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Abstract
The capacity of visual working and visual long-term memory plays a critical role in theories of cognitive architecture and the 
relationship between memory and other cognitive systems. Here, we argue that before asking the question of how capacity 
varies across different stimuli or what the upper bound of capacity is for a given memory system, it is necessary to establish 
a methodology that allows a fair comparison between distinct stimulus sets and conditions. One of the most important factors 
determining performance in a memory task is target/foil dissimilarity. We argue that only by maximizing the dissimilarity of 
the target and foil in each stimulus set can we provide a fair basis for memory comparisons between stimuli. In the current 
work we focus on a way to pick such foils objectively for complex, meaningful real-world objects by using deep convolutional 
neural networks, and we validate this using both memory tests and similarity metrics. Using this method, we then provide 
evidence that there is a greater capacity for real-world objects relative to simple colors in visual working memory; critically, 
we also show that this difference can be reduced or eliminated when non-comparable foils are used, potentially explaining 
why previous work has not always found such a difference. Our study thus demonstrates that working memory capacity 
depends on the type of information that is remembered and that assessing capacity depends critically on foil dissimilarity, 
especially when comparing memory performance and other cognitive systems across different stimulus sets.
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Introduction

One major focus of memory research is to examine, and 
quantify, how much information we can remember. For 
example, studies of visual long-term memory have shown 
that people can remember massive amounts of visual infor-
mation (Brady et al., 2008; Standing, 1973), and attempts 
have been made to quantify the upper bounds on this capac-
ity (e.g., Landauer, 1986) in order to understand how mem-
ory might limit or interact with other cognitive systems (e.g., 
object recognition; Palmeri & Tarr, 2008).

The domain of memory where capacity has been seen as 
most relevant, however, is visual working memory. In con-
trast to long-term memory, visual working memory is used 
to hold visual information actively in mind for relatively 
short periods of time and has a stark capacity limit (Badde-
ley, 2012; Cowan, 2001). Importantly, individual differences 
in this capacity limit are closely related to differences in fluid 
intelligence and academic achievement (Alloway & Allo-
way, 2010; Babic et al., 2019; Fukuda et al., 2010), which is 
one of the reasons why describing and understanding these 
limits is of broad general interest. Theories markedly differ 
in their claims about the nature of the capacity limits of this 
system (e.g., Adam et al., 2017; Bays et al., 2022; Luck & 
Vogel, 2013; Ma et al., 2014; Schurgin et al., 2020).

One particularly important question distinguishing theo-
ries of working memory limits has been whether the stimu-
lus itself matters for working memory capacity: that is, does 
working memory capacity differ fundamentally for different 
stimuli, or is there a single fixed visual working memory 
capacity regardless of what we are remembering? Many 
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studies have asked this question, comparing, for example, 
working memory for simple unidimensional stimuli (e.g., 
colors, orientations) to more complex meaningless stimuli 
(Alvarez & Cavanagh, 2004; Awh et al., 2007) or to realistic 
objects (e.g., Brady & Störmer, 2022; Brady et al., 2016; Li 
et al., 2020; Quirk et al., 2020), and making claims about the 
fundamental nature of working memory capacity as a result 
(e.g., fixed numbers of objects or not; fixed capacity or not). 
In the current work we focus on one particularly critical 
aspect of making such comparisons – the similarity of foil 
or lure items to the remembered item during the memory 
test. We demonstrate how this seemingly simple aspect of 
such studies can fundamentally change our inferences about 
the underlying capacity of visual working memory for dif-
ferent stimuli.

Standard assessments of visual working memory – par-
ticularly for stimuli that cannot make use of continuous 
adjustment tasks – ask participants to remember several 
items and then, at test, to distinguish whether a given item 
is old or new (“change detection,” where “new” items are 
the relevant “lure”), or which of two items has been previ-
ously seen (“two-alternative forced-choice” (2-AFC), where 
the “new” item is the “foil”). In either case, the similarity 
of the lure or foil item is critical to performance (e.g., Awh 
et al., 2007; Keshvari et al., 2013; Schurgin et al., 2020). For 
example, if remembering the color red, then performance 
will be higher when your memory is tested against a blue 
lure than if you are asked to distinguish between the red 
item you saw and an orange lure item in both forced-choice 
(e.g., Schurgin et al., 2020) and change detection (Keshvari 
et al., 2013).

In the case of color and other simple low-level stimuli 
often used in visual working memory tasks, foils that are 
maximally distinct are commonly used – at minimum, 
large cross-category color differences (e.g., Luck & Vogel, 
1997). In many cases where continuous color spaces are 
used (e.g., Wilken & Ma, 2004), foils are even more dis-
tinct: for example, when probing memory with a 2-AFC, 
many studies have used colors that are 180° away on the 
chosen color circle (Brady & Störmer, 2022; Brady et al., 
2016; Li et al., 2020; Quirk et al., 2020), very close to as 
far as possible apart in that feature space given the color 
circles are generally chosen to be approximately maxi-
mally large for a given luminance level (Zhang & Luck, 
2008). This decision is, it turns out, critical: maximally 
distinct foils from within the feature space are the only 
appropriate way to measure performance in a feature 
space, since performance can arbitrarily be driven lower 
from that point but never higher: If participants were asked 
to distinguish two extremely similar colors at test (e.g., 
red vs. orange), performance would necessarily be lower, 
relative to when they are asked to distinguish between 
very distinct colors (e.g., red vs. blue); but within a given 

luminance level, performance can never be higher than 
when the foil is maximally far apart from the target color 
in hue. For color, then, performance on these commonly 
used tasks with maximally dissimilar foils is interpretable 
as approximately the upper bound of memory performance 
for that particular feature space, and thus is a valid meas-
ure of the “capacity” of the memory system for colors.

By contrast, there is considerably more variability in 
the way foils have been selected when assessing both long-
term memory capacity (e.g., Brady et al., 2008) and work-
ing memory capacity for complex objects (e.g., Alvarez & 
Cavanagh, 2004, vs. Awh et al., 2007) and realistic, mean-
ingful objects (e.g., Brady et al., 2016; Quirk et al., 2020), 
and this has significant potential implications for conclu-
sions about the nature of memory capacity. As is the case 
for colors, memory performance is necessarily lower when 
participants are asked to make comparisons between more 
similar objects at test: for example, people perform worse 
with within-category foils (Awh et al., 2007; Brady et al., 
2009, 2016; Schurgin & Brady, 2019), and the similarity 
of foils impacts performance for both realistic objects and 
complex but meaningless objects (Frank et al., 2020; Mate & 
Baqués, 2009). This variance – insofar as it produces differ-
ences in performance – is problematic for interpretation: Just 
like for more simple feature spaces like color, when trying 
to assess overall memory capacity for complex or realistic 
objects, it is necessary to choose maximally distinct foils, 
or else performance will be arbitrarily lower – and the more 
similar the object foils, the lower performance will be. This 
is particularly important if the goal is to compare memory 
capacity across different stimulus types: color versus orien-
tation, color versus real-world objects, real-world objects 
versus scenes, etc. Only when foil distance at test is maximal 
within each stimulus space, it is possible to make inferences 
about the nature of capacity limits.

One example of this from visual long-term memory 
is work by Brady et al. (2008) that sought to assess and 
quantify visual long-term memory capacity. Although aim-
ing to measure the upper bound of memory performance, 
Brady et al. (2008) did not use maximally dissimilar foils, 
but instead randomly chosen cross-category foils from their 
stimulus set. Despite the impressive performance they found, 
to the extent that randomly chosen foils are not maximally 
dissimilar, they likely underestimated the true performance 
level that can be achieved in visual long-term memory. Simi-
lar questions exist about working memory tasks, where again 
random cross- category foils have often been used (e.g., Li 
et al., 2020; Quirk et al., 2020). To determine whether this 
affects the capacity estimated in these long-term memory 
and working memory studies, assessing whether random 
cross-category objects are approximately “maximally dis-
similar” is key, and this is what we probe in the current 
work.
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Although this issue is of broad relevance to many findings 
(e.g., Brady et al., 2008, in long-term memory), rather than 
test it in all domains, we focus on one particular example of 
this general issue: the case of comparing working memory 
capacity for objects to other simple stimuli, like colors. 
Comparing memory performance across different stimuli is 
a case where the strategy used to choose foils is particularly 
critical, especially if the way the foils are chosen is differ-
ent for different stimuli. In the case of meaningful objects 
versus colors in particular, most work has found significant 
working memory performance advantages for real objects 
when compared to simple stimuli like colors (e.g., Brady 
& Störmer, 2022; Brady et al., 2016; Torres et al., 2023) or 
scrambled stimuli (e.g., Brady & Störmer, 2022; Shoval & 
Makovski, 2022; Starr et al., 2020; Thibeault et al., 2023), 
where other work has not found differences between objects 
and colors (e.g., Li et al., 2020; Quirk et al., 2020). This 
has led to different assessments of the nature of working 
memory storage, and in particular the impact of knowledge 
and familiarity on memory capacity.

Interestingly, whereas the color foils were chosen to be 
maximally distinct in CIE L*a*b space, in all of these stud-
ies, the studies that found better memory capacity for objects 
than colors (Brady & Störmer, 2022; Brady et al., 2016; 
Thibeault et al., 2023; Torres et al., 2023) used approxi-
mately maximally distinct object foils, whereas the studies 
that did not (Li et al., 2020; Quirk et al., 2020) used random 
cross-category foils. Even though choosing cross-category 
foils ensures no very similar objects are presented as the foil 
object, there are still significant gradations of how similar 
the objects are semantically and visually (e.g., an office chair 
and a dining room chair are both included, and while they 
are dubbed distinct categories in the stimulus set, it is clear 
that they are similar; likewise, a tape measure and a ruler 
are both included; etc.) – so choosing foils randomly from 
other categories than the target stimulus may not maximize 
semantic or visual distinctiveness across all trials. Thus, this 
particular literature provides an interesting case study that 
motivates the question of whether random cross-category 
objects are approximately maximally dissimilar, or whether, 
in assessing object memory, foils should be chosen in a way 
that more directly maximizes such dissimilarity to ensure 
capacity is being accurately measured.

While creating maximally distinct foils is fairly straight-
forward for colors and other simple low-level features 
– because we can relatively directly measure perceptual 
distinctiveness, for example as distance in CIE L*a*b space 
for color – it is not obvious what a maximally distinct foil 
should be for a real-world object. Past work largely used 
intuition to do this (e.g., Brady et al., 2016). In the current 
study, to operationalize this, we formally assessed real-world 
object similarity using a deep convolutional neural network 
(CNN) that allows us to objectively identify distinct foils, 

similar to how foils for simple visual stimuli like color are 
chosen. In particular, we use the VGG16 pre-trained convo-
lutional neural network to assess image similarity between 
each pair of objects from the thousands of objects in the 
Brady et al. (2008) stimulus set. This convolutional neural 
network is trained to go from images (pixels) to category 
labels (e.g., ball), and, in the past 10 years, such networks 
have become increasingly good not only at solving object 
recognition from images, but also increasingly good as mod-
els of visual processing in the primate visual system (e.g., 
Yamins et al., 2014). Thus, they provide a useful way to find 
approximately maximally dissimilar object images without 
requiring participants to give similarity ratings on millions 
of pairwise object sets. At the same time, using such net-
works provides additional information about the networks 
as models of human information processing: to the extent 
VGG16-chosen foils are indeed more distinct than random 
foils, this suggests convolutional networks of this type pro-
vide a useful model of human memory confusability. Note 
that we focus on confusability between pairs, as we are inter-
ested in issues of capacity, but similar work using deep nets 
has also been done looking for images that are not confus-
able with other images on average (“memorability”; Needell 
& Bainbridge, 2022).

Overall, in a series of high-powered, preregistered 
experiments, we find that (1) foils chosen to be dissimilar 
by VGG16 are, in fact, particularly dissimilar according to 
human participants; (2) this dissimilarity modulates mem-
ory performance, such that participants perform better at 
memory tasks with such dissimilar foils than the randomly 
chosen cross-category foils sometimes used in previous 
work, and (3) when we use equivalently chosen, maximally 
dissimilar foils for both colors and objects, we find a large 
benefit for objects relative to colors. Our results thus demon-
strate that realistic objects result in better working memory 
performance than simple features once foil dissimilarity is 
matched. More broadly, our results emphasize the impor-
tance of maximizing foil dissimilarity when measuring 
capacity; comparing different sets of stimuli on common 
ground, a general challenge in many studies trying to com-
pare cognitive operations across different stimulus sets; and 
point to a means of generating such foils objectively and 
automatically.

Experiment 1: Stimulus creation 
and validation

For objects, we used the Brady et al. (2008) object image 
database. This database contains 2,400 objects, with, as best 
as possible, one object per “basic-level category” (e.g., one 
office chair). In our first experiment, we ask whether, within 
this database, there is variability in how similar randomly 
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chosen pairs are, despite the objects being cross-category. 
In subsequent experiments we ask whether this variability is 
critical to explaining differences in visual working memory 
performance. Experiment 1 thus measures the similarity of 
different pairs of objects within the database, using both 
convolutional neural networks and human similarity ratings, 
as a precursor to the memory experiments (Experiments 2 
and 3).

With 2,400 distinct objects there are potentially greater 
than 5 million possible pairs of stimuli that could serve as 
the studied item/foil. Thus, finding the maximally dissimilar 
pairs from this set is not straightforward. To address this, we 
make use of deep convolutional neural networks to achieve 
this goal. Recently deep convolutional neural networks have 
reached very high performance on object recognition tasks, 
reaching, and even surpassing in limited circumstances, 
human category-level recognition performance (He et al., 
2016; Kietzmann et al., 2019; Lindsay, 2020; Russakovsky 
et al., 2015; Yamins & DiCarlo, 2016). Furthermore, evi-
dence suggests that these networks capture some aspects of 
the neural representations of visual information, as they have 
been shown to account for neural data recorded in higher-
level visual areas of the human and non-human primate brain 
(Güçlü & van Gerven, 2015; Kar et al., 2019; Khaligh-Razavi 
& Kriegeskorte, 2014; Kubilius et al., 2018; Yamins et al., 
2014). While there is still some debate of how well CNNs 
capture human vision (e.g., Xu & Vaziri-Pashkam, 2020), and 
different model architectures result in different performance 
levels and how well they explain neural representations (e.g., 
Storrs et al., 2021), overall it is clear that they provide one of 
the best current computational tools to model human object 
recognition, and, of most importance to the current paper, are 
sensitive to visual and category-based similarity of objects 
(Peterson et al., 2018). Thus, they provide a useful tool for 
choosing object pairs that will provide a fair assessment of 
the upper bound on memory performance, allowing us to 
measure memory capacity in a fair way.

Method

Creating pairs

To choose maximally dissimilar and maximally similar foils 
from within the Brady et al. (2008) database and see how 
they compare to randomly selected foils, we used a VGG16 
convolutional neural network (CNN) architecture (Simon-
yan & Zisserman, 2014), pretrained on ImageNet, to select 
images based on image-level similarity. This model is a deep 
convolutional neural network with 16 layers, and among the 
most well-known and well-cited models of its kind. It achieves 
92.7% top-5 test accuracy (i.e., the correct label was in the top 

five suggestions by the network) on ImageNet, a dataset of 
over 14 million images.

Using this model allowed us to create “maximally dis-
similar” and “maximally similar” object foils, at least with 
respect to the features of this network. To do so, we calcu-
lated the features of all of our object images using the CNN 
for all objects in our database, using the Keras implementa-
tion of ImageNet-pretrained VGG16 in Tensorflow. Then 
we used the CNN feature matrix from the top max-pooling 
layer (with images 256 × 256, 8 × 8 × 512 = 32,768 features/
image) to compute similarity between all pairs of objects 
(cosine similarity; i.e., length-normalized dot product), and 
chose both the 120 most dissimilar and most similar pairs 
with only the constraint that no object appeared in multiple 
pairs (Figs. 1 and 2). Creating the maximally similar pairs 
revealed that one image was duplicated in the Brady et al. 
(2008) set, and so we replaced this image. We used the top 
max-pooling layer as we were most interested in the features 
that are used for categorization/classification, as opposed 
to the lower layers that are more similar to earlier visual 
regions (e.g., Eickenberg et al., 2017; Yamins et al., 2014).

Note that despite being a model that works on image fea-
tures, such networks are trained to do categorization, and so 
even though we use the network for feature extraction rather 
than categorization, the top layers of such models contain 
category-specific information, designed to be read-out by the 
fully connected categorization layers that are omitted when 
doing feature extraction. Thus, such deep nets trained on 
categorization are sensitive to some extent to both visual and 
semantic features (e.g., Jozwik et al., 2017; Peterson et al., 
2018). Given that such deep convolutional neural networks 
are useful models of human recognition and the human 
visual system (e.g., Yamins et al., 2014), these pairs should 
be more dissimilar than randomly chosen pairs, although 
they may not be as dissimilar as pairs chosen specifically to 
avoid similarity by humans (as used in Brady et al., 2016). 
In particular, networks like VGG and ResNet have been criti-
cized for not precisely matching humans in pivotal ways, for 
example, relying more on texture than global shape (unlike 
humans; Geirhos et al., 2018), which may affect their ability 
to be a completely accurate model of object similarity. How-
ever, they nonetheless provide a useful benchmark. We have 
publicly shared the code to extract features for the objects at: 
https://​colab.​resea​rch.​google.​com/​drive/​1vKpx​ABn0J​9vi_​
vPleBb-​XqdrI​Qmhgc​4L.

Validation of pairs with another convolutional neural 
network

Our goal is not to fully assess convolutional neural nets 
as models of human behavior and neural processing (e.g., 
Storrs et al., 2021). We simply wish to use such convo-
lutional nets as a tool to choose dissimilar foils. So we 

https://colab.research.google.com/drive/1vKpxABn0J9vi_vPleBb-XqdrIQmhgc4L
https://colab.research.google.com/drive/1vKpxABn0J9vi_vPleBb-XqdrIQmhgc4L
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compared the similarity of VGG16-chosen-foils to only one 
other convolutional net – helping ensure the convolutional 
net similarities were not totally idiosyncratic to VGG16. 
In particular, we picked a distinct architecture, ResNet (He 
et al., 2016), and used ResNet-18 via the PyTorch imple-
mentation (Paszke et al., 2017), again focusing on the final 
max pooling layer. We assessed the similarity (again using 
cosine similarity) of all the pairs chosen by VGG16 in this 
network (see Fig. 3). Both ResNet-18 and VGG-16 consist 
of multiple convolutional layers that learn features from the 
input images. These convolutional layers are stacked to cap-
ture increasingly abstract and hierarchical features, and it 
has been found that lower layers of such networks are most 
similar to early visual cortex, i.e.,V1, and higher layers of 
these networks are more similar to higher-level brain regions 
like V4 and IT (e.g., Eickenberg et al., 2017; Yamins et al., 
2014). However, these networks differ significantly in archi-
tecture: VGG-16 follows a simple and uniform architecture 
where each convolutional block consists of convolutional 

layers followed by max-pooling. In contrast, ResNet-18 uses 
a residual architecture with residual blocks. Residual blocks 
contain shortcut connections (skip connections) that allow 
the network to skip one or more layers, making it easier 
to train deep networks. We used versions of each network 
trained on ImageNet.

