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The information that individuals can hold in working memory is quite limited, but researchers have
typically studied this capacity using simple objects or letter strings with no associations between them.
However, in the real world there are strong associations and regularities in the input. In an information
theoretic sense, regularities introduce redundancies that make the input more compressible. The current
study shows that observers can take advantage of these redundancies, enabling them to remember more
items in working memory. In 2 experiments, covariance was introduced between colors in a display so
that over trials some color pairs were more likely to appear than other color pairs. Observers remembered
more items from these displays than from displays where the colors were paired randomly. The improved
memory performance cannot be explained by simply guessing the high-probability color pair, suggesting
that observers formed more efficient representations to remember more items. Further, as observers
learned the regularities, their working memory performance improved in a way that is quantitatively
predicted by a Bayesian learning model and optimal encoding scheme. These results suggest that the
underlying capacity of the individuals’ working memory is unchanged, but the information they have to
remember can be encoded in a more compressed fashion.
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Every moment, a large amount of information from the world is
transmitted to the brain through the eyes, ears, and other sensory
modalities. A great deal of research has examined how the per-
ceptual and cognitive system handles this overwhelming influx of
information (e.g., Neisser, 1967). Indeed, this information over-
load provides the motivating intuition for why we need selective
attention: to actively filter out irrelevant input to allow specific
processing of the intended stimuli (Broadbent, 1958). However,
since the world is filled with regularities and structure, the infor-
mation transmitted to the brain is also filled with regularities
(Barlow, 1989). In quantitative terms, there is significant redun-
dancy in the input (Huffman, 1952; Shannon, 1948). An intuitive
example of the redundancy in the visual input is to consider all the
possible images that could be made from an 8 ! 8 grid where any
pixel can be any color. Most of the images will look like noise, and

only a very tiny percentage of these images will actually look like
a picture of the real world (Chandler & Field, 2007). This indicates
that real-world images are not randomly structured, and in fact
share many structural similarities (e.g., Burton & Moorehead,
1987; Field, 1987; Frazor & Geisler, 2006). Interestingly, compu-
tationally efficient representations of image-level redundancy pro-
duce basis sets that look remarkably like primary visual cortex,
providing evidence that our visual perceptual system takes advan-
tage of this redundancy by tuning neural response characteristics to
the natural statistics of the world (Olshausen & Field, 1996).

Being sensitive to the statistics of the input has direct conse-
quences for memory as well as for perception (Anderson &
Schooler, 2000). Recent work on the rational analysis of memory,
for example, suggests that the power laws of forgetting and prac-
tice approximate an optimal Bayesian solution to the problem of
memory retrieval given the statistics of the environment (Anderson
& Schooler, 1991; see also Shiffrin & Steyvers, 1997, 1998). Here
we apply similar principles of rational analysis (Chater & Oaks-
ford, 1999) to the capacity of the working memory system. We
focus on the abstract computational problem being solved by the
working memory system: the storage of as much information as
possible in the limited space available.

Working Memory Capacity and Redundancy

According to information theory, in an optimal system more
content can be stored if there are redundancies in the input (Cover
& Thomas, 1991). In other words, if the input contains statistical
structure and regularities, then each piece of information we en-
code limits the likely possibilities for the remaining information
(e.g., given a q, the next letter is likely to be u). This makes it
possible to encode more items in less space. If the human working
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memory system approximates an optimal memory system, it
should be able to take advantage of statistical regularities in the
input in order to encode more items into working memory.

However, while the capacity of short-term and working memory
has been extensively studied (e.g., Alvarez & Cavanagh, 2004;
Baddeley, 1986; Cowan, 2001, 2005; Zhang & Luck, 2008), little
formal modeling has been done to examine the effects of redun-
dancy on the system. Nearly all studies on visual working memory
have focused on memory for arbitrary pairings or novel stimuli.
While some studies have investigated the effects of associative
learning on visual working memory capacity (Olson & Jiang,
2004; Olson, Jiang, & Moore, 2005), they have not provided clear
evidence for the use of redundancy to increase capacity. For
example, one study found evidence that learning did not increase
the amount of information remembered, but that it improved
memory performance by redirecting attention to the items that
were subsequently tested (Olson et al., 2005).

Chunking

However, the effects of redundancy on working memory capac-
ity have been well studied through the phenomenon of chunking,
particularly in verbal working memory (Cowan, 2001; Miller,
1956; Simon, 1974). Cowan (2001) defined a chunk as a group of
items where the intrachunk associations are greater than the inter-
chunk associations. In other words, in the sequence FBICIA the letters
F, B, and I are highly associated with each other and the letters C,
I, and A are highly associated with each other, but the letters have
fewer associations across the chunk boundaries. Thus, observers
are able to recall the sequence using the chunks FBI and CIA,
effectively taking up only two of the four chunks that people are
able to store in memory (Cowan, 2001; Cowan, Chen, & Rouder,
2004). By comparison, when the letters are random, say HSGABJ,
they are more difficult to remember, since it is more difficult to
chunk them into coherent, associated units.

Chunking is not usually framed as a form of compression
analogous to information theoretic views. In fact, in the seminal
work of Miller (1956), chunking and information theoretic views
of memory were explicitly contrasted, and the most naı̈ve infor-
mation theoretic view was found lacking in its ability to explain
the capacity of working memory. However, at its root chunking
approximates a form of compression: It replaces highly correlated
items (which are therefore highly redundant) with a single chunk
that represents all of the items. Thus, it is possible to frame the
strategy of chunking as a psychological implementation of a
broader computational idea: removal of redundancy to form com-
pressed representations and allow more items to be stored in
memory. At this level of description, chunking is compatible with
information theoretic analyses. In fact, information theory and
Bayesian probability theory may be able to explain exactly when
human observers will form a chunk in long-term memory (e.g.,
Orbán, Fiser, Aslin, & Lengyel, 2008), in addition to how useful
that chunk will be to subsequent working memory tasks. Thus,
information theory may be not only compatible with chunking but
in fact may provide useful constraints on theories of chunking.

In the present experiments we asked whether human observers
learn and use regularities in working memory in a way that is
compatible with an information theoretic compression analysis. In
two experiments we presented observers with displays of colors

that were either random or patterned. By presenting regularities in
the displays over the course of the experiment, we examined if and
how observers take advantage of these regularities to form more
efficient representations. We then present a quantitative model of
how learning occurs and how the stimuli are encoded using the
learned regularities. We show that more items can be successfully
stored in visual working memory if there are redundancies (pat-
terns) in the input. We also show that this learning is compatible
with the compressibility of the displays according to information
theory.

Experiment 1: Regularities Within Objects

In classic visual working memory experiments, the stimuli used
are generally colored oriented lines, shapes, and colored circles,
and the aim is to quantify how many objects or features can be
remembered. In one of the seminal articles in this field, