confirmed that these effects do not
simply reflect straightforward demand effect or straightforward
response biases, and they hold across different experimental para-
digms. Moreover, we showed that participants with excellent per-
formance and task engagement showed large repulsion biases,
suggesting that these biases do not simply reflect a lack of effort to
precisely remember the colors. Finally, when memory load
increased and it was harder for participants to maintain individ-
uated representations, memory biases reversed from repulsion to
attraction (Experiment 3).

In this framework, we focus specifically on memory biases
between among two or more simultaneously presented memory
stimuli—which is different from categorical biases and the serial
dependence effect. Overall, the experiments we presented here
argue against the idea that some studies find attraction biases and
some find repulsion biases purely as an artifact of using different
stimuli. They also argue against the idea that such biases arise pri-
marily from some form of motor-response strategies.

We instead suggest they these interitem biases can be thought of
as adaptive distortions by our memory system, designed to reduce
error. The broad framework we adopt is that visual working mem-
ory faces at least two distinct problems. First, the capacity of work-
ing memory is limited, and when more items must be stored, they
are stored with more noise (Bays & Husain, 2008; Ma et al., 2014;
Zhang & Luck, 2008). In such cases, summary statistics or other
ways of blending across items can be used to somewhat improve
memory of individual items (Brady et al., 2011; Brady & Alvarez,
2015; Lew & Vul, 2015). The second problem is that access to
memories is not automatic and not independent of cues and context.
Instead, there can sometimes be confusion between items that arises
when items are similar in context and features. Indeed, prominent
process models of working memory that focus on feature-location
binding predict that items are automatically blended if they are
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similar (Oberauer & Lin, 2017; Swan & Wyble, 2014). Avoiding
such confusion is important to reducing error when such blending is
not optimal (e.g., when item representations are not noisy, but are
similar and so likely to be blended).
We do not attempt to make a precise quantitative model that could

be fit to performance on our tasks. However, it is useful to formalize
these ideas to see if it is plausible that reducing error is the overall
goal of attraction and repulsion, and to ask whether the factors that
affect the magnitude of each problem determine when we should
expect attraction and repulsion to be strong or weak. We do that here.

Attraction

For the purposes of considering attraction, we assume that the in-
formation subjects have about the display is (a) information about
the entire set of colors (i.e., participants know if the items were all
red); and (b) information about each specific item, with, for now,
the simplifying assumption that there is no confusion as to which
color goes with which item (i.e., when a subject remembers the
color of the ith item, they never mistakenly retrieve the color of the
jth item). Given these assumptions, we can predict if memory dis-
tortions would be optimal to minimize error if subsequently asked
to report the feature associated with an individual item.
In general, the observer has an estimate of the mean (m0) and the

uncertainty (r0) about the color of the entire set of colors—that is,
the ensemble—and a noisy estimate of the color of a given item

(with mean xi, and uncertainty ri). This gives rise to a hierarchical
situation because the color of each item is part of the overall set of
colors. Given this hierarchy, the optimal error-minimizing color to
assign to an item follows from hierarchical Bayesian models, which
for the simplest case of two nested normal distributions is:

optimal ¼ r2
i

r2
i þ r2

0

l0 þ
r2
0

r2
i þ r2

0

xi

That is, remembering and reporting colors according to this rule
results in less error on average than reporting based only on your
memory of an individual item (i.e., reporting only xi). However,
the cost for this increased accuracy is distortion: Following this
rule results in attraction toward the mean color of the set. Intui-
tively, this distortion actually increases performance because if
there is a noisy sample of a given color that is greenish blue, but
the mean of the entire set of colors is yellowish green, it is more
likely the sample was inaccurate by being too blue as opposed to
being too green (Figure 7a). Thus, when taking into account infor-
mation from both levels, the optimal color to report is slightly
greener than the actual sample associated with that one color
alone. That is, reporting colors in this way is actually more accu-
rate—resulting in less error on average—than reporting the color
you believe an item to be without pulling it toward the average of
the set (Brady & Alvarez, 2011; Huttenlocher et al., 2000).

Figure 6
The Results From Experiment 5

Note. (a) At increasing delays, error distributions become wider (larger circular standard deviation), indicating increasing memory
noise. The distributions also reveal a high number of responses biased away from the nontarget. (b) The proportion of responses biased
away from the nontarget, when quantified for the three delay-duration conditions, revealed a repulsion bias that grew monotonically
stronger as the delay time increased. Error bars represent 61 within-subject SEM. Double and triple asterisks indicate p # .01 and
p # .001, respectively (tested against no-bias; uncorrected for multiple comparisons). (c) To assess the increase of repulsion bias with
delay, one can fit a line through the three points in (b) and calculate the slope—a positive slope indicating an increasing repulsion.
Shown here is a distribution plot of bootstrapped slopes (5,000 iterations of resampling with replacement). The single, double, and tri-
ple asterisks indicate p , .05, p , .01 and p , .001 respectively. This confirms a statistically robust effect, with repulsion bias grow-
ing as a function of delay duration. See the online article for the color version of this figure.
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Three aspects of the optimizing equation above are relevant for
attraction in a typical working memory tasks. For a given set size,
more uncertainty about each item will lead to a greater reliance on
information about the entire set as opposed to information about the
specific item (as ri goes up, you weigh xi less and m0 more, Figure
7b). Thus, in general, manipulations that increase uncertainty about
individual items, such as decreasing encoding time or increasing
delay time (Rademaker et al., 2018; Schurgin et al., 2020; Shin et
al., 2017), should result in more attraction if all else is held equal.
The second relevant factor is related to the clustering of individ-

ual item values in feature space. Consider a display with a single
well-formed cluster of colors that are all some shade of yellowish
green, as illustrated in Figure 7.1 If all the items are part of this sin-
gle cluster, then as the colors get more similar to each other, the
uncertainty (r0) associated with the group mean will go down and
the group color will have a bigger influence on the optimal deci-
sion. When r0 gets very small, as would happen if the colors were
all very similar, this factor assigns nearly all the weight to the
group color and none to individual items, regardless of the uncer-
tainty associated with the individual items.
A final relevant factor for attraction is that increases in memory

set size do not just increase the uncertainty associated with each
item (i.e., drive up ri, which would increase attraction). Instead,
larger set sizes also lead to more precise estimates of the mean and
less uncertainty about the entire set of colors (m0 and r0), since
there are more samples to constrain these values. Thus, if the items
are relatively tightly clustered on the color-wheel at all set sizes,
then, as set size goes up, your certainty about the color of the whole
set (the ensemble color) goes up (in the same way that having more
trials would decrease the standard error of your estimate of the
mean in a typical experimental setting). This decreases r0, exacer-
bating the attraction effect even more than just increasing ri alone.

As a result, at larger set sizes, and particularly when the items
are tightly clustered in feature space, this framework predicts a
stronger attraction effect than at smaller set sizes, even with simi-
lar clustering. This follows because there are two factors driving
attraction—as set size goes up, certainty about the average color
of the set goes up, and the item representations themselves get
noisier. In contrast, for small set sizes, only in very noisy individ-
ual-item conditions or in conditions where the set of items are so
similar that r0 is much smaller than ri—would the framework
predict any appreciable attraction effects, even though such attrac-
tion effects should be robust in displays at higher set sizes when
there is clustering of the features.

Repulsion

In contrast to attraction effects, which should be amplified at
large set sizes, our framework suggests that repulsion biases
should be error-reducing primarily at small set sizes when items
are highly confusable.

When considering attraction biases, our model assumed that
when subjects seek to retrieve information about color i, they can
successfully retrieve only information about color i (i.e., xi reflects
only color i). However, human memory in general is based on
cued-retrieval: content-based access rather than direct access (Gal-
listel & King, 2011). That is, unlike a computer, which stores an
item in a given spot in RAM and then accesses that exact address
again later, human memories are retrieved by matching operations

Figure 7
Attraction Bias and the Uncertainty of an Individual Item

Note. (a) Attraction is the error-minimizing thing to do when you have uncertainty about an individual item, but know how that
item related to the entire set. Blending the information about the individual item with the information about the other similar
items improves performance in this circumstance. Intuitively, this distortion actually increases performance because if there is a
noisy sample of a color that is greenish blue, but the mean of the entire set of colors is yellowish-green, it is more likely the sam-
ple was inaccurate by being too blue as opposed to inaccurate by being too green. Thus, when taking into account information
from both individual item and group levels, the optimal color to report is slightly greener than the actual sample. (b) The amount
of attraction that is optimal depends on several factors, but it most clearly depends on the uncertainty about the individual item
you are probed on: The more uncertain you are about its color (the wider the normal distribution associated with it), the more
attraction is optimal. See the online article for the color version of this figure.

1 Of course, more complex scenarios exist: i.e., if three items are redish
and three are blueish on a display of six items, participants may form two
clusters and items may be selectively attracted toward the cluster they are
part of (Chunharas & Brady, 2019), but we set that aside here for
simplicity.
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based on content. As a result, more similar memories are more
likely to be confused at retrieval or to interfere with each other.
While widely recognized in long-term memory (e.g., Criss et al.,
2011), this aspect of memory retrieval is typically also present in
models of visual working memory when they focus on cued-re-
trieval (Oberauer & Lin, 2017; Swan & Wyble, 2014).
Importantly, such models of memory blend together the repre-

sentation of different items all the time because of interference
between memory representations, as a natural consequence of
cued retrieval. For example, when storing just two item similar
items, the “binding pool” model of Swan and Wyble (2014) pre-
dicts that the two items will be attracted to each other significantly
(see Figure 8). As we have seen, however, this is not in any way
optimal: With strong memories, and few items to give rise to a
tight ensemble distribution, attraction will not reduce error.
Thus, in this scenario, an adaptive system must balance the need to

avoid overlap between item representations and the need to maintain
an accurate memory. If the representations are encoded veridically,
they will have significant interference and be blended inappropriately.
If they are represented as more distinct from each other than they
really were, this will come with its own reduction in accuracy

although it will also reduce inappropriate blending. The memory sys-
tem must strike a balance, with systematic repulsion to offset the
blending that would otherwise occur, but not so much repulsion that it
impairs accuracy overall. We can simulate this in the binding pool
model (with all of the default parameters) simply by adding an attrac-
tion or repulsion step to the encoding process, and seeing what hap-
pens to (a) the resulting bias and (b) error. In the binding pool model,
the error minimizing amount of repulsion for storing two items that
are 15° apart in color space is �5 deg (see Figure 8). More repulsion
is required to minimize error when items are more similar and/or
when items are represented with more uncertainty.

Summary: Attraction and Repulsion

Our adaptive framework holds that attraction biases (when mem-
ory is very noisy) can be understood as optimal using a straightfor-
ward hierarchical Bayesian integration model. Effectively, attraction
biases arise because integrating summary statistic information results
in reduced error even if it results in systematic distortion (Brady &
Alvarez, 2011; Huttenlocher et al., 2000). This framework makes a
clear set of predictions about when attraction should occur: when
items are clustered in color space and individual items are associated

Figure 8
Binding Pool Model and Simulation

Note. (a) Schematic of the binding pool model, reproduced from Swan and Wyble (2014). In this model,
each stimulus evokes an activation in a set of feature layers (here: color, location, and orientation). These fea-
tures are then encoded into a shared binding pool layer and tied to a particular “token.” When provided a cue
at test (like the item location) the associated token can be activated and the color or orientation retrieved.
Notably, the binding pool layer, which is shared between all items and the source of the capacity limits of the
system, also results in the items features being necessarily blended (e.g., Swan & Wyble, 2014, Figure 11),
even when only two items are represented. Thus, by default, this model, like many others, always predicts
attraction between memory representations. (b) We simulated what would happen if repulsion was added to the
encoded information in the binding pool model, to provide a concrete case study for how repulsion could be
used to overcome the blending inherent in a model such as the binding pool model, and reduce overall error. In
particular, we asked the model to store and recall two items that were 15° apart in color space. As part of the
encoding stage, we added an additional step that introduced repulsion of the colors of the two items before
they were put in the binding pool. In 100 simulations of the model at each of nine levels of additional attraction
or repulsion added at encoding, we calculated the model’s error. We found that error was minimized when the
items were repelled away from each other by �5° before being entered into the binding pool layer. See the
online article for the color version of this figure.
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with a higher degree of uncertainty than the ensemble color. In prac-
tice, this ends up happening primarily when set size is high, or when
set size is low but items are very similar relative to the item-level
uncertainty. In contrast, repulsion bias can be understood as balanc-
ing the avoidance of overlapping representations with the need for
accurate representations. Insofar as overlap is present and attraction
is not adaptive, this model predicts that items should repel from each
other. At low set sizes, this means that repulsion is expected when-
ever items are similar enough, and uncertainty high enough, that the
memory representations overlap substantially. At high set sizes, the
extent to which repulsion will be useful in lowering error is severely
reduced by the crowding of the feature space with other items, and
the fact that attraction and repulsion pull in different directions, with
attraction likely being dominant. Overall, we believe this adaptive
framework can providing a guiding theory for conceiving of when
attraction and repulsion arise in memory.