Validation of pairs with human similarity data

Participants  All experiments were approved by the Insti-
tutional Review Board at UC San Diego. Fifty US-based 
participants (33 male, 16 female, one other/chose not to say) 
from Amazon’s Mechanical Turk were recruited to perform a 
similarity task (all with ≥ 95% previously accepted submis-
sions in their previous tasks performed on MTurk [“HITs”]).

Stimuli and procedure  Participants completed 120 trials 
overall, 40 from each of the three conditions (maximally 
distinct cross-category object-foils; random cross-category 

Fig. 1   Designing maximally distinct foils using a deep convolutional 
neural network to measure similarity. From each image, we extracted 
features from VGG16, a network trained to do object classification 
on ImageNet. The features for each object are visualized in the black/
white plots, which show white for more activity for a given feature 
and black for less. We used these features to select, for each image, 
the most dissimilar foil. Here, we visualize the most similar and most 

dissimilar items for one particular target image. Deep neural networks 
are trained on categorization, and thus are sensitive to both visual and 
semantic features. For example, note that the most similar items to 
the example target image are largely animals, with similar shape and 
texture; whereas the least similar items are inanimate, with different 
shapes and textures
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object-foils; maximally similar cross-category object foils). 
The 40 pairs in each condition for a given participant were 
chosen randomly from the available set of 120 pairs per con-
dition. On each trial, participants were shown an object and 
asked “How similar are these objects?” on a scale from 1 
(not similar) to 7 (maximally similar). We told participants 
we were interested in their intuitive visual judgments, and 
not the similarity of the words you might use to describe 
the objects, but otherwise left the task open-ended. Trials 
were not speeded and participants responded with the key-
board buttons 1–7. When participants responded, the pair of 
objects disappeared, followed by a 500-ms delay and then 
the next pair of objects. Pairs from all conditions were inter-
leaved randomly.

Results

VGG16, naturally, predicts extremely low similarity for 
maximally dissimilar pairs, and quite high for maximally 
similar, as this is the network that was used to select the 
pairs and so these similarities are not independent of the 
condition they are in. Note, however, that in the maximally 
similar condition, similarities are nowhere near 1, as all of 
the images available in the Brady et al. (2008) dataset are 
distinct and cross-category.

The similarity of the two deep convolutional neural net-
works was extremely strongly related. Their measured sim-
ilarities as a function of stimulus kind (VGG16-generated 
pairs and randomly paired objects) are plotted in Fig. 3. 

Fig. 2   Representative pairs of objects that were derived from the con-
volutional neural net and that served as the study item and foil items 
in the memory experiments (i.e., one item from each pair would be 
studied and the other would serve as the foil at test for that item). The 
“maximally similar” and “maximally distinct” pairs chosen by the 

convolutional neural network features appear to be more similar, or 
more divergent, both semantically and visually than randomly chosen 
pairs despite all the pairs being “cross category.” Also noteworthy is 
that despite being cross-category, there exist pairs in the dataset that 
are incredibly similar, both conceptually and visually
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ResNet-18 predicts nearly the same pattern as VGG16, 
despite not being used to select the stimuli, although there 
is an overall shift where all stimuli pairs are more similar 
in ResNet-18 than in VGG16. Across all 360 pairs, simi-
larity derived from VGG16 and ResNet-18 had a correla-
tion of r = 0.93 (p < 0.0001), suggesting both tap extremely 
similar features of real-world objects for the purpose of 
constructing such pairs.

Human Likert ratings agree that in aggregate, the maxi-
mally similar pairs chosen by VGG16 are more similar 
than randomly paired stimuli (t(49) = 10.87, p < 0.001, 
dz = 1.54); and maximally dissimilar pairs are less similar 
than randomly paired stimuli (t(49) = −4.90, p < 0.001). 
Note that this later effect was small in absolute terms but 
highly reliable (dz = 0.69), in part because many partici-
pants gave all object pairs that were clearly of a different 
category the lowest similarity level.

How well do the networks capture human similarity? 
Even though human similarity ratings for objects gener-
ally depend on many semantic and visual features (e.g., 
Hebart et al., 2020), both captured effectively all of the 
explainable variance in human similarity ratings for this 
set of 360 pairs. We took 1,000 random split half correla-
tions from the human similarity data and corrected them 
using the Spearman-Brown formula to get an estimate of 
the reliability of the human ratings for each of the 360 
pairs. This gives a noise ceiling (e.g., a maximum expected 
correlation given the measurement noise of the human 
data per pair) of approximately r = 0.71. The similarity 
ratings derived from ResNet18 correlate with the human 
data with r = 0.76 (p < 0.0001) and the similarity ratings 
derived from VGG16 correlate with the human data with 

r = 0.75 (p < 0.00001) – at the noise ceiling of the human 
similarity measure.

Overall then, stimulus selection and validation reveals 
that both VGG16 and ResNet-18 provide extremely good 
predictive power for choosing both minimally and maxi-
mally similar pairs for object images; and that, as expected, 
randomly chosen pairs from the Brady et al. (2008) stimulus 
set are not maximally dissimilar, making them not a valid 
measure of memory performance for comparing across 
stimulus sets (e.g., for comparing with maximally dissimi-
lar color foils).

Experiment 2: Object foil similarity 
determines performance even within a set 
of cross‑category objects

Experiment 1 reveals that within the stimulus set used by 
much prior work on visual working memory and visual long-
term memory (Brady et al., 2008), randomly chosen pairs 
of objects, despite being putatively cross-category, are not 
maximally dissimilar. Does this have implications for mem-
ory performance? Or does any foil that is reasonably distinct 
from the target object give the same memory performance?

To assess this, in Experiment 2 we asked what the role 
of such similarity differences is for visual memory perfor-
mance. In particular, we had participants remember real-
world objects in visual working memory, and then at test, 
had them do a 2-AFC memory test. The study-test pairs in 
the 2-AFC were drawn from either the maximally similar, 
randomly paired, or maximally dissimilar stimulus pairs 
developed in Experiment 1 (see Fig. 2).  If randomly chosen 

Fig. 3   Similarity of each set of pairs, from both two different deep 
convolutional neural networks and from human similarity ratings. 
The similarity measures indicate that the VGG16 network effectively 
chose maximally similar and maximally dissimilar pairs, which dif-

fered from randomly chosen pairs in the predicted directions. Error 
bars are present on all graphs (by pair for the networks; by partici-
pant for the human similarity) but are generally smaller than the dots 
themselves
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foils are sufficiently dissimilar to provide a fair measure of 
the upper bound on memory performance there should be 
no difference between randomly chosen pairs and maximally 
dissimilar pairs in memory performance. By contrast, if 
memory performance is significantly impacted by similarity 
even for maximally dissimilar versus random pairs, then this 
would suggest that memory is underestimated for real-world 
objects when using randomly chosen foil pairs.

Methods

The study design, hypothesis, analysis plan, and exclusion 
criteria were preregistered at https://​aspre​dicted.​org/​blind.​
php?x=​c9nd9e. Materials, data, and analysis code are avail-
able at https://​osf.​io/​axyqs/

Participants  Fifty US-based participants (34 male, 16 
female, 0 other/chose not to say) from Amazon’s Mechanical 
Turk were included in the final data set (all with ≥ 95% pre-
viously accepted HITs). Eleven additional participants were 
excluded and replaced based on our preregistered exclusion 
criteria. We chose to pre-register a sample size of 50 partici-
pants because we expected a moderate effect of foil similar-
ity and a sample size of N = 50 gives > 90% power to detect 
a standardized effect size of a Cohen’s d of 0.5 in a t-test, 
which we took to be a reasonable expectation of a moderate 
effect we could expect for high versus low foil similarity.

Stimuli and procedure  We used the Brady et al. (2008) 
object image database, as described above. In particular, in 
the random-pairs condition, we chose each pair of objects 
randomly from the full set of 2,400 objects without regard 
to similarity. For the maximally similar and dissimilar cross-
category foils, we used the sets generated as described in 
Experiment 1: all the images were from the set of 2,400 
cross-category objects, but chosen in such a way as to maxi-
mize or minimize similarity (Figs. 1 and 2).

Participants completed 180 trials overall, 60 in each of 
the three conditions (maximally distinct cross-category 
object foils; random cross-category object foils; maximally 
similar cross-category object foils). On each trial, partici-
pants were asked to remember six objects that were shown 
for 2,000 ms. We kept the placeholders that contained the 
objects continuously visible. They were also widely spaced. 
In previous work, this has resulted in almost no binding 
errors or swap errors (e.g., Brady & Alvarez, 2015; Schurgin 
et al., 2020), thus allowing a direct measure of capacity from 
a forced-choice task. Thus, the long encoding time, com-
bined with fixed spatial positions with placeholders present 
during the delay, helped ensure there was little to no loca-
tion noise that can cause misbinding. After a delay period of 
700 ms, one of the items was probed in a 2-AFC format. One 

location was cued and two stimuli – one that was previously 
seen on the memory display and one foil – were shown in the 
center of the screen and participants had to indicate which of 
these two items (left vs. right) was part of the initial memory 
display (Fig. 4). All trial types were randomly interleaved.

Verbal overshadowing was performed while encoding the 
objects. In other studies we have shown that in-lab verbal 
interference (that is monitored continuously by an experi-
menter) and mental rehearsal of a single word during online 
studies results in similar visual working memory perfor-
mance (Brady & Störmer, 2022). Thus, participants were 
instructed to mentally rehearse the word “the” for the entire 
duration of the encoding period. They were reminded of 
this on every trial, as well as the need to use purely visual 
memory and not use words to remember the stimuli.

Analysis  Working memory performance was quantified 
using d′ for a 2-AFC task, [zH − zFA]/√2; where P is per-
cent correct and Φ is the Gaussian cumulative distribution, 
zH = Φ(P) and zFA = Φ(1-P). Per the preregistration, data 
were excluded if d’ averaged across all conditions was below 

Fig. 4   Method of Experiment 2. Participants saw six objects, and 
remembered them over a short delay. They were then presented a 
two-alternative forced-choice (2-AFC) probe and needed to choose 
which item was presented at the cued location. The foil items in the 
2-AFC memory test could be either maximally distinct cross-cate-
gory foils, minimally distinct cross-category foils, or randomly cho-
sen from a different category. Placeholders were visible throughout 
each trial

https://aspredicted.org/blind.php?x=c9nd9e
https://aspredicted.org/blind.php?x=c9nd9e
https://osf.io/axyqs/
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0, or if greater than 10% of individual trials were excluded. 
Individual trials were excluded if: (1) A response occurred 
less than 150 ms after the response screen appeared; (2) the 
response occurred more than 5 s after the response screen 
appeared.

Results

Participants overall showed higher memory performance for 
more distinct foils, even though all foils were cross-category 
foils (Fig. 5). An analysis of variance (ANOVA) with foil 
type (maximally similar, random, maximally distinct) as 
factors confirmed there was a main effect (F(1,49) = 22.18, 
p < 0.0001). Planned follow-up pairwise comparisons 
showed that maximally similar cross-category object pairs 
resulted in lower performance than random cross-category 
pairs (t(49) = 4.79, p < 0.001, dz = 0.68) and random cross-
category pairs resulted in lower performance than maximally 
dissimilar cross-category pairs (t(49) = 2.26, p = 0.028, 
dz = 0.32).

Note that the difference in human similarity ratings for 
maximally dissimilar objects and randomly chosen objects, 
was rather small (see Fig. 3), though reliable; we noted this 
is in part because many participants gave all object pairs 
that were clearly of a different category the lowest similarity 
level. The memory data from this experiment – where the 
gain was considerable for maximally dissimilar foils relative 
to randomly chosen foils – suggests that this overall small 
difference in similarity rating likely obscures differences in 
their conceptual and perceptual relatedness that do, indeed, 
matter quite a bit for memory performance. This is perhaps 

what has driven some past researchers (including Brady 
et al., 2008, who created this stimulus set) to treat cross-cate-
gory foils as “dissimilar enough” to judge memory capacity. 
Yet the current Experiment suggests that these differences 
matter substantially for memory performance. Thus, differ-
ent levels of what – for human judgments – seem to be effec-
tively floor levels of similarity may matter in important ways 
for human memory performance, making the convolutional 
neural network approach to stimulus generation particularly 
well-suited for this stimulus-choosing task.

Experiment 3: Objects are better 
remembered than colors with matched foil 
similarities

We have shown that within the cross-category stimulus set of 
Brady et al. (2008) used in many previous working memory 
studies, there is room for significant variation in foil dif-
ficulty. Does this variation – and the use of random cross-
category foils in some previous working memory studies 
rather than maximally dissimilar foils – affect why some 
studies did not find a benefit for real objects compared to 
colors in working memory? In Experiment 3, we examine 
that question directly by varying foil similarity not only for 
real-world objects but also colors, and compare memory 
performance across these different sets of stimuli and foil 
conditions. Specifically, we compare memory performance 
for randomly chosen foils and maximally dissimilar foils for 
both objects and colors in a working memory task.

Method

The study design, hypothesis, analysis plan, and exclusion 
criteria were preregistered at https://​aspre​dicted.​org/​blind.​
php?x=​s8bd3w. Materials, data, and analysis code are avail-
able at https://​osf.​io/​axyqs/

Participants  Fifty US-based participants (30 male, 19 
female, one other/chose not to say) from Amazon’s Mechani-
cal Turk were included in the final data set (all with ≥ 95% 
previously accepted HITs). Nine additional participants were 
excluded and replaced based on our preregistered exclusion 
criteria. We chose to pre-register a sample size of 50 partici-
pants because we expected a moderate effect of foil similar-
ity, and a sample size of N = 50 gives > 90% power to detect 
a standardized effect size of a Cohen’s d of 0.5 in a t-test, 
which we took to be a reasonable expectation of a moderate 
effect we could expect for high versus low foil similarity.

Stimuli and procedure  We contrasted randomly chosen foils 
and maximally dissimilar foils for both objects and colors 
in a standard long encoding time working memory task 

Fig. 5   Results of Experiment 2. We find that randomly chosen pairs 
are not in fact maximally dissimilar for the purposes of memory: par-
ticipants perform better when the foils are maximally distinct than 
when they are randomly selected. They perform worst when foils 
are maximally similar within this across-category stimulus set. This 
means only using maximally dissimilar foils is a   non-arbitrary way 
of measuring memory performance, providing the upper bound of 
memory strength

https://aspredicted.org/blind.php?x=s8bd3w
https://aspredicted.org/blind.php?x=s8bd3w
https://osf.io/axyqs/
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modeled after Brady et al. (2016). For objects, we used the 
maximally dissimilar foils derived by VGG16 as described 
in Experiments 1 and 2, and for randomly chosen foils 
we chose each pair of objects randomly from the full set 
of 2,400 objects without regard to similarity, as described 
above and as done in recent papers (e.g., Li et al., 2020; 
Quirk et al., 2020). As in Experiment 2, one item from each 
pair was shown in a memory display, and the other served as 
the foil during the 2-AFC memory test. Which item served 
as the memory item versus foil in each pair was randomized 
across participants.

For colors, we used a standard color circle (Schurgin 
et al., 2020; Suchow et al., 2013) of radius 49 in the CIE 
L*a*b space (centered at L = 54, a = 21.5, b = 11.5). We 
created two analogous conditions to the object conditions: 
the maximally distinct color pairs condition, with foils 180° 
away from the target color (as is traditionally done); and a 
“random” foil condition, where the foil color could be any 
color that was > 30° from the target; thus, random foil colors 
were ranging from 30 to 180° away from the target, ran-
domly chosen on each trial. We choose this limit to mimic 
the distinct object categories in the object set, as this limits 
foils to be different color categories (by carving out a wedge 
of 60° of the color wheel around the target). To minimize 
ensemble-based encoding (e.g., Brady & Alvarez, 2015), we 

chose all of the memory colors and the foil color subject to 
the constraint that no two colors could be less than 15° apart 
on the color wheel.

Participants completed 160 trials overall, 40 in each 
of the four conditions (maximally distinct object-foils; 
random object-foils; maximally distinct color foils; ran-
dom color foils). On each trial, participants were asked to 
remember six stimuli – either colors or objects – that were 
shown for 2,000 ms. Just like in Experiment 2, placeholder 
remained visible during the delay. The long encoding time, 
combined with fixed spatial positions with placeholders 
present during the delay, helped ensure there was little to 
no location noise that can cause misbinding. After a delay 
period of 700 ms, one of the items was probed in a 2-AFC 
format. In particular, one location was cued and two stim-
uli – one that was previously seen on the memory display 
and one the pre-chosen foil – were shown in the center of 
the screen and participants had to indicate which of these 
two items (left vs. right) was part of the initial memory 
display (Fig. 6). All trial types were blocked.

Verbal overshadowing was again performed while 
encoding the objects, as participants were instructed to 
mentally rehearse the word “the” for the entire duration of 
the encoding period. They were reminded of this on every 

Fig. 6   Method of Experiment 3. Participants saw six items, either 
objects or colors, and remembered them over a short delay. They 
were then presented a two-alternative forced-choice (2-AFC) probe 
and needed to choose which item was presented at the cued location. 

The foil items in the 2-AFC memory test could be either maximally 
distinct or randomly chosen from a different category. Placeholders 
were present throughout each trial
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trial, as well as the need to use purely visual memory and 
not use words to remember the stimuli.

Analysis  Just like in Experiment 2, working memory 
performance was quantified using d′ for a 2-AFC task, 
[zH − zFA]/√2. Where P is percent correct and Φ is the 
Gaussian cumulative distribution, zH = Φ(P) and zFA = Φ(1-
P). Per the preregistration, data were excluded if d’ averaged 
across all conditions was below 0.5, or if greater than 10% 
of individual trials were excluded. Individual trials were 
excluded if: (1) A response occurred less than 150 ms after 
the response screen appeared; (2) the response occurred 
more than 5 s after the response screen appeared.

Results

Participants overall showed higher memory perfor-
mance for real-world objects relative to colors, as well 
as higher memory performance for maximally dissimi-
lar foils relative to randomly picked foils for both colors 
and objects (Fig. 7). An analysis of variance (ANOVA) 
with stimulus type (objects, colors) and foil type (dis-
tinct, random) as factors confirmed there were two main 
effects (objects > colors; F(1,49) = 15.05, p = 0.0003; 
distinct > random; F(1,49) = 14.932, p = 0.0003), and no 
interaction (F(1,49) = 1.56, p = 0.22). Planned follow-up 

pairwise comparisons showed that foil type affected 
performance for both objects (t(49) = 4.02, p < 0.001, 
dz = 0.57) and to some extent for colors (t(49) = 1.84, 
p = 0.071, dz = 0.26).

Overall, these results replicate the object-advantage 
previously reported by Brady et  al. (2016) and repli-
cated by Brady and Störmer (2022), and demonstrate 
the importance of choosing comparable test foils across 
stimulus sets when assessing memory performance. When 
comparing conditions in which color foils are chosen to 
be maximally distinct from the target color, but objects 
are tested against object foils chosen at random, we find 
no reliable performance difference between colors and 
objects (t(49) = 1.06, p = 0.296, dz = 0.15). Thus, the com-
parison used in some previous work (e.g., Li et al., 2020; 
Quirk et al., 2020) – between randomly chosen objects 
and maximally distinct colors – may not be interpretable 
as a comparison of memory performance between colors 
and real-world objects.

General discussion

The present results demonstrate the importance of assessing 
memory capacity in a fair and consistent way across stimu-
lus sets, and point to the significance of choosing appropri-
ate foils in memory tasks more broadly. Previous work has 
quantified how foil similarity at test drives memory per-
formance arbitrarily lower for simple feature spaces, like 
color, when more similar foils are chosen (e.g., Keshvari 
et al., 2013). Here we show the same is true for complex 
and realistic stimuli, such as pictures of real-world objects, 
and offer a solution for how to quantify similarity in real-
world object spaces using CNNs. Indeed, while the similar-
ity structure of the CNN matches human similarity ratings 
closely, if anything it appeared to show more sensitivity to 
similarity between otherwise quite dissimilar objects in a 
way that is important for memory performance, indicating 
that CNNs provide a particularly useful similarity measure 
in these circumstances.

We used this understanding of foil similarity to focus 
on a single case study, that when stimulus pairs are not 
matched in foil similarity across stimulus sets this can 
result in difficulty comparing across stimulus sets. Spe-
cifically, we find that when choosing foils in a way that is 
maximally dissimilar for colors but just cross-category for 
objects, the behavioral results of recent studies (Li et al., 
2020; Quirk et al., 2020) that showed no visual work-
ing memory advantage for objects can be seen. However, 
when choosing foils in a way that is maximally dissimilar 
for both, objects are consistently better remembered than 
colors.

Fig. 7   Results of Experiment 3. We find that while cross-category 
changes (i.e., randomly selected foils) are indeed large changes – 
and thus result in well-above chance memory performance for both 
colors and objects – performance is best for both colors and real-
world objects when foils are maximally distinct. Thus, to compare 
memory performance across stimulus sets in a fair way, the foils 
need to be chosen the same way. These data show that once test foils 
are matched in terms of their similarity to the target, there is a clear 
object benefit in working memory performance. Only when making 
the unfair comparison of cross-category object changes (chosen at 
random, left) vs. maximally dissimilar color changes (right) is there 
no benefit for objects. This means that for both objects and colors, 
only by using maximally dissimilar foils can we measure and com-
pare memory performance in a non-arbitrary way
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The necessity for using maximally dissimilar foils from 
a stimulus set to assess capacity has been repeatedly over-
looked for real-world objects (e.g., by Brady et al., 2008). 
In the current work, we used a novel method to maximize 
foil dissimilarity, using deep convolutional neural networks. 
By contrast, in previous work, attempts to maximize dis-
similarity among object pairs was done intuitively, solely 
by removing clearly similar target/foil pairs by hand (e.g., 
Brady et al., 2016). The current method provides a much 
more systematic alternative that is much more transparent 
and thus also highly replicable.

Even large, cross‑category changes are not maximal

Our results reveal that even relatively large differences on 
the color wheel (e.g., categorically distinct colors, as used 
in Luck & Vogel, 1997, and many follow-up papers), and 
large cross-category object changes (e.g., as used in Brady 
et al., 2008), do not result in the highest possible perfor-
mance level. In the case of objects, this suggests that Brady 
et al. (2008), for example, underestimate the “upper bound” 
of visual long-term memory performance. In the case of 
color, there are potentially broad implications as well. We 
here show that performance is better with maximally distinct 
color foils than with random cross-category colors, consist-
ent with other recent data on this issue (e.g., Keshvari et al., 
2013; Schurgin et al., 2020), which show that even foils > 70° 
from the target on the color wheel do not give rise to maxi-
mal performance (compared to foils 180° away). As noted by 
Keshvari et al. (2013), the continuous nature of this decre-
ment in performance with foil distance is difficult to account 
for in item-limit models, but is consistent with models that 
propose continuous variation in precision (Keshvari et al., 
2013), a continuous spreading of familiarity in the given 
feature space (Schurgin et al., 2020), or population-coding 
models that rely on shared neural representations to impose 
capacity constraints (Bays, 2015).

Convolutional neural networks as models 
of memory confusability

While only maximally dissimilar foils measure overall 
memory capacity non-arbitrarily for a given stimulus set, 
maximizing dissimilarity for objects is not straightforward. 
Here, we offer a novel, objective solution to how similarity 
of real-world objects can be taken into account. In particu-
lar, we use a deep convolutional neural network trained to 
categorize visual objects to maximize dissimilarity. In recent 
years, CNNs have achieved impressively human-like object 
categorization performance, and these models have been 
argued to resemble the human visual system, with early and 
late layers of these networks tracking the human early and 
later processing pathways in the visual system, respectively 

(Cichy et al., 2016; Eickenberg et al., 2017; Güçlu ̈ & van 
Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014). 
Because such networks are trained to do categorization, 
they are sensitive to both visual and semantic features (e.g., 
Jozwik et al., 2017; Peterson et al., 2018).

Here, we used CNNs as a measure of object similar-
ity, and showed that the CNN similarity ratings match the 
pattern of similarity ratings by humans (Exp. 1), and the 
CNN-chosen foils significantly affected memory perfor-
mance (Exps. 2 and 3), showing that they provide a useful 
metric for judging memory confusability. If anything, the 
small divergences of the human similarity and CNN seemed 
to favor the CNN: While maximally dissimilar objects and 
randomly chosen objects were judged only as slightly dif-
ferent in similarity by human observers – both being largely 
at floor – the CNNs predicted relatively larger similarity 
differences between these sets of stimuli. Interestingly, in 
Experiments 2 and 3 we find that memory performance dif-
fers quite a bit between these stimuli – i.e., we find a large 
increase in memory performance for maximally dissimilar 
objects relative to randomly chosen objects. At least quali-
tatively, this suggests memory performance more closely 
tracked the pattern of CNN similarity, although we cannot 
quantitatively dissociate them here as human similarity and 
CNN similarity were very strongly related.

