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Traditional memory research has focused on identifying separate memory systems and exploring different stages of
memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing
their function but has been less informative about the nature of stored memory representations. Recent research on visual
memory has shifted toward a representation-based emphasis, focusing on the contents of memory and attempting to
determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully
understand memory systems or memory processes without also determining the nature of memory representations.
Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will
review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that
emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the systemVgoing
beyond quantifying how many items can be remembered and moving toward structured representationsVbut how we
model memory systems and memory processes.

Keywords: memory, working memory, long-term memory, visual cognition, memory capacity, memory fidelity

Citation: Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and
toward structured representations. Journal of Vision, 11(5):4, 1–34, http://www.journalofvision.org/content/11/5/4,
doi:10.1167/11.5.4.

Introduction

Tulving (2000) provided a concise, general definition
of memory as the “neurocognitive capacity to encode,
store, and retrieve information” and suggested the possi-
bility that there are many separate memory systems that
fit this definition. Indeed, one of the primary aims of
modern memory research has been to identify these
different memory systems (Schacter & Tulving, 1994).
This approach has led to an extensive taxonomy of
memory systems that are characterized by differences in
timing, storage capacity, conscious access, active main-
tenance, and mechanisms of operation.
Early on, William James (1890) proposed the distinction

between primary memoryVthe information held in the
“conscious present”Vand secondary memory, which
consists of information that is acquired, stored outside of
conscious awareness, and then later remembered. This
distinction maps directly onto the modern distinction
between short-term memory (henceforth working memory)
and long-term memory (Atkinson & Shiffrin, 1968; Scoville
& Milner, 1957; Waugh & Norman, 1965). The most
salient difference between these systems is their capacity:

the active, working memory system has an extremely
limited capacity of only a few items (Cowan, 2001, 2005;
Miller, 1956), whereas the passive, long-term memory
system can store thousands of items (Brady, Konkle,
Alvarez, & Oliva, 2008; Standing, 1973; Voss, 2009) with
remarkable fidelity (Brady et al., 2008; Konkle, Brady,
Alvarez, & Oliva, 2010a).
The emphasis on memory systems and memory pro-

cesses has been quite valuable in shaping cognitive and
neural models of memory. In general, this approach aims
to characterize memory systems in a way that generalizes
over representational content (Schacter & Tulving, 1994).
For example, working memory is characterized by a
severely limited capacity regardless of whether items are
remembered visually or verbally (e.g., Baddeley, 1986),
and long-term memory has a very high capacity whether
the items remembered are pictures (e.g., Standing, 1973),
words (e.g., Shepard, 1967), or associations (e.g., Voss,
2009). However, generalization across content leaves
many basic questions unanswered regarding the nature of
stored representations: What is the structure and format of
those representations?
Research on visual perception takes the opposite

approach, attempting to determine what is being represented
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and to generalize across processes. For example, early stages
of visual representation consist of orientation and spatial
frequency features. Vision research has measured the
properties of these features, such as their tuning curves and
sensitivity (e.g., Blakemore & Campbell, 1969), and shown
that these tuning properties are constant across several
domains of processing (e.g., from simple detection to visual
search).
Thus, the intersection between memory and vision is a

particularly interesting domain of research because it
concerns both the processes of memory and the nature of
the stored representations (Luck & Hollingworth, 2008).
Recent research within the vision science community at
this intersection between memory and vision has been
quite fruitful. For example, working memory research
has shown an important item/resolution trade-off: as the
number of items remembered increases, the precision
with which each one is remembered decreases, possibly
with an upper bound on the number of items that may be
stored (Alvarez & Cavanagh, 2004; Zhang & Luck, 2008)
or possibly without an upper bound (Bays, Catalao, &
Husain, 2009; Wilken & Ma, 2004). In long-term
memory, it is possible to store thousands of detailed
object representations (Brady et al., 2008; Konkle, Brady,
Alvarez, & Oliva, 2010b) but only for meaningful items
that connect with stored knowledge (Konkle et al., 2010b;
Wiseman & Neisser, 1974).
Here, we review recent research in the domains of visual

working memory and visual long-term memory, focusing
on how models of these memory systems are altered and
refined by taking the contents of memory into account.

Visual working memory

The working memory system is used to hold informa-
tion actively in mind and to manipulate that information to
perform a cognitive task (Baddeley, 1986, 2000). While
there is a long history of research on verbal working
memory and working memory for spatial locations (e.g.,
Baddeley, 1986), the last 15 years has seen surge in
research on visual working memory, specifically for visual
feature information (Luck & Vogel, 1997).
The study of visual working memory has largely focused

on the capacity of the system, both because limited
capacity is one of the main hallmarks of working memory
and because individual differences in measures of working
memory capacity are correlated with differences in fluid
intelligence, reading comprehension, and academic
achievement (Alloway & Alloway, 2010; Daneman &
Carpenter, 1980; Fukuda, Vogel, Mayr, & Awh, 2010;
Kane, Bleckly, Conway, & Engle, 2001). This relationship
suggests that working memory may be a core cognitive
ability that underlies, and constrains, our ability to process
information across cognitive domains. Thus, understanding

the capacity of working memory could provide important
insight into cognitive function more generally.
In the broader working memory literature, a significant

amount of research has focused on characterizing memory
limits based on how quickly information can be refreshed
(e.g., Baddeley, 1986) or the rate at which information
decays (Baddeley & Scott, 1971; Broadbent, 1958). In
contrast, research on the capacity of visual working
memory has focused on the number of items that can be
remembered (Cowan, 2001; Luck & Vogel, 1997). How-
ever, several recent advances in models of visual working
memory have been driven by a focus on the content of
working memory representations rather than how many
individual items can be stored.
Here, we review research that focuses on working

memory representations, including their fidelity, structure,
and effects of stored knowledge. While not an exhaustive
review of the literature, these examples highlight the fact
that working memory representations have a great deal of
structure beyond the level of individual items. This
structure can be characterized as a hierarchy of properties,
from individual features to individual objects to across-
object ensemble features (spatial context and featural
context). Together, the work reviewed here illustrates how
a representation-based approach has led to important
advances, not just in understanding the nature of stored
representations themselves but also in characterizing
working memory capacity and shaping models of visual
working memory.

The fidelity of visual working memory

Recent progress in modeling visual working memory
has resulted from an emphasis on estimating the fidelity of
visual working memory representations. In general, the
capacity of any memory system should be characterized
both in terms of the number of items that can be stored
and in terms of the fidelity with which each individual
item can be stored. Consider the case of a USB drive that
can store exactly 1000 images: the number of images
alone is not a complete estimate of this USB drive’s
storage capacity. It is also important to consider the
resolution with which those images can be stored: if each
image can be stored with a very low resolution, say 16 �
16 pixels, then the drive has a lower capacity than if it can
store the same number of images with a high resolution,
say 1024 � 768 pixels. In general, the true capacity of a
memory system can be estimated by multiplying the
maximum number of items that can be stored by the fidelity
with which each individual item can be stored (capacity =
quantity � fidelity). For a memory system such as your
USB drive, there is only an information limit on memory
storage, so the number of files that can be stored is limited
only by the size of those files. Whether visual working
memory is best characterized as an information-limited
system (Alvarez & Cavanagh, 2004; Wilken & Ma, 2004)
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or whether it has a predetermined and fixed item limit
(Luck & Vogel, 1997; Zhang & Luck, 2008) is an active
topic of debate in the field.
Luck and Vogel’s (1997) landmark study on the capacity

of visual working memory spurred the surge in research
on visual working memory over the past 15 years. Luck
and Vogel used a change detection task to estimate
working memory capacity for features and conjunctions
of features (Figure 1a; see also Pashler, 1988; Phillips,
1974; Vogel, Woodman, & Luck, 2001). On each trial,
observers saw an array of colored squares and were asked
to remember them. The squares then disappeared for
about 1 s and then reappeared with either all of the items
exactly the same as before or with a single square having
changed color to a categorically different color (e.g.,
yellow to red). Observers were asked to say whether the
display was exactly the same or whether one of the
squares had changed (Figure 1a).
Luck and Vogel (1997) found that observers were able

to accurately detect changes most of the time when there
were fewer than 3 or 4 items on the display, but that
performance declined steadily as the number of items
increased beyond 4. Cowan (2001) and Luck and Vogel
have shown that this pattern of performance is well
explained by a model in which a fixed number of objects
(3–4) were remembered. Thus, these results are consistent

with a “slot model” of visual working memory capacity
(see also Cowan, 2005; Rouder et al., 2008) in which
working memory can store a fixed number of items.
Importantly, this standard change detection paradigm

provides little information about how well each individual
object was remembered. The change detection paradigm
indicates only that items were remembered with sufficient
fidelity to distinguish an object’s color from a catego-
rically different color. How much information do observ-
ers actually remember about each object?
Several new methods have been used to address this

question (see Figures 1b–1d). First, the change detection
task can be modified to vary the amount of information
that must be stored by varying the type of changes that
can occur. For example, changing from one shade of red to
a different, similar shade of red requires a high-resolution
representation, whereas a change from red to blue can be
detected with a low-resolution representation. Using such
changes that require high-resolution representations has
proved particularly fruitful for investigating memory
capacity for complex objects (Figures 1b and 1c). Second,
estimates of memory precision can be obtained by using a
continuous report procedure in which observers are cued
to report the features of an item and then adjust that item
to match the remembered properties. Using this method,
the fidelity of a simple feature dimension like color can be

Figure 1. Measures of visual working memory fidelity. (a) A change detection task. Observers see the “Study” display, and then after a blank,
they must indicate whether the “Test” display is identical to the Study display or whether a single item has changed color. (b) Change
detection with complex objects. In this display, the cube changes to another cube (within-category change), requiring high-resolution
representations to detect. (c) Change detection with complex objects. In this display, the cube changes to a Chinese character (across-
category change), requiring only low-resolution representations to detect. (d) A continuous color report task. Observers see the Study
display, and then at test, they are asked to report the exact color of a single item. This gives a continuous measure of the fidelity of memory.
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investigated by having observers report the exact color of
a single item (Figure 1d).

Fidelity of storage for complex objects

While early experiments using large changes in a change
detection paradigm found evidence for a slot model, in
which memory is limited to storing a fixed number of items,
subsequent experiments with newer paradigms that focused
on the precision of memory representations have suggested
an information-limited model. Specifically, Alvarez and
Cavanagh (2004) proposed that there is an information
limit on working memory, which would predict a trade-off
between the number of items stored and the fidelity with
which each item is stored. For example, suppose working
memory could store 8 bits of information. It would be
possible to store a lot of information about 1 object (8 bits/
object = 8 bits) or a small amount of information about
4 objects (2 bits/object = 8 bits). To test this hypothesis,
Alvarez and Cavanagh varied the amount of information
required to remember objects, from categorically differ-
ent colors (low information load) to perceptually similar
3D cubes (high information load). The results showed
that the number of objects that could be remembered with
sufficient fidelity to detect the changes depended system-
atically on the information load per item: the more
information that had to be remembered from an individual
item, the fewer the total number of items that could be
stored with sufficient resolution, consistent with the
hypothesis that there is a limit to the total amount of
information stored.
This result was not due to an inability to discriminate

the more complex shapes, such as 3D cubes: observers
could easily detect a change between cubes when only a
single cube was remembered, but they could not detect the
same change when they tried to remember 4 cubes. This
result suggests that encoding additional items reduced the
resolution with which each individual item could be
remembered, consistent with the idea that there is an
information limit on memory. Using the same paradigm but
varying the difficulty of the memory test, Awh, Barton, and
Vogel (2007) found a similar result: with only a single
cube in memory, observers could easily detect small
changes in the cube’s structure. However, with several
cubes in memory, observers were worse at detecting these
small changes but maintained the ability to detect larger
changes (e.g., changing the cube to a completely different
kind of stimulus, like a Chinese character; Figures 1b
and 1c). This suggests that when many cubes are stored,
less information is remembered about each cube, and this
low-resolution representation is sufficient to make a
coarse discrimination (3D cube vs. Chinese character)
but not a fine discrimination (3D cube vs. 3D cube).
Taken together, these two studies suggest that working
memory does not store a fixed number of items with fixed
fidelity: the fidelity of items in working memory depends

on a flexible resource that is shared among items, such
that a single item can be represented with high fidelity or
several items with significantly lower fidelity (see Zosh &
Feigenson, 2009 for a similar conclusion with infants).

Fidelity of simple feature dimensions

While the work of Alvarez and Cavanagh (2004)
suggests a trade-off between the number of items stored
and the resolution of storage, other research has demon-
strated this trade-off directly by measuring the precision of
working memory along continuous feature dimensions
(Wilken & Ma, 2004). For example, Wilken and Ma
(2004) devised a paradigm in which a set of colors
appeared momentarily and then disappeared. After a brief
delay, the location of one color was cued, prompting the
observer to report the exact color of the cued item by
adjusting a continuous color wheel (Figure 1d). Wilken
and Ma found that the accuracy of color reports decreased
as the number of items remembered increased, suggesting
that memory precision decreased systematically as more
items were stored in memory. This result would be predicted
by an information-limited system, because high-precision
responses contain more information than low-precision
responses. In other words, as more items are stored and the
precision of representations decreases, the amount of
information stored per item decreases.
Wilken and Ma’s (2004) investigations into the pre-

cision of working memory appear to support an informa-
tion-limited model. However, using the same continuous
report paradigm and finding similar data, Zhang and Luck
(2008) have argued in favor of a slot model of working
memory, in which memory stores a fixed number of items
with fixed fidelity. To support this hypothesis, they used a
mathematical model to partial errors in reported colors
into two different classes: those resulting from noisy
memory representations and those resulting from random
guesses. Given a particular distribution of errors, this
modeling approach yields an estimate of the likelihood that
items were remembered and the fidelity with which they
were remembered. Zhang and Luck found that the propor-
tion of random guesses was low from 1 to 3 items, but that
beyond 3 items the rate of random guessing increased. This
result is naturally accounted for by a slot model in which a
maximum of 3 items can be remembered.
However, Zhang and Luck (2008) also found that the

fidelity of representations decreased from 1 to 3 items
(representations became less and less precise). A slot model
cannot easily account for this result without additional
assumptions. To account for this pattern, Zhang and Luck
proposed that working memory has 3 discrete slots. When
only one item is remembered, each memory slot stores a
separate copy of that one item, and these copies are then
averaged together to yield a higher resolution representa-
tion. Critically, this averaging process improves the fidelity
of the item representation because each copy has error that
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is completely independent of the error in other copies, so
when they are averaged these sources of error cancel out.
When 3 items are remembered, each item occupies a single
slot, and without the benefits of averaging multiple copies,
each of the items is remembered with a lower resolution
(matching the resolution limit of a single slot).
This version of the slot model was consistent with the

data but only when the number of slots was assumed to be
3. Thus, the decrease in memory precision with increasing
number of items stored can be accounted for by recasting
memory slots as 3 quantum units of resources that can be
flexibly allocated to at most 3 different items (a set of
“discrete fixed-resolution representations”). This account
depends critically on the finding that memory fidelity
plateaus and remains constant after 3 items, which
remains a point of active debate in the literature (e.g.,
Anderson, Vogel, & Awh, 2011; Bays et al., 2009; Bays
& Husain, 2008). In particular, Bays et al. (2009) have
proposed that the plateau in memory fidelity beyond 3
items (Zhang & Luck, 2008) is an artifact of an increase in
“swap errors” in which the observer accidentally reports
the wrong item from the display. However, the extent to
which such swaps can account for this plateau is still
under active investigation (Anderson et al., 2011; Bays
et al., 2009).

Conclusion

To summarize, by focusing on the contents of visual
working memory, and on the fidelity of representations in
particular, there has been significant progress in models of
visual working memory and its capacity. At present, there
is widespread agreement in the visual working memory
literature that visual working memory has an extremely
limited capacity and that it can represent 1 item with
greater fidelity than 3–4 items. This finding requires the
conclusion that working memory is limited by a resource
that is shared among the representations of different items
(i.e., information-limited). Some models claim that
resource allocation is discrete and quantized into slots
(Anderson et al., 2011; Awh et al., 2007; Zhang & Luck,
2008), while others claim that resource allocation is
continuous (Bays & Husain, 2008; Huang, 2010; Wilken
& Ma, 2004), but there is general agreement that working
memory is a flexibly allocated resource of limited
capacity.
Research on the fidelity of working memory places

important constraints on both continuous and discrete
models. If working memory is slot-limited, then those
slots must be recast as a flexible resource, all of which can
be allocated to a single item to gain precision in its
representation or which can be divided separately among
multiple items yielding relatively low-resolution represen-
tations of each item. If memory capacity is information-
limited, then it is necessary to explain why under some
conditions it appears that there is an upper bound on

memory storage of 3–4 objects (e.g., Alvarez & Cavanagh,
2004; Awh et al., 2007; Luck & Vogel, 1997; Zhang &
Luck, 2008), and in other conditions, it appears that
memory is purely information-limited, capable of storing
more and more, increasingly noisy representations even
beyond 3–4 items (e.g., Bays et al., 2009; Bays & Husain,
2008; Huang, 2010).

The representation of features vs. objects
in visual working memory

Any estimate of memory capacity must be expressed
with some unit, and what counts as the appropriate unit
depends upon how information is represented. Since
George Miller’s (1956) seminal paper claiming a limit of
7 T 2 chunks as the capacity of working memory, a
significant amount of work has attempted to determine the
units of storage in working memory. In the domain of
verbal memory, for example, debate has flourished about
the extent to which working memory capacity is limited
by storing a fixed number of chunks vs. time-based decay
(Baddeley, 1986; Cowan, 2005; Cowan & AuBuchon,
2008). In visual working memory, this debate has focused
largely on the issue of whether separate visual features
(color, orientation, size) are stored in independent “buf-
fers,” each with their own capacity limitations (e.g.,
Magnussen, Greenlee, & Thomas, 1996), or whether
visual working memory operates over integrated object
representations (Luck & Vogel, 1997; Vogel et al., 2001;
see Figure 2b).
Luck and Vogel (1997) provided the first evidence that

visual working memory representations should be thought
of as object-based. In their seminal paper (Luck & Vogel,
1997), they found that observers’ performance on a
change detection task was identical whether they had to
remember only one feature per object (orientation or
color), two features per object (both color and orienta-
tion), or even four features per object (color, size,
orientation, and shape). If memory was limited in terms
of the number of features, then remembering more
features per object should have a cost. Because there
was no cost for remembering more features, Luck and
Vogel concluded that objects are the units of visual
working memory. In fact, Luck and Vogel initially
provided data demonstrating that observers could remem-
ber 3–4 objects even when those objects each contained 2
colors. In other words, observers could only remember 3–
4 colors when each color was on a separate object, but
they could remember 6–8 colors when those colors were
joined into bicolor objects. However, subsequent findings
have provided a number of reasons to temper this strong,
object-based view of working memory capacity. In
particular, recent evidence has suggested that, while there
is some benefit to object-based storage, objects are not
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always encoded in their entirety, and multiple features
within an object are encoded with a cost.

Objects are not always encoded in their entirety

A significant body of work has demonstrated that
observers do not always encode objects in their entirety.
When multiple features of an object appear on distinct
object parts, observers are significantly impaired at
representing the entire object (Davis & Holmes, 2005;
Delvenne & Bruyer, 2004, 2006; Xu, 2002a). For
instance, if the color feature appears on one part of an
object and the orientation feature on another part of the
object, then observers perform worse when required to
remember both features than when trying to remember
either feature alone (Xu, 2002a). In addition, observers
sometimes encode some features of an object but not
others, for example, remembering their color but not their
shape (Bays, Wu, & Husain, 2011; Fougnie & Alvarez,
submitted for publication), particularly when only a subset
of features is task-relevant (e.g., Droll, Hayhoe, Triesch,
& Sullivan, 2005; Triesch, Ballard, Hayhoe, & Sullivan,
2003; Woodman & Vogel, 2008). Thus, working memory
does not always store integrated object representations.

Costs for encoding multiple features within an object

Furthermore, another body of work has demonstrated
that encoding more than one feature of the same object
does not always come without cost. Luck and Vogel
(1997) provided evidence that observers could remember
twice as many colors when those colors were joined into
bicolor objects. This result suggested that memory was
truly limited by the number of objects that could be stored
and not the number of features. However, this result has
not been replicated, and indeed, there appears to be a
significant cost to remembering two colors on a single
object (Olson & Jiang, 2002; Wheeler & Treisman, 2002;
Xu, 2002b). In particular, Wheeler and Treisman’s (2002)
work suggests that memory is limited to storing a fixed
number of colors (3–4) independent of how those colors

are organized into bicolor objects. This indicates that
working memory capacity is not limited only by the
number of objects to be remembered; instead, some limits
are based on the number of values that can be stored for a
particular feature dimension (e.g., only 3–4 colors may be
stored).
In addition to limits on the number of values that may

be stored within a particular feature dimension, data on
the fidelity of representations suggest that even separate
visual features from the same object are not stored
completely independently. In an elegant design combining
elements of the original work of Luck and Vogel (1997)
with the newer method of continuous report (Wilken &
Ma, 2004), Fougnie, Asplund, and Marois (2010) exam-
ined observers’ representations of multifeature objects
(oriented triangles of different colors; see Figure 2a).
Their results showed that, while there was no cost for
remembering multiple features of the same object in a
basic change detection paradigm (as in Luck & Vogel,
1997), this null result was obtained because the paradigm
was not sensitive to changes in the fidelity of the
representation. In contrast, the continuous report paradigm
showed that, even within a single simple object, remem-
bering more features results in significant costs in the
fidelity of each feature representation. This provides
strong evidence against any theory of visual working
memory capacity in which more information can be
encoded about an object without cost (e.g., Luck &
Vogel, 1997) but, at the same time, provides evidence
against the idea of entirely separate memory capacities for
each feature dimension.

Benefits of object-based storage beyond
separate buffers

While observers cannot completely represent 3–4
objects independently of their information load, there is
a benefit to encoding multiple features from the same
object compared to the same number of features on
different objects (Fougnie et al., 2010; Olson & Jiang,
2002; Quinlan & Cohen, 2011). For example, Olson and

Figure 2. Possible memory representations for a visual working memory display. (a) A display of oriented and colored items to remember.
(b) Potential memory representations for the display in (a). The units of memory do not appear to be integrated bound objects or
completely independent feature representations. Instead, they might be characterized as hierarchical feature bundles, which have both
object-level and feature-level properties.
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Jiang showed that it is easier to remember the color and
orientation of 2 objects (4 features in total) than the color
of 2 objects and the orientation of 2 separate objects (still
4 features in total). In addition, while Fougnie et al.
(2010) showed that there is a cost to remembering more
features within an object, they found that there is greater
cost to remembering features from different objects. Thus,
while remembering multiple features within an object led
to decreased fidelity for each feature, remembering multi-
ple features on different objects led to both decreased
fidelity and a decreased probability of successfully storing
any particular feature (Fougnie et al., 2010).

Conclusion

So what is the basic unit of representation in visual
working memory? While there are significant benefits to
encoding multiple features of the same object compared
to multiple features across different objects (e.g., Fougnie
et al., 2010; Olson & Jiang, 2002), visual working memory
representations do not seem to be purely object-based.
Memory for multipart objects demonstrates that the
relative location of features within an object limits how
well those features can be stored (Xu, 2002a), and even
within a single simple object, remembering more features
results in significant costs in the fidelity of each feature
representation (Fougnie et al., 2010). These results
suggest that what counts as the right “unit” in visual
working memory is not a fully integrated object repre-
sentation or independent feature representations. In fact,
no existing model captures all of the relevant data on the
storage of objects and features in working memory.
One possibility is that the initial encoding process is

object-based (or location-based), but that the “unit” of visual
working memory is a hierarchically structured feature
bundle (Figure 2b): at the top level of an individual “unit”
is an integrated object representation; at the bottom level
of an individual “unit” are low-level feature representations,
with this hierarchy organized in a manner that parallels
the hierarchical organization of the visual system. Thus, a
hierarchical feature bundle has the properties of inde-
pendent feature stores at the lower level and the proper-
ties of integrated objects at a higher level. Because there
is some independence between lower level features, it is
possible to modulate the fidelity of features independently
and even to forget features independently. On the other
hand, encoding a new hierarchical feature bundle might
come with an “overhead cost” that could explain the object-
based benefits on encoding. On this view, remembering
any feature from a new object would require instantiating
a new hierarchical feature bundle, which might be more
costly than simply encoding new features into an existing
bundle.
This proposal for the structure of memory representa-

tions is consistent with the full pattern of evidence
described above, including the benefit for remembering

multiple features from the same objects relative to different
objects and the cost for remembering multiple features
from the same object. Moreover, this hierarchical working
memory theory is consistent with evidence showing a
specific impairment in object-based working memory
when attention is withdrawn from items (e.g., binding
failures: Fougnie & Marois, 2009; Wheeler & Treisman,
2002, although this is an area of active debate; see Allen,
Baddeley, & Hitch, 2006; Baddeley, Allen, & Hitch, 2011;
Gajewski & Brockmole, 2006; Johnson, Hollingworth, &
Luck, 2008; Stevanovski & Jolicœur, 2011).
Furthermore, there is some direct evidence for separate

capacities for feature-based and object-based working
memory representations, with studies showing separable
priming effects and memory capacities (Hollingworth &
Rasmussen, 2010; Wood, 2009, 2011a). For example,
observers may be capable of storing information about
visual objects using both a scene-based feature memory
(perhaps of a particular view) and also a higher level visual
memory system that is capable of storing view-invariant,
3D object information (Wood, 2009, 2011a).
It is important to note that our proposed hierarchical

feature bundle model is not compatible with a straight-
forward item-based or chunk-based model of working
memory capacity. A key part of such proposals (e.g.,
Cowan, 2001; Cowan, Chen, & Rouder, 2004) is that
memory capacity is limited only by the number of chunks
encoded, not taking into account the information within
the chunks. Consequently, these models are not compatible
with evidence showing that there are limits simultaneously
at the level of objects and the level of features (e.g.,
Fougnie et al., 2010). Even if a fixed number of objects
or chunks could be stored, this limit would not capture the
structure and content of the representations maintained in
memory.
Thus far, we have considered only the structure of

individual items in working memory. Next, we review
research demonstrating that working memory representa-
tions include another level of organization that represents
properties that are computed across sets of items.

Interactions between items in visual working
memory

In the previous two sections, we discussed the repre-
sentation of individual items in visual working memory.
However, research focusing on contextual effects in
memory demonstrates that items are not stored in memory
completely independent of one another. In particular,
several studies have shown that items are encoded along
with spatial context information (the spatial layout of
items in the display) and with featural context information
(the ensemble statistics of items in the display). These
results suggest that visual working memory representa-
tions have a great deal of structure beyond the individual
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item level. Therefore, even a complete model of how
individual items are stored in working memory would not
be sufficient to characterize the capacity of visual working
memory. Instead, the following findings regarding what
information is represented, and how representations at the
group or ensemble level affect representations at the
individual item level, must be taken into account in any
complete model of working memory capacity.

Influences of spatial context

Visual working memory paradigms often require
observers to remember not only the featural properties of
items (size, color, shape, identity) but also where those
items appeared in the display. In these cases, memory for
the features of individual items may be dependent on
spatial working memory as well (for a review of spatial
working memory, see Awh & Jonides, 2001). The most
prominent example of this spatial context dependence is
the work of Jiang, Olson, and Chun (2000), who
demonstrated that changing the spatial context of items
in a display impairs change detection. For example, when
the task was to detect whether a particular item changed
color, performance was worse if the other items in the
display did not reappear (Figure 3a) or reappeared with
their relative spatial locations changed. This interference
suggests that the items were not represented indepen-
dently of their spatial context (see also Olson &Marshuetz,
2005; Vidal, Gauchou, Tallon-Baudry, & O’Regan, 2005;

and Hollingworth, 2006b, for a description of how such
binding might work for real-world objects in scenes). This
interaction between spatial working memory and visual
working memory may be particularly strong when
remembering complex shape, when binding shapes to
colors, or when binding colors to locations (Wood, 2011b)
but relatively small when remembering colors that do not
need to be bound to locations (Wood, 2011b).

Influence of feature context or “ensemble statistics”

In addition to spatial context effects on item memory, it
is likely that there are feature context effects as well. For
instance, even in a display of squares with random colors,
some displays will tend to have more “warm colors” on
average, whereas others will have more “cool colors” on
average, and others still will have no clear across-item
structure. This featural context, or “ensemble statistics”
(Alvarez, 2011), could influence memory for individual
items (e.g., Brady & Alvarez, 2011). For instance, say you
remember that the colors were “warm” on average, but
the test display contains a green item (Figure 3b). In this
case, it is more likely that the green item is a new color,
and it would be easier to detect this change than a change
of similar magnitude that remained within the range of
colors present in the original display.
Given that ensemble information would be useful for

remembering individual items, it is important to consider
the possibility that these ensemble statistics will influence

Figure 3. Interactions between items in working memory. (a) Effects of spatial context. It is easier to detect a change to an item when the
spatial context is the same in the original display and the test display than when the spatial context is altered, even if the item that may
have changed is cued (with a black box). Displays adapted from the stimuli of Jiang et al. (2000). (b) Effects of feature context on working
memory. It is easier to detect a change to an item when the new color is outside the range of colors present in the original display, even for
a change of equal magnitude.
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item memory. Indeed, Brady and Alvarez (2011) have
provided evidence suggesting that the representation of
ensemble statistics influences the representation of indi-
vidual items. They found that observers are biased in
reporting the size of an individual item by the size of the
other items in the same color set and by the size of all of
the items on the particular display. They proposed that this
bias reflects the integration of information about the
ensemble size of items in the display with information
about the size of a particular item. In fact, using an optimal
observer model, they showed that observers’ reports were
in line with what would be expected by combining
information from both ensemble memory representations
and memory representations of individual items (Brady &
Alvarez, 2011).
These studies leave open the question of how ensemble

representations interact with representations of individual
items in working memory. The representation of ensemble
statistics could take up space in memory that would
otherwise be used to represent more information about
individual items (as argued, for example, by Feigenson,
2008; Halberda, Sires, & Feigenson, 2006), or such
ensemble representations could be stored entirely independ-
ently of representations of individual items and integrated
either at the time of encoding or at the time of retrieval. For
example, ensemble representations could make use of
separate resource from individual item representations,
perhaps analogous to the separable representations of real-
world objects and real-world scenes (e.g., Greene & Oliva,
2009). Compatible with this view, ensemble representa-
tions themselves appear to be hierarchical (Haberman &
Whitney, 2011), since observers compute both low-level
summary statistics like mean orientation and also object-
level summary statistics like mean emotion of a face
(Haberman & Whitney, 2009).
While these important questions remain for future

research, the effects of ensemble statistics on individual
item memory suggest several intriguing conclusions. First,
it appears that visual working memory representations do
not consist of independent, individual items. Instead,
working memory representations are more structured and
include information at multiple levels of abstraction, from
items to the ensemble statistics of subgroups to ensemble
statistics across all items, both in spatial and featural
dimensions. Second, these levels of representation are not
independent: ensemble statistics appear to be integrated
with individual item representations. Thus, this structure
must be taken into account in order to model and character-
ize the capacity of visual working memory. Limits on the
number of features alone, the number of objects alone, or the
number of ensemble representations alone are not sufficient
to explain the capacity of working memory.

Perceptual grouping and dependence between items

Other research has shown that items tend to be
influenced by the other items in visual working memory,

although such work has not explicitly attempted to distin-
guish influences due to the storage of individual items and
influences from ensemble statistics. For example, Lin and
Luck (2008; using colored squares) and Viswanathan,
Perl, Bisscher, Kahana, and Sekuler (2010; using Gabor
stimuli) showed improved memory performance when
items appear more similar to one another (see also Johnson,
Spencer, Luck, & Schöner, 2009). In addition, Huang and
Sekuler (2010) have demonstrated that when reporting the
remembered spatial frequency of a Gabor patch, observers
are biased to report it as more similar to a task-irrelevant
stimulus seen on the same trial. It was as if memory for
the relevant item was “pulled toward” the features of the
irrelevant item.
Cases of explicit perceptual grouping make the non-

independence between objects even more clear. For
example, Woodman, Vecera, and Luck (2003) have shown
that perceptual grouping helps determine which objects
are likely to be encoded in memory, and Xu and Chun
(2007) have shown that such grouping facilitates visual
working memory, allowing more shapes to be remembered.
In fact, even the original use of the change detection
paradigm varied the complexity of relatively structured
checkerboard-like stimuli as a proxy for manipulating
perceptual grouping in working memory (Phillips, 1974),
and subsequent work using similar stimuli has demon-
strated that changes that affect the statistical structure of
a complex checkerboard-like stimulus are more easily
detected (Victor & Conte, 2004). The extent to which
such improvements of performance are supported by low-
level perceptual groupingVtreating multiple individual
items as a single unit in memoryVversus the extent to
which such performance is supported by the representation
of ensemble statistics of the display in addition to particular
individual items is still an open question. Some work
making use of formal models has begun to attempt to
distinguish these possibilities, but the interaction between
them is likely to be complex (Brady & Tenenbaum, 2010;
Brady & Tenenbaum, submitted for publication).

Perceptual grouping vs. chunking vs. hierarchically
structured memory

What is the relationship between perceptual grouping,
chunking, and the hierarchically structured memory model
we have described? Perceptual grouping and chunking are
both processes by which multiple elements are combined
into a single higher order description. For example, a
series of 10 evenly spaced dots could be grouped into a
single line, and the letters F, B, and I can be chunked into
the familiar acronym FBI (e.g., Cowan, 2001; Cowan
et al., 2004). Critically, strong versions of perceptual
grouping and chunking models posit that the resulting
groups or chunks are the “units” of representation: if one
part of the group or chunk is remembered, all components
of the group or chunk can be retrieved. Moreover, strong
versions of perceptual grouping and chunking models
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assume that the only limits on memory capacity come
from the number of chunks or groups that can be encoded
(Cowan, 2001).
Such models can account for some of the results

reviewed here. For example, the influence of perceptual
grouping on memory capacity (e.g., Xu & Chun, 2007)
can be explained by positing a limit on the number of
groups that can be remembered rather than the number of
individual objects. However, such models cannot directly
account for the presence of memory limits at multiple
levels, like the limits on both the number of objects stored
and the number of features stored (Fougnie et al., 2010).
Moreover, such models assume independence across
chunks or groups and, thus, cannot account for the role
of ensemble features in memory for individual items
(Brady & Alvarez, 2011). Any model of memory capacity
must account for the fact that groups or chunks themselves
have substructure, that this substructure causes limits on
capacity, and that we simultaneously represent both
information about individual items and ensemble informa-
tion across items. A hierarchically structured memory
model captures these aspects of the data by proposing that
information is maintained simultaneously at multiple,
interacting levels of representation, and our final memory
capacity is a result of limits at all of these levels.

Conclusion

Taken together, these results provide significant evidence
that individual items are not represented independent of
other items on the same display and that visual working
memory stores information beyond the level of individual
items. Put another way, every display has multiple levels
of structure, from the level of feature representations to
individual items to the level of groups or ensembles, and
these levels of structure interact. It is important to note
that these levels of structure exist and vary across trials,
even if the display consists of randomly positioned objects
that have randomly selected feature values. The visual
system efficiently extracts and encodes structure from the
spatial and featural information across the visual scene,
even when, in the long run over displays, there may not be
any consistent regularities. This suggests that any theory of
visual working memory that specifies only the representa-
tion of individual items or groups cannot be a complete
model of visual working memory.

The effects of stored knowledge on visual
working memory

Most visual working memory research requires observers
to remember meaningless, unrelated items, such as ran-
domly selected colors or shapes. This is done to minimize
the role of stored knowledge and to isolate working

memory limitations from long-term memory. However, in
the real world, working memory does not operate over
meaningless, unrelated items. Observers have stored
knowledge about most items in the real world, and this
stored knowledge constrains what features and objects we
expect to see and where we expect to see them. The role
of such stored knowledge in modulating visual working
memory representations has been controversial. In the
broader working memory literature, there is clear evidence
of the use of stored knowledge to increase the number of
items remembered in working memory (Cowan et al.,
2004; Ericsson, Chase, & Faloon, 1980). For example, the
original experiments on chunking were clear examples of
using stored knowledge to recode stimuli into a new
format to increase capacity (Miller, 1956) and such results
have since been addressed in most models of working
memory (e.g., Baddeley, 2000). However, in visual working
memory, there has been less work toward understanding
how stored knowledge modulates memory representations
and the number of items that can be stored in memory.