General Discussion

Our memory is susceptible to systematic distortions. Even
across short periods of time, specific memories become affected
by the overarching categories that memory items belong to (cate-
gorical biases) or by information viewed in the immediate past (se-
rial dependence). The research presented here focused on a
different kind of distortion: interitem distortions that occur in
memory when we try to hold multiple items in mind. When encod-
ing and remembering multiple items at once, mnemonic represen-
tations can be subject to systematic distortions that can make items
either more separable (repulsion biases) or more similar (attraction
biases). While both types of interitem distortion are well docu-
mented, it is not clear when repulsion or attraction will occur as a
function of the type of information being remembered and current
task demands. Here, we examined when each type of bias arises.
We found that memory representations were repelled away from
each other when the memoranda were highly similar (Experiments
1–2), when memory representations were noisier (Experiment 4),
and when representations were remembered over longer delay
intervals (Experiment 5). We confirmed that these effects do not
simply reflect straightforward response strategies, and occur in
many distinct tasks, and we showed that high-performing partici-
pants showed larger repulsion biases which suggests that these
biases do not simply reflect a lack of effort to precisely remember
the colors. Finally, when memory load increased and it was harder
for participants to maintain individuated representations, memory
biases reversed from repulsion to attraction (Experiment 3).
Past work has found evidence for attraction biases (Brady et al.,

2011; Brady & Alvarez, 2011; 2015; Dubé et al., 2014; Dubé &
Sekuler, 2015; Huang & Sekuler, 2010; Lew & Vul, 2015; Lorenc
et al., 2018; Utochkin & Brady, 2020), repulsion biases (O’Toole
& Wenderoth, 1977; Rauber & Treue, 1998; Scotti et al., 2021;
Suzuki & Cavanagh, 1997), or both (Bae & Luck, 2017; Golomb,
2015; Rademaker et al., 2015). Our model and empirical work
identifies several key factors that drive these effects and provides
evidence that both can arise even in similar paradigms. This is im-
portant, as using highly comparable paradigms and memory for a
single feature (color) argues against the more mundane explana-
tion that differences in stimulus features (such as orientation in
Bae & Luck, 2017; Dubé & Sekuler, 2015; Huang & Sekuler,
2010; Lorenc et al., 2018; Utochkin & Brady, 2020; spatial

location in Lew & Vul, 2015; Suzuki & Cavanagh, 1997; motion
direction in Kang & Choi, 2015; or color in Brady & Alvarez,
2015; Golomb, 2015) lead to attraction in some studies and repul-
sion in others.

Here, we tested the general account that when subjects were try-
ing to encode items in a memory display, repulsion and attraction
were driven largely by the interitem relationship between memo-
randa. We proposed a way to conceive of these biases and when
they arise based on adaptive framework. In particular, we suggested
that these biases may be natural consequences of the memory sys-
tem attempting to minimize memory error, if systematic distortion
is adaptive in particular circumstances (Schacter et al., 2011).
When many similar items are present and so memories for individ-
ual items are noisy, attraction biases are known to be optimal for
minimizing error (e.g., Brady & Alvarez, 2011). Repulsion biases
can also reduce error in some situations, making them adaptive. In
particular, if the items would naturally be blended or confused by
our memory system (Oberauer & Lin, 2017; Swan & Wyble,
2014), then repulsion can reduce this tendency and reduce error
when we have strong and distinct item memories. Importantly,
these biases are not simply inherited from perceptual processing: as
noise accumulates in memory over time (reducing the signal-to-
noise if memory items), and the need to keep memoranda distinct
grows, a corresponding increase in the repulsion bias is observed.
Importantly, very recent work (performed since the first presenta-
tion of the experiments in the current article) has confirmed various
key aspects of our framework: As memories get weaker, biases
switch from repulsion to attraction (Lively et al., 2021), and repul-
sion biases increase with longer memory delays (Scotti et al.,
2021).