Overall, we believe CNNs show significant promise for 
being integrated into the study of memory for real-world 
objects (see also Needell & Bainbridge, 2022). Future 
research can examine the extent to which different CNN lay-
ers predict memory confusability (e.g., as a window in visual 
vs. semantic confusability), and how such metrics relate to 
different measures of human similarity.

Other differences that may be relevant for colors 
versus objects comparisons

In the current paper we demonstrate the importance of foil 
similarity when comparing memory performance across dif-
ferent stimulus sets, focusing in on the comparison of color 
versus objects in working memory. However, we note that 
foil similarity is far from the only factor important to con-
sider when studying memory for real-world objects relative 
to colors.

In fact, while maximally dissimilar foils are a prerequisite 
to studying this issue, there are likely several other factors 
– for example, the way items are initially encoded – that play 
a critical role in eliciting benefits for real-world objects rela-
tive to colors (Brady & Störmer, 2022). Specifically, when 
participants are encouraged to attend each item individually 
using focused attention – processing each object in a deep 
way – memory performance for real-world objects increases, 
while color memory is impaired. By contrast, simple fea-
ture displays made out of only colors appear to benefit from 
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fast and parallel encoding – presumably because of the use 
of non-item-based strategies such as ensemble processing 
or grouping (Brady & Alvarez, 2015) – while real-world 
object memory is impaired in such circumstances (Brady 
& Störmer, 2022). Related to this, dissimilarity of the items 
at encoding is also an important factor, which can influence 
how multiple items on the initial display are encoded and 
remembered. For color memory, for example, it has been 
shown that similarity can lead to either repulsive or attrac-
tive biases in the memorized items, and that the strength of 
these biases vary with different encoding times (Chunharas 
& Brady, 2023; Chunharas et al., 2022). Encoding time also 
plays a role in eliciting the object benefit we observed in 
Experiment 3 and our previous work (Brady et al., 2016; 
Asp et al., 2021), as longer encoding time allows deeper pro-
cessed of the items. However, in other work we have shown 
that while experiments using long encoding time result in 
a benefit of objects relative to colors, this is far from the 
most effective manipulation in promoting a deeper, item-
based encoding strategy, and a more effective manipulation 
is to actually show objects sequentially at encoding (one 
at a time; Brady & Störmer, 2022). Overall, then, the evi-
dence suggests that in addition to using proper foils, how the 
memory display is encoded initially is an important aspect 
of measuring memory capacity, and different strategies at 
encoding might lead to fundamentally different conclusions 
(see also, Chung et al., 2023a).

The role of meaning in visual working memory

When target/foil similarity was matched, we found a robust 
and clear object benefit, replicating other work showing 
higher memory capacity for objects than colors (e.g., Brady 
& Störmer, 2022; Thibeault et al., 2023; Torres et al., 2023). 
While comparing different stimulus sets in this way (e.g., 
color vs. objects) can provide insights into questions like the 
role of meaning or stimulus complexity in visual working 
memory, or the role of object complexity in memory perfor-
mance, such comparisons are also difficult to interpret directly 
for conceptual reasons, in addition to the methodological 
issues that must be taken into account (like foil choice).

For example, although we find objects are better remem-
bered than colored circles, colored circles and real-world 
objects differ in many ways: objects are visually more com-
plex; they are familiar; and they connect to categorical and 
semantic knowledge. For example, the increased visual com-
plexity of real-world objects compared to colors means that 
objects, but not colors, differ on a number of dimensions, 
such as color, shape, luminance, and orientation. Thus, the 
space of possible objects is far larger than that of simple 
features – which only differ in a singular dimension (e.g., 
color).

The current work does not seek to explain why objects 
are better remembered than colors. However, we believe the 
weight of the evidence suggests that it is the meaningful-
ness of objects that is critical, rather than these other factors 
(e.g., complexity). For example, previous studies have found 
that increased visual complexity – despite more complex 
objects having more dimensions they can differ on – actually 
result in lower working memory performance than simple 
features (e.g., Alvarez & Cavanagh, 2004), suggesting that 
visual complexity alone is not the underlying factor behind 
enhanced working memory for real-world objects.

The hypothesis that meaningfulness is critical is sup-
ported by other work that has focused on stimuli that are 
nearly perfectly matched except in the critical dimension of 
interest. Indeed, many studies have used such methods to 
show significant benefits to visual working memory from 
familiarity and meaning (e.g., Alvarez & Cavanagh, 2004; 
Asp et al., 2021; Brady et al., 2009; Curby et al., 2009; Jack-
son & Raymond, 2008; Ngiam et al., 2019; O’Donnell et al., 
2018; Sahar et al., 2020; Starr et al., 2020). For example, 
Asp et al. (2021) showed a benefit of meaning on visual 
working memory by using ambiguous stimuli that could 
either be recognized as meaningful (i.e., a face) or not, thus 
matching visual input while varying the meaningfulness of 
the stimuli, and found enhanced working memory perfor-
mance and increased neural delay activity for nearly visu-
ally identical recognizable versus non-recognizable stimuli. 
Results like these point to a clear role of meaningfulness in 
working memory and suggest that connections to knowl-
edge, and not visual features – or the number of visual fea-
tures – per se, improve working memory capacity. Other 
recent work has demonstrated that memory performance is 
improved for simple visual features, such as color, if these 
features are part of real-world objects compared to unrecog-
nizable scrambled shapes (Chung et al., 2023a, b), suggest-
ing an even broader role of meaningfulness in structuring 
visual working memory.

Thus, overall, we propose that the benefits for real-world 
objects relative to colors observed here is in large part due 
to real-world objects being conceptually meaningful, and 
meaningful stimuli recruiting additional working memory 
resources.

Conclusion

The capacity of visual working and visual long-term mem-
ory plays a critical role in theories of cognitive architecture 
and the relationship between memory and other cognitive 
systems. Here, we have shown that previous work in both 
visual long-term memory and visual working memory in 
particular has neglected to carefully consider one of the most 
important factors determining performance in a memory 
task, target/foil dissimilarity. Across three experiments, we 
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showed that only by maximizing the dissimilarity of the tar-
get and foil in each stimulus set can we provide a fair basis 
for memory comparisons between stimuli, and we intro-
duced a new way to pick such foils objectively for complex, 
meaningful real-world objects by using deep convolutional 
neural networks. This work thus demonstrates not only that 
working memory capacity is not fixed capacity but depends 
critically on the type of information that is remembered, and 
also offers a solution of how to compare memory perfor-
mance and other cognitive systems across different stimulus 
sets on common ground.
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