Biases from stored knowledge

One uncontroversial effect of long-term memory on
working memory is that there are biases in working
memory resulting from prototypes or previous experience.
For example, Huang and Sekuler (2010) have shown that
when reporting the spatial frequency of a Gabor patch,
observers are influenced by stimuli seen on previous trials,
tending to report a frequency that is pulled toward
previously seen stimuli (see Spencer & Hund, 2002 for
an example from spatial memory). Such biases can be
understood as optimal behavior in the presence of noisy
memory representations. For example, Huttenlocher,
Hedges, and Vevea (2000) found that observers’ memory
for the size of simple shapes is influenced by previous
experience with those shapes; observers’ reported sizes are
again “attracted” to the sizes they have previously seen.
Huttenlocher et al. model this as graceful errors resulting
from a Bayesian updating processVif you are not quite
sure what you have seen, it makes sense to incorporate
what you expected to see into your judgment of what you
did see. In fact, such biases are even observed with real-
world stimuli, for example, memory for the size of a real-
world object is influenced by our prior expectations
about its size (Hemmer & Steyvers, 2009; Konkle & Oliva,
2007). Thus, visual working memory representations do
seem to incorporate information from both episodic long-
term memory and from stored knowledge.

Stored knowledge effects on memory capacity

While these biases in visual working memory represen-
tations are systematic and important, they do not address
the question of whether long-term knowledge can be used
to store more items in visual working memory. This
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question has received considerable scrutiny, and in general,
it has been difficult to find strong evidence of benefits of
stored knowledge on working memory capacity. For
example, Pashler (1988) found little evidence for familiar-
ity modulating change detection performance. However,
other methods have shown promise for the use of long-
term knowledge to modulate visual working memory
representations. For example, Olsson and Poom (2005)
used stimuli that were difficult to categorize or link to
previous long-term representations and found a signifi-
cantly reduced memory capacity, and observers seem to
perform better at working memory tasks with upright
faces (Curby & Gauthier, 2007; Scolari, Vogel, & Awh,
2008), familiar objects (see Experiment 2, Alvarez &
Cavanagh, 2004), and objects of expertise (Curby, Glazek,
& Gauthierm, 2009) than other stimulus classes. In
addition, children’s capacity for simple colored shapes
seems to grow significantly over the course of childhood
(Cowan et al., 2005), possibly indicative of their growing
visual knowledge base. Further, infants are able to use
learned conceptual information to remember more items
in a working memory task (Feigenson & Halberda, 2008).
However, several attempts to modulate working memory

capacity directly using learning to create new long-term
memories showed little effect of learning on working
memory. For example, a series of studies has investigated
the effects of associative learning on visual working
memory capacity (Olson & Jiang, 2004; Olson, Jiang, &
Moore, 2005) and did not find clear evidence for the use
of such learned information to increase working memory
storage. For example, one study found evidence that
learning did not increase the amount of information
remembered, but that it improved memory performance

by redirecting attention to the items that were subsequently
tested (Olson et al., 2005). Similarly, studies directly
training observers on novel stimuli have found almost no
effect of long-term familiarity on change detection per-
formance (e.g., Chen, Eng, & Jiang, 2006).
In contrast to this earlier work, Brady, Konkle, and

Alvarez (2009) have recently shown clear effects of learned
knowledge on working memory. In their paradigm,
observers were shown standard working memory stimuli
in which they had to remember the color of multiple
objects (Figure 4a). However, unbeknownst to the
observers, some colors often appeared near each other in
the display (e.g., red tended to appear next to blue).
Observers were able to implicitly learn these regularities
and were also able to use this knowledge to encode the
learned items more efficiently in working memory, repre-
senting nearly twice as many colors (È5–6) as a group who
was shown the same displays without any regularities
(Figure 4b). This suggests that statistical learning enabled
observers to form compressed, efficient representations of
familiar color pairs. Furthermore, using an information-
theoretic model, Brady, Konkle, and Alvarez (2009) found
that observers’ memory for colors was compatible with a
model in which observers have a fixed capacity in terms
of information (bits), providing a possible avenue for
formalizing this kind of learning and compression.
It is possible that Brady, Konkle, and Alvarez (2009)

found evidence for the use of stored knowledge in
working memory coding because their paradigm teaches
associations between items rather than attempting to make
the items themselves more familiar. For instance, seeing
the same set of colors for hundreds of trials might not
improve the encoding of colors or shapes, because the

Figure 4. Effects of learned knowledge on visual working memory. (a) Sample memory display modeled after Brady, Konkle, and Alvarez
(2009). The task was to remember all 8 colors. Memory was probed with a cued recall test: a single location was cued, and the observer
indicated which color appeared at the cued location. (b) Number of colors remembered over time in Brady et al. One group of observers
saw certain color pairs more often than others (e.g., yellow and green might occur next to each other 80% of the time), whereas the other
group saw completely random color pairs. For the group that saw repeated color pairs, the number of color remembered increased across
blocks, nearly doubling the number remembered by the random group by the end of the session.
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visual coding model used to encode colors and shapes has
been built over a lifetime of visual experience that cannot
not be overcome in the time course of a single experimental
session. However, arbitrary pairings of arbitrary features
are unlikely to compete with previously existing associa-
tions and might, therefore, lead to faster updating of the
coding model used to encode information into working
memory. Another important aspect of Brady et al.’s study
is that the items that co-occurred were always perceptually
grouped. It is possible that compression only occurs when
the correlated items are perceptually grouped (although
learning clearly functions without explicit perceptual
grouping, e.g., Orbán, Fiser, Aslin, & Lengyel, 2008).

Conclusion

Observers have stored knowledge about most items in
the real world, and this stored knowledge constrains what
features and objects we expect to see and where we expect
to see them. There is significant evidence that the
representation of items in working memory is dependent
on this stored knowledge. Thus, items for which we have
expertise, like faces, are represented with more fidelity
(Curby & Gauthier, 2007; Scolari et al., 2008), and more
individual colors can be represented after statistical regu-
larities between those colors are learned (Brady, Konkle,
& Alvarez 2009). In addition, the representation of
individual items are biased by past experience (e.g.,
Huang & Sekuler, 2010; Huttenlocher et al., 2000). Taken
together, these results suggest that the representation of
even simple items in working memory depends upon our
past experience with those items and our stored visual
knowledge.

Visual working memory conclusion

A great deal of research on visual working memory has
focused on how to characterize the capacity of the system.
We have argued that in order to characterize working
memory capacity, it is important to take into account both
the number of individual items remembered and the
fidelity with which each individual item is remembered.
Moreover, it is necessary to specify what the units of
working memory storage are, how multiple units in
memory interact, and how stored knowledge affects the
representation of information in memory. In general, we
believe that theories and models of working memory must
be expanded to include memory representations that go
beyond the representation of individual items and include
hierarchically structured representations, both at the indi-
vidual item level (hierarchical feature bundles) and across
individual items. There is considerable evidence that
working memory representations are not based on inde-
pendent items, that working memory also stores ensembles

that summarize the spatial and featural information across
the display, and further, that there are interactions between
working memory and stored knowledge even in simple
displays.
Moving beyond individual items toward structured

representations certainly complicates any attempt to esti-
mate working memory capacity. The answer to how many
items can you hold in visual working memory depends on
what kind of items you are trying to remember, how
precisely they must be remembered, how they are presented
on the display, and your history with those items. Even
representations of simple items have structure at multiple
levels. Thus, models that wish to accurately account for
the full breadth of data and memory phenomena must
make use of structured representations, especially as we
move beyond colored dot objects probed by their
locations toward items with more featural dimensions or
toward real-world objects in scenes.

Visual long-term memory

Before discussing the capacity of long-term memory, it
is important to make the distinction between visual long-
term memory and stored knowledge. By “visual long-term
memory,” we refer to the ability to explicitly remember an
image that was seen previously but that has not been
continuously held actively in mind. Thus, visual long-term
memory is the passive storage and subsequent retrieval of
visual episodic information. By “stored knowledge,” we
refer to the preexisting visual representations that underlie
our ability to perceive and recognize visual input. For
example, when we first see an image, say of a red apple,
stored knowledge about the visual form and features of
apples in general enables us to recognize the object as such.
If we are shown another picture of an apple hours later,
visual long-term memory enables us to decide whether
this is the exact same apple we saw previously.
While working memory is characterized by its severely

limited capacity, long-term memory is characterized by its
very large capacity: people can remember thousands of
episodes from their lives, dating back to their childhood.
However, in the same way that working memory capacity
cannot be characterized simply in terms of the number of
items stored, the capacity of long-term memory cannot be
fully characterized by estimating the number of individual
episodes that can be stored. Long-term memory represen-
tations are highly structured, consisting of multiple levels
of representation from individual items to higher level
conceptual representations. Just as we proposed for work-
ing memory, these structured representations should be
taken into account, both when quantifying and character-
izing the capacity of the system and when modeling
memory processes such as retrieval.
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Generally, work in the broader field of long-term memory
has not emphasized the nature of stored representations and
has focused instead on identifying different memory
systems (e.g., declarative vs. nondeclarative, episodic vs.
semantic) and understanding the processing stages of those
systems, particularly the encoding and retrieval of infor-
mation (e.g., Squire, 2004). As is the case in the domain of
working memory, theories of long-term memory encoding
and retrieval are typically developed independent of what
particular information is being stored and what particular
features are used to represent stored items. A typical
approach is to model memory phenomena that result from
manipulations of timing (e.g., primacy and recency, rate of
presentation), study procedure (e.g., massed or spaced
presentation, the number of restudy events), and content
similarity (e.g., the fan effect, category size effect, category
length effect). For example, models of memory retrieval
and storage that capture many of these phenomena have
been proposed by Brown, Neath, and Chater (2007) and
Shiffrin and Steyvers (1997).
Critically, in order to account for the range of perform-

ance across these manipulations, such models have postu-
lated a role for some form of “psychological similarity”
between items, like how many features they share (e.g.,
Eysenck, 1979; Nairne, 2006; Rawson & Van Overschelde,
2008; Schmidt, 1985; von Restorff, 1933; see Shiffrin &
Steyvers, 1997). For example, the effectiveness of a
retrieval cue is based on the extent to which it cues the
correct item in memory without cuing competing memo-
ries. Put simply, if items share more features, they interfere
more in memory, leading to worse memory performance.
Thus, in the domain of long-term memory, it is well known
that the nature of the representation, such as the features
used in encoding the stimulus, is essential for predicting
memory performance.
Clearly, the more complete our model of the structure

and content of long-term memory representations, the more
accurately we will be able to model retrieval processes.
Thus, the rich, structured nature of long-term memory
representations and the role of distinctiveness in long-term
memory retrieval pose challenges to quantifying and
characterizing the capacity of visual long-term memory.
Here, we review recent work that has examined these

representation-based issues within the domain of visual
long-term memory: What exactly is the content of the
representations stored in visual long-term memory? What
features of the incoming visual information are critical for
facilitating successful memory for those items? By assess-
ing both the quantity and the fidelity of the visual long-term
memory representations, we can more accurately quantify
the capacity of this visual episodic memory system. By
measuring the content of visual long-term memory repre-
sentations, and what forms of psychological similarity
cause this information to be forgotten, we can use memory
as a probe into the structure of stored knowledge about
objects and scenes.

The fidelity of visual long-term memory
Quantifying the number of items observers
can remember

In the late 1960s and 1970s, a series of landmark studies
demonstrated that people have an extraordinary capacity
to remember pictures (Shepard, 1967; Standing, 1973;
Standing, Conezio, & Haber, 1970). For example, Shepard
(1967) showed observers È600 pictures for 6 s each.
Afterward, he tested memory for these images with a two-
alternative forced-choice task where participants had to
indicate which of two images they had seen (Figure 5a).
He found that observers could correctly indicate which
picture they had seen almost perfectly (98% correct). In
perhaps the most remarkable study of this kind, Standing
(1973) showed observers 10,000 color photographs
scanned from magazines and other sources and displayed
them one at a time for 5 s each. The 10,000 pictures were
separated into distinct thematic categories (e.g., cars,
animals, single person, two people, plants, etc.), and within
each category, only a few visually distinct exemplars were
selected. Standing found that even after several days of
studying images, participants could indicate which image
they had seen with 83% accuracy. These results demon-
strate that people can remember a surprisingly large
number of pictures, even hours or days after studying each
image just once.
By correcting for guessing, it is possible to estimate how

many images observers must have successfully recognized
to achieve a given level of performance. Standing (1973)
found that when shown 100 images, observers’ performance
suggested that they remembered 90 of these images; when
shown 1000 images, performance suggested memory for
770; and when shown the full set of 10,000, their perform-
ance indicated memory for È6600 of the 10,000 images
they had been shown. Extrapolating the function relating
the number of items presented to the number of items
recalled suggested no upper bound on the number of
pictures that could be remembered (although see Landauer,
1986 for a possible model of fixed memory capacity in
these studies; see also Dudai, 1997). These empirical
results and models of memory performance have led many
to infer that the number of visual items that can be stored
in long-term memory is effectively unlimited, with
memory performance depending primarily on how dis-
tinctive the information is rather than how many items are
to be remembered.

Reasons for suspecting low-fidelity representations

These large-scale memory studies always used items
that were as semantically and visually distinct as possible.
For example, during the study phase, there might be a
single wedding scene, a single carnival scene, a single
restaurant scene, etc.; then, at test, an observer might see
either the original wedding scene or a park (e.g., Figure 5a).
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Under these conditions, to accurately indicate which of
two images was studied, an observer would only need to
remember the semantic gist of the images. This led many
researchers in the field to assume that visual long-term
memory stores relatively impoverished representations of
each item, perhaps just a gist-like representation capturing
the basic category, event, or meaning of the image along
with a few specific details (Chun, 2003; Simons & Levin,
1997; Wolfe, 1998).
Influential studies demonstrating “change blindness”

also provided evidence suggesting that people likely only
store gist-like representations of images (e.g., Rensink,
2000). Change blindness studies demonstrated that changes
to an object part, or even large changes to a surface within
a scene, often go undetected if the visual transients are
masked (e.g., Rensink, O’Regan, & Clark, 1997; Simons
& Levin, 1997). This is even true in cases when memory
demands are limited, for example, when observers only need
to retain information from one scene for a short amount of
time before being presented with the altered scene. Together
with the large-scale memory studies, change blindness led
to the widely accepted idea that memory representations

for real-world stimuli are impoverished and lacked visual
detail (see Hollingworth, 2006a for a review).

Evidence of high-fidelity long-term memory
representations

A number of recent studies have overturned the assump-
tion that representations of objects and scenes are sparse
and lack detail. Experiments using both change detection
paradigms (e.g., Mitroff, Simons, & Levin, 2004; review
by Simons & Rensink, 2005) and long-term memory tasks
(e.g., Brady et al., 2008; Hollingworth, 2004) have
demonstrated that visual memory representations often
contain significant detail.
For example, a series of studies by Hollingworth and

Henderson (2002) demonstrated that, after briefly attending
to objects within a scene, memory for those objects was
more visually detailed than just the category of the object,
even after viewing 8–10 other objects (Hollingworth,
2004, 2005; Hollingworth & Henderson, 2002). In fact,
people maintained object details sufficient to distinguish
between exemplars (this dumbbell vs. that dumbbell) and

Figure 5. Explorations offidelity in visual long-termmemory. (a) Examples of scenes from different, novel categories (modeled after Standing,
1973). (b) Exemplars of scenes from the same category (greenhouse garden, as in Konkle et al., 2010a). (c) Objects from different, novel
categories, as in Brady et al. (2008). (d) Examples of objects’ exemplars from the same category (globes and soap). (e) Examples of objects
with a different state (full vs. empty mug) or different pose (mailbox with flag up vs. down).
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viewpoints (an object from this view vs. the same object
rotated 90 degrees) with above-chance recognition for
around 400 studied objects intervening between initial
presentation and memory test (Hollingworth, 2004), or
even after a delay of 24 h (Hollingworth, 2005). These
results were the first to demonstrate that observers are
capable of storing more than just the semantic category or
gist of real-world objects over significant durations with a
relatively large quantity of items.
To further assess the fidelity of visual long-term memory

representations using a large-scale memory paradigm more
closely matched to Standing (1973), Brady et al. (2008)
had observers view 2500 categorically distinct objects,
one at a time, for 3 s each, over the course of more than
5 hours. At the end of this study session, observers
performed a series of 2-alternative forced-choice tests
that probed the fidelity of the memory representations by
varying the relationship between the studied target item and
the new foil item (Figures 5c–5e). In the novel condition,
the foil was categorically different from all 2500 studied
objects. Success on this type of test required memory only
for the semantic category of studied items, as in Shepard
(1967) and Standing (1973). In the exemplar condition,
the foil was a different exemplar from the same basic
category as the target (e.g., if the target was a shoe, the foil
would be a different kind of shoe). If only the semantic
category of the target object was remembered, observers
would fail on this type of test. To choose the right exemplar,
observers had to remember specific visual details about the
target item. In the state condition, the foil was the same
object as the target, except it was in a different state or pose
(e.g., if the target was a shoe with the laces tied, the foil
could be the same shoe with the laces untied). To choose the
target on state trials, observers would have to remember
even more specific visual details about the target item.
As expected based on earlier studies, observers per-

formed at 92% accuracy on the novel test, indicating that
they had encoded at least the semantic category of
thousands of objects. Surprisingly, observers could suc-
cessfully perform the exemplar and state tests nearly as
well (87% and 88%, respectively). For example, observers
could confidently report whether a cup of orange juice
they had seen was totally full or only mostly full of juice
with almost 90% accuracy. It is important to note that
observers did not know which of the 2500 studied items
would be tested nor which particular object details had to
be remembered for a particular item (e.g., category-level,
exemplar-level, or state-level information), indicating that
observers were remembering a significant amount of object
detail about each item. Thus, visual long-term memory is
capable of storing not only thousands of objects, but it can
store thousands of detailed object representations.
One important difference between the work of Brady

et al. (2008) and Standing (1973) is the complexity of the
stimuli. In Brady et al., observers saw individual objects on
a white background, whereas in Standing and Shepard’s
seminal studies, observers saw full scenes (magazine

clippings). Thus, it is possible that observers can store
detailed object representations (as in Brady et al., 2008),
but that their memory performance for exemplar-level
differences in natural scenes would contain markedly less
detail. Recent work has shown this is not the case: Using
a paradigm much like that of Brady et al., Konkle et al.
(2010a) demonstrated that thousands of scenes can be
remembered with sufficient fidelity to distinguish between
different exemplars of the same scene category (e.g., this
garden or that garden, see Figure 5b). Furthermore,
performance on these scene stimuli was nearly identical
to performance with objects (Konkle et al., 2010a, 2010b).

Conclusion

Quantifying the capacity of a memory system requires
determining both the number of items that can be stored
and the fidelity with which they are stored. The results
reviewed here demonstrate that visual long-term memory
is capable of storing not only thousands of objects but
store thousands of detailed object and scene representa-
tions (e.g., Brady et al., 2008; Konkle et al., 2010a). Thus,
the capacity of visual long-term memory is greater than
assumed based on the work of Shepard (1967) and
Standing (1973). However, given that we previously
believed the capacity of visual long-term memory was
“virtually unbounded,” what is gained by showing the
capacity is even greater than we thought. It is certainly
informative to know that our intuitions about the fidelity
of our visual long-term memory are incorrect: after
studying thousands of unique pictures and tested with
very “psychologically similar” foils, we will be much
closer to perfect performance than chance performance. It
is also valuable to know that, while in everyday life we
may often fail to notice the details of objects or scenes
(Rensink et al., 1997; Simons & Levin, 1997), this does
not imply that our visual long-term memory system
cannot encode and retrieve a huge amount of information,
including specific visual details. Perhaps most importantly,
earlier models assumed that visual long-term memory
representations lacked detail and were gist-like and
semantic in nature. Discovering that visual long-term
memory representations can contain significant object-
specific detail challenges this assumption and suggests that
visual episodes leave a more complete memory trace that
includes more “visual” or perceptual information.

Effects of stored knowledge on visual
long-term memory
Stored knowledge provides a coding model
for representing incoming information

Over a lifetime of visual experience, our visual system
builds a storehouse of knowledge about the visual world.
How does this stored knowledge affect the ability to
remember a specific visual episode? In the case of visual
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working memory, we proposed that stored knowledge
provides the coding model used to represent items in
working memory. As we learn new information and update
our stored knowledge, we update how we encode sub-
sequent information (e.g., remembering more colors after
learning regularities in which colors appear together:
Brady, Konkle, & Alvarez, 2009). We propose that stored
knowledge plays the same role in visual long-term
memory, providing the coding model used to encode
incoming visual information and represent visual episodes.
One way to conceive of this coding model is as a

multidimensional feature space, with an axis for each
feature dimension. Of course, this would be a massive
feature space, but for illustration suppose there were some
more perceptual feature dimensions (size, shape, and color)
and some conceptual dimensions (living/nonliving, fast/
slow). For any new incoming visual input, the visual system
would extract information along these existing feature
dimensions, creating a memory trace that can be thought of
as a point in this multidimensional feature space. Thus,
memory for a particular car is represented as a single point
in this space (e.g., a race car might be encoded as small,
aerodynamic, red, nonliving, and fast). Memory traces for
different cars will fall relatively close to each other in this
feature space. Memory traces for similar kinds of objects,

like tractors, might be nearby cars in this feature space,
whereas memory traces for different kinds of objects, like
cats, might be far away from cars in this feature space.
Most likely, the coding model we derive from our

past visual experience is considerably more complex than
a single multidimensional space. In higher level domains
like categorization and induction, models of background
knowledge based on more structured representations are
required to fit human performance (Kemp & Tenenbaum,
2009; Tenenbaum, Griffiths, & Kemp, 2006). For example,
rather than representing animals in a single multidimen-
sional space, observers seem to have multiple structured
representations of animals: some kinds of inference draw
on a tree structure expressing animals’ biological related-
ness, whereas some inferences draw on a food web
expressing which animals are likely to eat which other
animals (Kemp & Tenenbaum, 2009).
Visual background knowledge is likely to be similarly

complex, perhaps based on a hierarchy of features ranging
from generic perceptual features like color and orienta-
tion to mid-level features that have some specificity to
particular object classes (e.g., Ullman, Vidal-Naquet, &
Sali, 2002) to very high-level conceptual features that are
entirely object category-specific (e.g., Ullman, 2007; see
Figure 6). In fact, modern models of object recognition

Figure 6. Hierarchy of visual knowledge, from object-generic parts to object-specific parts to whole objects. Gabor patch stimuli adapted
from Olshausen and Field (1996). Meaningful object fragments adapted from Ullman (2007).
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propose that stored object knowledge consists of feature
hierarchies (e.g., Epshtein & Ullman, 2005; Ommer &
Buhmann, 2010; Riesenhuber & Poggio, 1999; Torralba,
Murphy, & Freeman, 2004; Ullman, 2007). For example,
Ullman (2007) proposed that objects are represented by a
hierarchy of image fragments: e.g., small image fragments
of car parts combine to make larger car fragments, which
further combine to make a car. In this sense, stored
knowledge about different object concepts can be cached
out in a hierarchy of visual features, which may be
extracted and stored in visual long-term memory.
Furthermore, according to these computational models,

precisely what features are represented in the hierarchy
will depend on the task the system must perform (Ullman,
2007): to recognize a face as a face, the model learns one
set of features, but to do a finer level of categorization (e.g.,
that this particular face is George Alvarez), larger features
and feature combinations have to be learned by the model
(see also Schyns & Rodet, 1997). Thus, with increasing
knowledge about particular exemplars and subordinate
category structure, different kinds of visual features may
be created in the visual hierarchy. This could explain why
even memory for putatively “visual” information is
dependent on conceptual structure, as high-level visual
representations themselves are likely shaped by category
knowledge.
Regardless of the exact format, this visual background

knowledge provides the basis of the coding model for new
visual episodes, by defining either the axes of the multi-
dimensional feature space or the particular structured
representation (e.g., the features at each level in the
hierarchy). What is not known is what the relevant
perceptual and conceptual features are for visual long-term
memory and which feature dimensions are most important
for retrieving items from this representational space. In
the next sections, we review experiments that address the
role of stored knowledge in memory encoding, the role of
perceptual and conceptual features in visual long-term

memory, and the effects of learning on creating new
features with which to represent objects.

Role of the “conceptual hook” for supporting
visual memory

Several studies have shown that memory for visual
images is better when those images are semantically
labeled and recognized than when the same images are not
labeled and recognized (Koutstaal et al., 2003; Wiseman &
Neisser, 1974; see also Bower, Karlin, & Dueck, 1975). For
example, Wiseman and Neisser (1974) presented observers
with two-tone ambiguous face images (Mooney faces) and
asked observers to judge whether or not there was a face
present. While all images actually contained faces, sub-
sequent memory was better for images that were recognized
as faces relative to images that did not make contact with
this organizing concept. Further, there was individual
variability in whether or not a particular image was
recognized as a face. Memory for a given image was better
in people who saw it as a face compared to those who saw
that same image without recognizing it as a face. This
provides elegant evidence for the importance of concepts
in visual memory while controlling for all low-level visual
features. In further support of a “conceptual hook,”
memory for ambiguous shapes is improved when a
disambiguating semantic label is provided during study
(Koutstaal et al., 2003, Experiment 1; Figure 7a), and
memory for real-world objects is better than memory for
perceptually rich but meaningless objects (e.g., Koutstaal
et al., 2003, Experiment 2).
These studies show that connecting to existing

knowledgeVversus not connecting at allVis critical
for successful visual long-term memory. Connecting with
stored knowledge likely improves memory because it
provides a rich and structured coding scheme consisting
of both perceptual and conceptual feature dimensions.
However, which of these dimensions are important for

Figure 7. Explorations of the role of conceptual information in visual memory. (a) Category labels that connect shapes with stored knowledge
make it easier to remember shapes. Stimulus example adapted from Koutstaal et al. (2003). (b) Memory for multiple exemplars of the same
category is better when the items are conceptually distinctive than when they are conceptually similar, independent of perceptual
distinctiveness within the category. Stimuli from Konkle et al. (2010b).
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supporting visual long-term memory? Do all perceptual
and conceptual features contribute equally, or are some
features more important? To address these questions, it is
possible to vary the similarity of items along different
perceptual and conceptual dimensions. To the extent that
similarity along a particular feature dimension impairs
memory, we would conclude that “crowding” along that
feature dimension causes interference in memory and,
therefore, that the feature is important for supporting
memory.
Konkle et al. (2010b) used this approach in a large-scale

memory study. Observers viewed 2800 objects from over
200 distinct categories, where the number of exemplars
present from each category varied from 1 to 16. At test,
observers indicated which of 2 exemplars they previously
studied, requiring detailed memory representations. By
varying the number of exemplars per category, they tested
the impact of category information in visual memory. If
the category label is a critical feature supporting visual
long-term memory, then with more studied exemplars from
a category, there should be more interference in memory
and worse performance. This effect was observed, but the
drop in performance with each doubling of the number of
studied exemplars was only 2%. Overall, memory
performance was remarkably high (84% with 16 exem-
plars from a category in mind and thousands of other
objects), suggesting that while category information mat-
ters for visual memory, it is far from the sole feature
supporting detailed visual memory.
Konkle et al. (2010b) next examined the interference

effects for each object category. Some categories of
objects showed more interference in memory than others.
To examine which feature dimensions account for this
variation across object categories, a variety of similarity
rankings were obtained for each object category. Percep-
tual similarity was measured separately for color, shape,
and for overall visual appearance among exemplars. A
conceptual similarity measure captured whether there
were few or many different kinds of a particular category
(e.g., there are many kinds of cars but few kinds of bean
bag chairs; see Figure 7b). They observed that categories
with more conceptually distinctive exemplars showed less
interference in memory than categories with concep-
tually similar exemplars. Surprisingly, they also found
that the perceptual measures did not predict memory
interference: interference in memory was similar for
categories with many perceptually distinctive exemplars
and categories with perceptually similar exemplars.
These results demonstrated that stored knowledge of
both basic-level object categories and subordinate cate-
gories is a critical part of the visual long-term memory
coding model, suggesting that distinctiveness along cate-
gorical dimensions is necessary for successful memory
retrieval. These categorical dimensions appear to provide
“conceptual hooks” that enable the recovery of a com-
plete memory trace that includes not only semantic

abstract information but also more perceptual information
about object details.

Learning new features and expertise

Stored knowledge about visual concepts provides the
coding model for representing incoming information, but it
is also constantly changing based on incoming experience
and learning. Moreover, the specific features an individual
learns will depend on their prior experience. For example,
in a category learning experiment in which participants
learned to classify different Martian cells, Schyns and
Rodet discovered that the order in which participants
learned the cells affected which features were learned and
used to classify the cells (Rodet & Schyns, 1994; Schyns &
Rodet, 1997). In other words, different histories of catego-
rization generate different feature spaces that are used to
encode similarities and differences between items. Schyns
and Rodet suggested that observers build “functional
features” specifically designed to support performance in
a task. If this is the case, then it is possible to gain important
insights regarding the format of stored representations from
the categorization literature. One conceptualization of these
category learning experiments is that they help build an
enhanced coding model for learned stimuli. In support of
this idea, during typical object recognition experiments,
when incoming information makes contact with stored
knowledge people name the object at the basic level most
quickly (Mervis & Rosch, 1981), but experts will more
quickly name objects at subordinate category levels
(Joliceour, 1985), suggesting that they extract different
features during encoding.
If expertise leads to an enhanced coding model, allowing

observers to extract richer and/or more distinctive features
from an input, then experts should have increased memory
capacity for these items (Ericsson & Chase, 1982). Evidence
for this has been found when comparing experts’ memory
and novices’ memory for chess configurations (Chase &
Simon, 1973; de Groot, 1966) and for baseball-related
knowledge (Voss, Vesonder, & Spilich, 1980), in addition
to the results with working memory for faces and objects
of expertise reviewed earlier (Curby & Gauthier, 2007;
Curby et al., 2009). However, there is a debate about the
nature of the features learned with visual expertise: for
example, whether they are combinations of low-level
features in a strict hierarchical way or whether more
holistic features can be generated from the earliest stages
of representation (see Schyns, Goldstone, & Thibaut,
1998). On either account, the coding model employed to
extract features of the input is changed with learning and
expertise.
Even though stored knowledge is different across people

and the visual coding model depends on an individual’s
history of learning and degree of expertise, it is still possible
to generalize across people when studying memory capacity.
For example, Konkle et al. (2010b) measured the conceptual
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distinctiveness of a set of exemplars from different object
categories (i.e., how many different kinds of cars and bow
ties were present in a given set), which is a dimension
with clear individual differences in stored knowledge.
Nevertheless, ratings from one set of observers were able
to predict the memory performance from another set of
observers, suggesting a general convergence of basic
stored knowledge about real-world objects.

Consequences of coding models: Systematic biases
of object details in memory

Stored knowledge, specifically about category and
subordinate category structures, supports the ability to
store and retrieve detailed visual long-term memory
representations. However, encoding information with
respect to existing knowledge can lead to systematic
biases, called constructive memory errors (Bartlett, 1932;
Brewer & Treyens, 1981; Roediger & McDermott, 1995).
Several classic studies have demonstrated that the details
retrieved from visual long-term memory are not necessa-
rily veridical. In one such study, encoding two circles
connected by a line as a “dumbbell” or as “eyeglasses”
leads to systematic biases when later drawing the item
from memory (Carmichael, Hogan, & Walter, 1932), with
a thicker straight connecting line when encoded as a
dumbbell and a thinner more curved connecting line when
encoded as eyeglasses. Naming an object during encoding
has been argued to shift the representation to be more
prototypical (Lupyan, 2008; see also Koutstaal et al.,
2003). However, these systematic biases in visual memory
can be thought of as graceful errorsVany noise in the
representation leads the representation to be pulled toward
prototypical values, which is what an optimal memory
system should do (Huttenlocher et al., 2000).
Thus, bringing to bear conceptual knowledge about

objects and scenes during encoding does help support
visual detail in memory but does not enable a more
“photographic-like” memoryVrather it likely enables
memory for visual details to be connected to, and
integrated with, meaningful dimensions of the object or
scene. This also implies that measuring systematic biases
in visual long-term memory representations can be used as
a tool to infer what coding model observers used to
encode the initial episode (e.g., Castel, McCabe, Roediger,
& Heitman, 2007). Thus, errors in the fidelity of visual
long-term memory can be used as a way to discover
dimensions of stored knowledge.

Conclusion

What do these results about the role of stored knowl-
edge imply about the capacity of visual long-term
memory? All of these studies demonstrate that the
capacity of visual long-term memory is critically depen-
dent upon stored knowledgeVthe coding model that we use

to represent each image. Thus, in order to predict memory
performance for any given bit of visual information, it is
necessary to first characterize what is already “built-in” to
the visual knowledge base for encoding that information.
This explains why we are remarkable at remembering
natural scenes and real-world objects (e.g., Brady et al.,
2008; Hollingworth, 2004; Konkle et al., 2010a; Shepard,
1967; Standing, 1973), for which we have a massive
stored knowledge base, and why we cannot even attempt
to remember thousands of random colored dot displays
(like those typically used in visual working memory
tasks), for which we have no preexisting knowledge,
category structures, or differentiating semantic associa-
tions. Research examining visual long-term memory for
real-world images has shown that the coding model we
use to retrieve representations from memory gives more
weight to conceptual features than perceptual featuresV
being perceptually rich and distinctive is not sufficient to
support visual long-term memory (e.g., Konkle et al.,
2010b; Koutstaal et al., 2003). However, the representa-
tion that can be retrieved from visual long-term memory is
far more visually detailed than just a category label or gist
representation. One possible interpretation of this finding
is that visual long-term memory representations are
hierarchically structured, with conceptual or category-
specific features at the top of the hierarchy and perceptual
or more category-general features at lower levels of the
hierarchy. On this view, memory retrieval operates over
the top levels of the hierarchy, which includes categorical
labels, but successful retrieval activates the full, hierar-
chical memory trace including lower perceptual features.

Memory for objects within scenes

Just as stored knowledge allows us to bring a rich
coding model to represent individual objects, we also have
stored knowledge about relationships between objects and
other objects and between objects and the surrounding
scene. While a review of research on the format of scene
representations is beyond the scope of this review (see
Luck & Hollingworth, 2008), here we highlight several
key studies that examine the relationship of an object to a
scene (e.g., scene schemas that reflect the probability of
finding an apple in a kitchen or a bedroom). Combined,
these studies illustrate how the rich, structured nature of
scene knowledge impacts visual long-term memory
representations for objects.
Stored knowledge about scene information has been

given various labels, including schemata (Biederman,
Mezzanotte, & Rabinowitz, 1982; Hock, Romanski, Galie,
& Williams, 1978; Mandler & Johnson, 1976), scripts
(Schank, 1975), frames (Minsky, 1975), and, more
recently, context frames (Bar, 2004; Bar & Ullman,
1996). In all of these characterizations, stored knowledge
about scenes provides predictions about the likely objects
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to be found in the scenes and the likely positions of those
objects in the scene, as well as object relations, relative
sizes and positions, and co-occurrence statistics. This
knowledge is activated rapidly, even by presentations of
single objects that have strong contextual associations
(Bar, 2004) and, thus, can influence the processing and
encoding of object information at very early stages of
information processing (e.g., Bar et al., 2006).
We note that scenes themselves can also be the “items”

of memory (e.g., in Konkle et al., 2010a; Standing, 1973),
and some have argued that scenes have their own
objectless representational basis (e.g., Greene & Oliva,
2009, 2010; Oliva & Torralba, 2001), neural substrates
(Epstein & Kanwisher, 1998), and category structures
(Tversky &Hemenway, 1983; Xiao, Hayes, Ehinger, Oliva,
& Torralba, 2010; see also Henderson & Hollingworth,
1999). Indeed, similar degrees of category interference in
memory for objects and scenes (Konkle et al., 2010a)
suggest that scenes may be thought of as entities at a
similar level of abstraction as objects. The nature of the
representations of scenes as independent entities and not
as background context warrants further study. For the
scope of this review, however, we will limit our discussion
to scenes as part of ensemble or contextual information.
Here, we review some of the work showing that this
information influences the memory representations of
individual objects, by (i) serving as a better retrieval cue

for the initial studied episode, (ii) by directing attention to
distinctive features of a scene, and (iii) by providing
reasonable guesses given uncertainty in memory.