Based on these results, the degree and type of bias likely
depends on the overall discriminability of a stimulus feature under
investigation (such as color, space, orientation, etc.): If features
are very readily discriminable, then repulsion will only occur
when two items are very similar. Poorly discriminable features
will need to differ more before they are susceptible to repulsion. In
other words, the data suggest that the extent and type of bias will
directly map onto the just-noticeable-differences (JND) of a given
stimulus feature (and of individual subjects). Using JND as a
standard unit might be an interesting approach that allows us to
compare the various effects previously reported. Even though we
tried to use the same stimulus feature and investigate various task
manipulation in this article, it is still not easy to compare the
results with previously reported findings where many interesting
inconsistencies are waiting to be explored.

Even though our experiments were designed to rule out specific
forms of response strategy, it is still possible that our findings could
be explained by other response strategies that closely resemble the
framework proposed here. For one example, it is possible that foils in
Experiments 1 and 2 were too similar to the true answer, and that
subjects might choose between the two response options by the pro-
cess of elimination (i.e., “I did not know which one was the target
color so I am going to choose the one that is less similar to the non-
target”). In this hypothetical case, it is still unclear how the subject
would know which response option is less similar to nontarget with-
out knowing which one is more similar to the target—making it a
possible but implausible strategy. We would like to note how recent
neuroscience studies have demonstrated that memory representations
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drift over time (Compte et al., 2000)—a process which is not likely
to be susceptible to response strategies.
Attraction biases can occur both in absolute stimulus space (e.g., to-

ward particularly salient colors; Bae et al., 2015) or arise from the sim-
ilarity between items in an individual display (as in the current work).
These attraction biases are straightforwardly explained as arising from
gist-based or ensemble-based representations, and a combination of
these global representations with item specific representations. Many
models claim that attraction biases are the result of weighting the rep-
resentation of each object toward the “summary” of the set to achieve
a more stable memory at the expense of maintaining distinctions
between individual items (Brady & Alvarez, 2011), or via blending
items together if they are similar (e.g., Oberauer & Lin, 2017; Swan &
Wyble, 2014). The category learning literature has carefully demon-
strated that this is in general an adaptive strategy that serves to mini-
mize error (Huttenlocher et al., 2000).
Repulsion biases have traditionally been more difficult to under-

stand. Previous studies have shown that repulsion biases occur
when two items are task-relevant and proximal in feature space
(Bae & Luck, 2017; Golomb, 2015; Rademaker et al., 2015). How-
ever, the benefits of repulsion biases are still unclear. Here, we sug-
gest that repulsion biases serve to maximize distinctiveness
between items when individual item representations are strong but
items are similar enough to be more difficult to distinguish. This
helps reduce blending between items that naturally occurs in the
memory system (Oberauer & Lin, 2017; Swan & Wyble, 2013).
Any factor that affects distinctiveness in memory should thus
impact the degree of repulsion biases (e.g., encoding time, feature
similarity, memory delay). Interestingly, previous work has fre-
quently found repulsion not only between items, as in the current
work, but in absolute terms as well. For example, when asked to
remember an orientation that is near, but not quite at, vertical, peo-
ple will systematically report the orientation as further from vertical
than it really was (Jastrow, 1892; Smith, 1962). One framework
that has been useful to understand these absolute biases is to disso-
ciate the physical space of the stimuli (e.g., absolute orientation)
from the psychological representation of the stimuli (e.g., people
may overweight certain values in a systematic manner). A clear
example of a warped psychological space is the massive overrepre-
sentation of vertical and horizontal orientations, presumably to effi-
ciently code environmental regularities (Girshick et al., 2011; Wei
& Stocker, 2015). Accounting for this selective overrepresentation
of certain stimulus values in psychological space can explain biases
like repulsion from cardinal axes, and the reason why these biases
tend to arise in parts of stimulus space where discrimination thresh-
olds are lowest (e.g., the most overrepresented stimulus values; Wei
& Stocker, 2015, 2017).
This conception of psychological space is designed to address

long-term biases that are likely crystalized in the neural architec-
ture of the visual system, whereas the biases we examined in the
current work are more dynamic. Despite the apparent disconnect,
a common mechanism such as the warping of psychological space
may be at play in both stable long-term phenomena and in more
dynamic short-term regimes. In the current work, this would mean
that a strong representation of an item “stretches” the psychologi-
cal representation of stimulus space near that item, resulting in
repulsion of other items in a manner similar to how cardinal orien-
tations repel nearby items. This is consistent with other short-term
effects: For instance, spatial judgments are distorted by top-down

factors such that there is repulsion bias away from currently
attended locations (Suzuki & Cavanagh, 1997). Attention, which
leads to well-documented changes in visual sensitivity (i.e., lower
discrimination thresholds, see Carrasco, 2011), may also adap-
tively bias perception and memory on demand, as biases typically
manifest when discrimination thresholds are low across a variety
of visual features such as orientation, motion direction, spatial fre-
quency, and visual speed (see Zhang & Luck, 2011 for a sum-
mary). Thus, attention amplifying discrimination at a single color
may strengthen the representational space there, resulting in repul-
sion. In sum, conceptions of psychological space, and how it is
distorted when particular sets of stimuli are overrepresented, may
be a useful framework for considering biases at all possible time
scales (see also Schurgin et al., 2020; for details on the widely ap-
plicable utility of this concept).

What might be the neural substrates of biased representations?
When a task requires focal attention to a small set of items to
remember—as is the case in paradigms that create repulsion bias
—the discriminability of the relevant items can be improved by
biasing responses in early visual cortex to maximize the separabil-
ity of their corresponding neural representations. For example,
attention to highly similar features, akin to remembering two
highly similar colors in Experiments 1, 2, and 5, has been shown
to modulate neurons tuned just away from the attended features.
This “off-target” gain can improve performance because neurons
tuned away from the attended features undergo the largest change
in firing rates because the two features fall along the steepest part
of their bell-shaped tuning curves. In turn, this off-target gain
gives rise to systematic biases in behavioral reports such that peo-
ple see stimuli as repelled from the actual feature values (Jazayeri
& Movshon, 2007; Navalpakkam & Itti, 2007; Scolari & Serences,
2009; Serences 2016). Such repulsion would be expected if the
off-target gain happening in early visual cortex was interpreted as
a veridical representation of the world at higher stages of process-
ing. While previous work in this domain has focused on selective
attention to continuously present stimuli, a similar type of modula-
tion in the domain of working memory might give rise to repulsive
biases in mnemonic representations. Indeed, repulsion biases grow
with delay only when a memory is actively held in mind (but dis-
appears when an attention-demanding task is performed during the
delay), suggesting that the repulsion bias is not a product of some
passive process, but instead requires active maintenance (Scotti et
al., 2021). While speculative, this type of adaptive neural modula-
tion may map onto the psychological space framework, such that
changes in the discriminability of stimuli in early visual cortex—
either due to a lifetime of experience or to dynamic changes in the
focus of attention—lead to a warping of perception and memory.
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Appendix

Additional Data and Analyses of “An Adaptive Perspective on Visual Working Memory Distortions”

Figure A1
Results From a Control Experiment (N = 45) Replicating Experiment 2

Note. In this experiment, only foils distorted by 6° relative to the correct color were used (towards and away from
the nontarget—similar to Experiment 1), while we also included 10% of catch trials (similar to Experiment 2).
Participants were an entirely new and independent set of 45 naïve Amazon mechanical Turk workers. (a) The degree
of repulsion bias (indexed as the difference in accuracy between trials with foils distorted toward, and trials with foils
distorted away from the nontarget color), plotted against people’s general level of engagement with the memory task
(indexed by performance on catch trials). Each dot represents a single subject. These data demonstrate stronger biases
away from the nontarget color in participants with higher levels of task engagement. (b) We bootstrapped the data in
(a) 5,000 times: On each bootstrap we sampled 45 subjects with replacement, and recalculated the correlation
between repulsion bias and general task engagement. This gives a distribution of bootstrapped Pearson’s r, which is
depicted in the violin plot. The dot in the middle indicated the mean bootstrapped correlation (r = 0.39). The double
asterisks indicate a p-value of p , .01. See the online article for the color version of this figure.