Scene context as a retrieval cue

Several studies have shown that the presence of a
background scene helps memory for both the features and
spatial position of individual objects in the scene. For
example, Hollingworth (2006b) tested whether the presence
of background scene information influenced memory for
object details when the scene itself was task-irrelevant.
Observers studied a scene with many objects in it for 20 s.
At test, memory for one object was probed, requiring
observers to remember the specific exemplar or viewpoint
of the cued object. Memory for these object details was
better when the objects were tested with their scene
backgrounds present. Memory for spatial positions of
objects in a scene is also better when the scene is present
at retrieval: e.g., memory for an object position (on the
screen) is facilitated when the object reappears in the scene
at test (Hollingworth, 2007; Mandler & Johnson, 1976; see
Figure 8a). This effect is stronger when the scene
information is meaningful and coherent compared to when
it is incoherently organized (Mandler & Johnson, 1976;
Mandler & Parker, 1976; Mandler & Ritchey, 1977).
However, even in the case of meaningful configurations of

Figure 8. Scenes influence the encoding and retrieval of objects. (a) Scenes as retrieval cues. It is easier to remember objects that are
presented in the same scene at encoding and test, suggesting that scene context serves as a useful retrieval cue. Task and stimuli are
adapted from Hollingworth (2006b). (b) Encoding distinctive details. Items that are inconsistent with the scene context are more likely to
be remembered than items that are consistent with the scene context. This finding suggests that scene context guides encoding toward
distinctive details within the scene. Task and stimuli are adapted from Hollingworth and Henderson (2003).
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unrelated objects, probing memory for an object with the
same context present shows benefits over conditions with
changed context (Hollingworth, 2007).
While these studies were done at short time scales, this

idea also holds in the broader long-term memory literature,
which shows the importance of context in memory retrieval
(the encoding specificity principle: Tulving & Thomson,
1973). The better the match between the study and retrieval
context, the better memory for items, even if the context is
irrelevant to the specific items being remembered. This
effect was famously demonstrated using memory for word
lists studied and tested by scuba divers on the beach or
underwater: memory performance is improved when word
lists are studied and tested both underwater, for example,
compared to studying underwater and testing on the beach;
Godden & Baddeley, 1975). These recent visual long-term
memory studies add the idea that context can facilitate
retrieval of even relatively detailed object information
(Hollingworth, 2006b).
The effects of background context or ensemble infor-

mation likely arise from natural experience, where items
are always experienced and learned in a context. These
studies show that benefits for memory persist even when
the context is less meaningful (spatially incoherent) or
lacks 3D structure and is simply a configuration of items
on the screen. This suggests that the representation of
items in scenes is never entirely independent of the
surrounding scene context, just as in working memory
the representation of individuals is not independent of the
ensemble statistics of the display (e.g., Brady & Alvarez,
2011; Jiang et al., 2000).

Semantic consistency, schemas, and encoding
distinctive details

How is memory for object information effected when
objects are meaningfully related to the surrounding scene? A
number of studies have tested memory for objects in a scene
as a function of semantic consistency (Brewer & Treyens,
1981; Friedman, 1979; Hollingworth & Henderson, 2000,
2003; Lampinen, Copeland, & Neuschatz, 2001; Pezdek,
Whetstone, Reynolds, Askari, & Dougherty, 1989). These
studies show that inconsistent items are remembered better,
e.g., memory for the presence of a coffeemaker is higher
when that coffeemaker is shown in a farmyard compared to
in a kitchen, and these items are fixated longer during study
(Friedman, 1979; Figure 8b). This benefit for inconsistent
items may seem at odds with the claim that memory is
supported by stored knowledgeVif we have no stored
knowledge about coffeemakers in farmyards, how can we
remember them? However, these results are, in fact, quite
consistent with what we would expect from an efficient
encoding system that knows about both coffeemakers and
farmyards.
Stored knowledge about scenes contains a wealth of

information, including what objects are likely to appear in
different kinds of scenes and where they should appear

within those scenes (Bar & Ullman, 1996; Biederman
et al., 1982; Hock et al., 1978; Mandler & Johnson, 1976).
For example, stored knowledge about farmyards can assign
probabilities on which animals and objects are likely to be
in that scene, and a coffeemaker is an extremely low
probability object. If the goal is to encode this image so
that we can retrieve it later, attention should be directed to
the features that are least typical, because those features
must be specifically encoded in order to be remembered. In
the absence of any episodic memory trace at all, typical
objects can easily be inferred. However, the presence of an
incongruent object cannot easily be inferred because it is
not predictable at all from the scene schema, and it will
lead to a much more distinctive trace in memory. Thus, in
addition to serving as a better contextual retrieval cue,
scene information can guide attention during encoding, so
that details inconsistent from our stored knowledge can be
encoded (Friedman, 1979; Gordon, 2004; Henderson,
Weeks, & Hollingworth, 1999; Hollingworth & Henderson,
2000, 2003; Pezdek et al., 1989; see also Vogt &
Magnussen, 2007).

Systematic biases in object memory due to scene
information

Just as item-specific knowledge can lead to item-
specific biases in the retrieval of details (e.g., the eyeglasses
versus the dumbbell), so too can stored knowledge about
scenes give rise to systematic errors about objects (Brewer
& Treyens, 1981; Lampinen et al., 2001; Miller &
Gazzaniga, 1998; see also Aminoff, Schacter, & Bar,
2008). For example, after studying the objects in a series
of scenes (e.g., including a golf course scene), participants
are more likely to have false memory for a related object
(a golf bag) than for an object that was not related to any
of the studied scenes (e.g., a typewriter; Miller &
Gazzaniga, 1998). These biases are typically errors of
“commission”: a refrigerator is remembered in the picture
of a kitchen even if it was not present because if there is
any uncertainty in memory for that detail, there is still a
high likelihood that there was a refrigerator visible in the
kitchen. In this way, stored knowledge about scenes does
not necessarily always support a more accurate or photo-
graphic-like memory of the objects in the scene. However,
stored scene information can provide “good guesses” for
what was likely to be there, which is often optimal given
uncertainty (though this aspect of memory is problematic
for eyewitness testimony, e.g., Loftus, 2004).

Conclusion

There are several ways that scene information plays a
role in memory for object information. First, scene
information can direct attention to which objects are
encoded (e.g., Hollingworth & Henderson, 2000, 2003),
just as object information can direct attention to which
features within an object are encoded (e.g., Schyns &
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Rodet, 1997). In this way, scene knowledge, in addition to
object knowledge, can be brought to bear during encod-
ing. Efficient strategies suggest that distinctive details
should be encoded along meaningful dimensions of
variation at the scene level (e.g., remember improbable
objects), just as distinctive details are encoded at the
object level (e.g., remember improbable features). Second,
scene information is stored along with item information in
memory; it is not the case that scenes simply guide
attention to objects and leave no trace in memory. As
evidence for this claim, scene information facilitates
retrieval of object details, even when the scene is task-
irrelevant (e.g., Hollingworth, 2006b). At retrieval, the
better the match of the second display to the initial
presentation, the better the memory representation is
retrieved. Finally, stored knowledge about the scene
information can help provide meaningful guesses or
graceful errors if we are probed on a detail for which we
have a noisier representation. Taken together, these results
suggest that what is stored in visual long-term memory
includes item-specific and across-item (scene) information
and that all aspects of this representation can impact
memory performance for a single object.

Visual long-term memory conclusion

We have reviewed research demonstrating that visual
long-term memory can store thousands of items with
surprisingly high fidelity (e.g., Brady et al., 2008;
Hollingworth, 2004). This ability depends critically on
the existence of stored knowledge about the items: the

more observers know about the items, the more they can
remember about them (e.g., Konkle et al., 2010b; Wiseman
& Neisser, 1974). Many computational models suggest
that the format of this stored knowledge is hierarchical,
with lower levels consisting of basic features that are
shared across categories and higher levels consisting of
visual features that are more category-specific. This
structured knowledge constitutes the coding model used
to extract information from incoming input, resulting in
hierarchically structured episodic memory representations.
There is some evidence that the structure of this knowl-
edge at both the item level and the scene level influences
memory for individual items, suggesting that the levels of
representation within the hierarchy are mutually informa-
tive and constraining (e.g., Hollingworth, 2006b). How-
ever, much remains to be discovered regarding the nature
and structure of this stored knowledge and how it
influences the content of episodic visual long-term
memory representations.
If each visual episode leaves a trace in memory, what

does it mean to estimate the capacity of visual long-term
memory? The evidence reviewed here suggests that visual
long-term memory has content-dependent capacity: the
number of items that can be stored and the fidelity of
storage depend on what is being remembered. If the
content is 10,000 unique pictures of meaningful scenes,
performance will be closer to perfect than to chance, even
for tests that require detailed discriminations. However, if
the content is 10,000 items all from the same semantic
category, performance will much lower. If the content is
10,000 random dot displays, observers will be at chance
performance. Thus, it seems that the capacity of visual
long-term memory is not fixed in terms of either quantity

Figure 9. Proposed structure of memory representations in both simple and real-world displays. (a) In simple displays of meaningless
shapes, information is represented both at the item level (perhaps as a hierarchical feature bundle) and across individual items at the
ensemble level. (b) Real-world displays have information represented at the object level (as a hierarchical feature bundle) and at the
scene level (including scene statistics computed over basic features). In both simple and real-world displays, information is represented at
the individual item level and across individual items, possibly in parallel but interacting processing streams.
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or fidelity. We suggest that understanding the capacity and
limitations of visual long-term memory requires character-
izing what coding model can be brought to bear on the
content to be remembered, where the quantity and fidelity
of retrieved episodes will depend on how many relevant
distinctive features can be extracted during encoding and
retrieval of these perceptual episodes.
The work reviewed here on long-term memory dove-

tails with similar ideas in the section on working memory,
where we raised the possibility that individual items in
memory are represented as hierarchical feature bundles
and that items are not represented independently but as
part of a scene structure (e.g., making use of ensemble
statistics). Broadly, this suggests that similar coding
mechanisms are brought to bear on any visual stimulus,
enabling and creating a hierarchical feature representation,
whether they operate over simplified displays or natural
visual scenes and whether they are actively maintained or
passively stored and retrieved (Figure 9).

The relationship between working memory
and long-term memory

In this review, we have followed the traditional
distinction between visual working memory and visual
long-term memory, treating them as separate systems with
separate capacities. We have distinguished between work-
ing memory and long-term memory based primarily on
the time scale of memory storage: at short time scales, we
assume that information is held actively in mind, and
therefore, performance is determined primarily by work-
ing memory, whereas over longer time scales we assume
that information is held passively in mind, and therefore,
performance is determined primarily by long-term mem-
ory. However, while the separability of the active storage
and passive retrieval systems is relatively uncontroversial,
the extent to which the standard working memory and
long-term memory paradigms actually isolate these sys-
tems remains an important open question. In particular,
the extent to which passive retrieval might play an
important role even in memory with short delays is a point
of significant debate.
This is an important concern because the broader

working memory literatureVparticularly the literature on
verbal working memoryVhas accumulated significant
evidence for shared principles of short-term and long-term
memory (Jonides et al., 2008; McElree, 2006; Nairne,
2002), including evidence that items putatively held in
active storage are not accessed any faster (McElree, 2006)
and that the medial temporal lobe, including the hippo-
campus, seems to be equally involved in retrieval of items
from long-term storage and items that would be expected
to be actively maintained (Öztekin, Davachi, & McElree,
2010). This suggests that we must even explore the
possibility that active storage may play only part of the
role in the short-term storage of information.

We begin by assessing the role of active and passive
storage in working memory paradigms that use stimuli with
meaningless, unrelated items, such as randomly selected
colored circles, abstract shapes, or meaningless characters
(henceforth “semantically impoverished stimuli”). We then
examine the role of passive storage in paradigms involving
real-world semantically rich stimuli, for which observers
have richer preexisting stored knowledge.

The role of active and passive storage in the short-term
storage of semantically impoverished stimuli

Evidence from brain imaging suggests that active
storage drives a significant part of performance in standard
visual working memory paradigms with semantically
impoverished stimuli. This active storage seems to be
achieved through a combination of continuing activity in
frontal and parietal cortices and either sustained activity or
changed patterns of activity in lower level visual cortex
(e.g., Harrison & Tong, 2009; Sakai, Rowe, & Passingham,
2002; Todd & Marois, 2004; Xu & Chun, 2006). For
example, studies using paradigms like those used in
traditional behavioral studies of visual working memory
(e.g., Todd & Marois, 2004; Xu & Chun, 2006) have
found that sustained activity in the intra-parietal sulcus
and lateral occipital complex scales with how many items
are being actively maintained or how much total informa-
tion is being retained (Xu & Chun, 2006). Moreover,
recent studies have indicated that memory for orientation
is reflected in the ongoing activity in area V1 when the
orientation is being actively held in mind (Harrison &
Tong, 2009; Serences, Ester, Vogel, & Awh, 2009). In
addition to fMRI correlates, studies using EEG have
shown that there is sustained activity in the contralateral
hemisphere when observers hold items in visual working
memory, and this contralateral delay activity is greater in
magnitude when observers hold more items (Perez &
Vogel, 2011; Vogel & Machizawa, 2004). This signal
saturates when the number of items reaches the maximum
number that can be remembered, with a strong correlation
between individual differences in the saturation level and
individual differences in the number of items that can be
remembered (Vogel & Machizawa, 2004). This suggests
that the contralateral delay activity indexes the active
storage of items in visual working memory.
Thus, it is clear that short-term storage relies at least in

part on active maintenance. However, there is some
evidence suggesting that passive retrieval may also play
a role in the short-term storage of information. For
example, behavioral studies have shown proactive inter-
ference from previous trials (Hartshorne, 2008; Makovski
& Jiang, 2008) even in working memory paradigms, and
systematic biases from previous trials suggest an influence
of longer term storage (Huang & Sekuler, 2010). More-
over, patient studies have demonstrated that the medial
temporal lobe and hippocampus, believed to be critical for
storage and retrieval in long-term memory (e.g., Davachi,
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2006), may also be critical for the short-term storage of
simple shapes (Olson, Moore, Stark, & Chatterjee, 2006).
Specifically, patients with medial temporal damage are
significantly impaired even in short-term storage of shape
and color stimuli (Olson et al., 2006). In addition, parietal
regions believed to be specifically involved in retrieval
from long-term memory are active and necessary during
working memory tasks even for simple, semantically
impoverished stimuli (Berryhill & Olson, 2008a, 2008b).
Taken together with the results from verbal working
memory (e.g., Öztekin et al., 2010), this suggests that
passive storage may play a role even in standard visual
working memory paradigms. However, to our knowledge,
there is no direct evidence to indicate that passive long-
term memory plays a major role in the short-term storage
of simple visual stimuli.

The role of passive storage in the short-term storage
of real-world stimuli

Observers are often able to hold only 3 or 4 simple
colors in visual working memory. However, how many
semantically rich real-world objects can observers remem-
ber in working memory tasks such as change detection?
In fact, it is usually found that given sufficient time to
encode the objects, observers are able to detect changes to
real-world objects easily, successfully remembering all the
objects they are shown (Brady, Konkle, Oliva, & Alvarez,
2009; see also Melcher, 2001, 2006). This contrasts
markedly with studies of simple colored squares and
complex abstract stimuli (e.g., 3D cubes; abstract complex
shapes), which find that performance decreases signifi-
cantly when observers are asked to remember more
objects, as though either a resource or item limit had
been reached (e.g., Alvarez & Cavanagh, 2004; Bays &
Husain, 2008; Zhang & Luck, 2008). Increased perfor-
mance with real-world stimuli could result from a number
of factors. For example, the large amount of stored
knowledge observers have about such stimuli may provide
more extracted features for each item, making items more
distinctive from each other. Additionally, real-world stimuli
may allow for easier test–foil combinations, because many
different features of an object may be changed at once, as
compared to only the low-level features of a simple square
or even a 3D cube.
However, one intriguing hypothesis is that increased

performance with real-world objects is a result of the
increased use of the passive storage system for real-world
objects compared to semantically impoverished objects,
such as simple or complex geometric shapes. In particular,
while active storage clearly plays a role in working
memory performance for real-world stimuli (e.g., with
faces both fMRI activity in the fusiform face area and the
contralateral delay activity are increased with greater
memory load: Druzgal & D’Esposito, 2001; Ruchkin,
Johnson, Grafman, Canoune, & Ritter, 1992), there could

be significant effects of passive storage, even at short
delays. In other words, “working memory” paradigms that
use semantically rich real-world stimuli make use of not
only the active working memory system but also the
passive episodic retrieval (“long-term”) memory system,
which operates most effectively when objects are seman-
tically distinctive (e.g., Konkle et al., 2010b).
For example, Hollingworth (2004) has demonstrated

that both working memory and long-term memory con-
tribute to memory for objects within scenes. Memory is
best for the few most recent items (a recency effect), but
observers are able to remember significant information
about many objects from a scene, even at long delays.
This is compatible with performance on the task being
driven by both working memory and long-term passive
storage: at short time scales, working memory and passive
storage both contribute; but with increasing delay, only
long-term, passive representations remain, and so perfor-
mance asymptotes (compatible with standard interpreta-
tions of the serial position curve in verbal memory: e.g.,
Atkinson & Shiffrin, 1968; Waugh & Norman, 1965).
Effects of encoding time and consolidation also suggest

that the short-term storage of real-world objects might
make use of the passive storage system. For example, in
the original study of Luck and Vogel (1997), no difference
was found in performance when the stimuli to be encoded
were shown for 100 ms or for 500 ms, which they took as
evidence that the active storage buffer was “filled up” even
with 100 ms of exposure (a fact compatible with the results
from EEG studies: Perez & Vogel, 2011; Figure 10b). By
contrast, paradigms using real-world objects demonstrate
no such “filling up”: instead, performance improves
continuously with more time to encode the stimuli (e.g.,
Brady, Konkle, Oliva, & Alvarez, 2009; Melcher, 2001,
2006; Figure 10a). In addition, Vogel, Woodman, and
Luck (2006) find that it takes only 50–100 ms to
consolidate each item into memory when using simple,
semantically impoverished stimuli. However, with real-
world stimuli much more time is needed: for example,
important work by Molly Potter on conceptual short-term
memory and attentional blink has shown that while real-
world stimuli are well remembered later even if visually
masked after about 100 ms of processing, it requires
approximately another 300 ms of processing before they
are immune to conceptual masking from another mean-
ingful image (Potter, 1976) and up to 500 ms to make
them fully consolidated (e.g., Chun & Potter, 1995).
There are two implications to the different time courses

observed for real-world stimuli. First, real-world stimuli
show no evidence of an asymptote that is usually taken as
evidence of the “filling up” of the active buffer. This
might be because passive storage is playing a significant
role in performance with real-world objects. Second, it
takes significantly longer to consolidate real-world stimuli.
This could be because encoding a trace that is available
for passive retrieval takes longer to create.
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Conclusion

There is significant reason to believe that passive
storage plays a role even in the short-term storage of
information. For example, working memory paradigms
seem to be dependent on the medial temporal lobe (Olson
et al., 2006), and as the stimuli to be remembered are
increasingly semantically rich, there does not seem to be a
fixed storage buffer that “fills up” after some encoding
duration (e.g., Brady, Konkle, Oliva, & Alvarez, 2009).
Thus, the relative influence of active and passive storage
in working memory paradigms remains an important open
question.
One hypothesis is that passive storage is always used in

addition to active maintenance in all paradigms requiring
short-term storage. Under this hypothesis, passive storage
may simply contribute more to performance for real-world
objects than for simple stimuli because it is more difficult
to make use of the passive storage system for semantically
impoverished stimuli. For example, real-world stimuli are
much more likely to be conceptually distinctive, allowing
them to be encoded in memory more accurately or
retrieved with less interference than displays of semanti-
cally impoverished stimuli (e.g., Konkle et al., 2010b).
Furthermore, real-world stimuli allow experimenters to

use different stimuli on each trial, making the passive
retrieval task easier by requiring only familiarity, and not
recollection (e.g., Yonelinas, 2001).
Insight into these questions will likely require research

on memory representations at the intersection of visual
working memory and visual long-term memory. Experi-
ments requiring memory for real-world items within
naturalistic, structured displays likely engage both active
and passive memory systems and will, therefore, be a
productive avenue for future research. However, the field
must first establish behavioral and neural methods for
isolating active vs. passive representations in order to
correctly attribute aspects of performance to working
memory and long-term memory contributions.

Summary and conclusions

Research that focuses on memory systems and memory
processes often aims to discover principles of memory
function that generalize across the type of information that
is being remembered. However, understanding the content

Figure 10. Differential encoding rates for real-world and simple stimuli. (a) Encoding rate for real-world stimuli. For real-world stimuli,
sufficient detail to discriminate categorically different items is encoded in less than 1 s, but information continues to accrue over the course
of seconds. With enough time, sufficient detail to discriminate items at the exemplar level or state level can be encoded. Data and stimuli
were adapted from Brady, Konkle, Oliva et al. (2009). (b) Encoding rate for simple stimuli. For basic features and shapes, information is
rapidly encoded into memory, typically reaching an asymptote at or before 100 ms. Data were adapted from Vogel et al. (2001).
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of memory representations can place important constraints
on models of memory. In this review, we have discussed
some of the key experiments on visual working memory
and visual long-term memory that have focused on the
content of memory representations. Specifically, we have
focused on studies that have characterized and expanded
our knowledge about the fidelity of working and long-term
memory representations, explored different characteriza-
tions of the basic units of memory and the relationship
across items in memory, and highlighted the critical effects
of stored knowledge on memory.
This representation-based approach has led to several

discoveries regarding the content and structure of stored
representations and has led to several claims and con-
straints on the nature of working and long-term memory
models. Taken together, these findings suggest that models
of memory must go beyond characterizing how individual
items are stored and move toward capturing the more
complex, structured nature of memory representations. We
have proposed that information is represented at the
individual item level as hierarchical feature bundles, and
across individual items in terms of ensemble or scene
context, and that these levels of representation interact
(see Figure 9). Moreover, this structure applies to both
simple and real-world displays and to both visual working
memory and visual long-term memory.
Importantly, visual memory research can also inform

vision research, providing a method to validate or test
different models of visual representations: better models
of how stimuli are coded should lead to better predictions of
memory performance, in both working memory and long-
term memory. For example, biases in memory toward
prototypical values can be used to investigate which
dimensions are used to represent objects (Huang & Sekuler,
2010; Huttenlocher et al., 2000), and the extent to which
object features tend to be remembered independently or
separately can indicate whether objects are coded as bound
units (Bays et al., 2011; Fougnie & Alvarez, submitted for
publication). In this way, visual memory paradigms can be
used not only for understanding memory systems and
processes but also for understanding the nature of existing
visual representations.
As research in the domains of visual working memory

and visual long-term memory moves forward, it will be
essential to keep in mind that paradigms and stimuli do
not isolate processes. For example, the process of passive
episodic retrieval likely occurs in all memory paradigms,
even in paradigms that require short-term storage and
even when using stimuli that long-term memory cannot
effectively store. One promising approach to teasing apart
the active vs. passive storage of information is to use
online neural measuresVliterally measuring whether
representations are active. Additionally, new behavioral
methods could be developed to expressly measure and
model both the working memory and long-term memory
contributions to any task. If the past research on memory
systems has helped us isolate and characterize these

different processes, future research may now shift the
focus toward understanding how these memory systems
interact in the same moment in time, operating over
similar structured representations.
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