Figure A2
Task Progression in Experiment 3

Note. Participants had to remember a set of four colors (shown at randomly selected locations from a set of
12 possible locations, with at least one empty placeholder between items). The four colors were presented for
800 ms, after which participants remembered them during a 1-s memory delay. Subsequently, participants saw
a location cue (triangle) indicating which memory item to respond to, as well as two response options pre-
sented directly left and right of fixation. Participants chose between the correct (cued) color and a foil color.
See the online article for the color version of this figure.

(Appendix continues)
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Figure A3
Results From a Same-Different Color Discrimination Task as a Control for Experiment 4

Note. This control experiment probed whether two colors can or cannot be perceptually discriminated at vari-
ous encoding times and color distances: Two colors that were either exactly the same (50% of trails) or dif-
fered by 20°, 45°, or 90° in CIE l*a*b* color space (50% of trials) were simultaneously presented for either 50
ms (blue), 150 ms (orange), or 500 ms (green). Participants on Amazon Mechanical Turk (18 in total) reported
whether the two colors were the same or different. Each participant completed 90 trials in total. The 3D bar
plot (right) shows accuracy as a function of encoding time and color distance. Repeated-measures ANOVA’s
demonstrate both main effects of encoding time, F(2, 34) = 36.7, p , .001; color distance, F(3, 51) = 212.5, p
, .001); and an interaction, F(6, 102) = 9.32, p , .001). This means that participants could not tell two colors
apart when they were presented very briefly and were very similar to one another (i.e., encoding time of 50ms
and color distance of 20°). The inability of subjects to tell two very similar colors apart at very short encoding
times explains why repulsion biases were not found in these extreme cases. See the online article for the color
version of this figure.

(Appendix continues)
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Figure A4
Asymmetry of Experiment 4 Error Distributions

Note. (a) An example error distribution from all 24 participants combined, in the condition showing the
strongest repulsion bias (i.e. encoding time of 150 ms and color distance of 45°). First, note how the peak of
the error distribution is not aligned with the cued color, but instead is shifted away from the nontarget color.
Second, note how the shape of the distribution is asymmetrical, with the side away from the nontarget being
steeper. (b) Due to the possible presence of nontarget responses (i.e. where a subject mistakenly reports the
color of the nontarget instead of the target), we did not wish to measure skewness using circular skewness
measures on the raw response distribution. Instead, we first derived a kernel density estimator (KDE). The
peak of the distribution (x) was defined as the degree of error with maximum probability. The skewness was
defined by the log ratio between the angle toward (h1) versus away (h2) from the nontarget color at half maxi-
mum height of the KDE (log(h1/h2)). (c) A scatter plot showing the relationship between skew and peak. Each
dot represents skew and peak on one bootstrapping iteration (of 5,000 total iterations) calculated by randomly
resampling the data from 24 participants with replacement (data from the condition shown in (a). The horizon-
tal zero line represents scenarios with no shift in the distribution peak, while the vertical zero line represents
scenarios without any skew (thus, the 0,0 point represents a perfectly symmetrical distribution). We found both
a systematic shift of the peak (p , .001 from bootstrapping) as well as skew (p , .01 from bootstrapping).
Furthermore, the shape of the dot cloud shows that stronger repulsion is associated with a stronger skew (r =
0.45; p , .001). To test the validity of the metrices, we reanalyzed the same data with randomized signed
errors and plotted in gray color. The randomized signed errors distribution centers at zero in both skew (x-
axis) and bias (y-axis) suggesting that the significant bias and skew were not spurious. See the online article
for the color version of this figure.

(Appendix continues)
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Figure A5
Parametric Versus Nonparametric Quantifications of Memory Precision and Bias in Experiment 4

Note. For this experiment we nonparametrically quantified memory precision as the circular standard deviation (with smaller standard
deviations indicating higher precision) and we quantified biases as the difference in the percentage of responses that were toward vs.
away from the nontarget color (with a negative bias indicating attraction, and positive bias indicating repulsion). To validate these meas-
ures, we also parametrically fit the data using a von Mises distribution with two independent parameters to reflect memory precision
(vmSD) and bias (mu). We found a high agreement between parametric versus nonparametric measurements (Pearson’s r = 0.99 and
0.76, for precision and bias, respectively; both p , .001). The correspondence between these measures is shown in the scatter plots at
the bottom of this figure. Furthermore, we repeated our statistical analyses with the parametric von Mises parameter estimates (tables in
the top of this figure), showing significant differences in memory precision as a function of encoding time, F(2, 46) = 13.7, p , .001;
color distance, F(4, 92) = 21.09, p , .001); and an interaction, F(8, 184) = 3.76, p , .001. The repulsion bias is marginally impacted
by encoding time, F(2, 46) = 3.08, p = .056, significantly impacted by color distance, F(4, 92) = 9.54, p , .001) and there is a signifi-
cant interaction, F(8, 184) = 2.66, p , .01. Note that the mixture modeling assumes that the error distribution follows a symmetric circu-
lar distribution. However, the true error distributions were skewed which makes it less accurate in estimating the true biases and the
memory strengths. See the online article for the color version of this figure.

Figure A6
Task Sequence in Experiment 5

Note. Two color stimuli were presented for 250 ms, and the color distance between the two items was fixed at 45°.
The memory delay period was either 250 ms, 750 ms, or 5,000 ms. After the delay, participants were cued to report
one of the two memory items with an arrow cue, and they moved a white dot along a continuous color-wheel to choose
the color that matched their memory as closely as possible. For clarity, the gray circle and color-wheel are shown wider
here than they were presented during the actual experiment. See the online article for the color version of this figure.

(Appendix continues)
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Figure A7
Results From a Control Experiment (N = 47) Replicating the Finding From Experiment 5 That Memory Biases
Increase With Longer Delays

Note. Here, we collected 36 trials per condition per subject (a total of 108 trials per subject). (a) Error distributions at each
delay, revealing a high number of responses biased away from the nontarget. (b) The quantified repulsion bias (i.e. percentage of
responses away from the nontarget color) shows that repulsion grew monotonically stronger as the delay duration increased
(1.4%, 2.7%, and 5.6% for delays of 250 ms, 750 ms, and 5,000 ms, respectively; F(1, 46) = 6.62, p = .013). Error bars represent
61 within-subject SEM. (c) To assess the increase of repulsion bias with delay, one can fit a line through the three points in (b)
and calculate the slope—a positive slope indicates repulsion bias growing as a function of delay duration. Shown here is a distri-
bution plot of bootstrapped slopes (5,000 iterations of resampling with replacement). The double asterisk indicates p , .01 con-
firming a statistically robust effect. See the online article for the color version of this figure.

(Appendix continues)
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Figure A8
Results of Fitting a Mixture Model With Biases and Swap Errors in Experiment 5

Note. (a) Fitting a mixture model with swap errors to the data in Experiment 5 confirms that repulsion bias grows stronger with
longer delay intervals (blue; F(1, 54) = 10.2; p = .002), confirming what we found with our nonparametric repulsion bias mea-
sure. The frequency of swap errors did not significantly change across time (red; F(1, 54) = 1.87; p = .178). (b) We computed
slopes of bias and swap errors as a function of time—positive slopes indicating an increased repulsion or swap rate over time.
We evaluated significance by resampling with replacement 10,000 times. Repulsion bias grew significantly stronger as the delay
interval increased (blue), replicating our findings using a nonparametric bias measure. Swap errors did not increase significantly
as the delay interval increased. These results suggest that the increase in repulsion bias that we found when using either paramet-
ric or nonparametric methods cannot be explained by a reduction in swap errors (if anything, swap errors increase with delay,
numerically). The double asterisk indicates p , .01. See the online article for the color version of this figure.
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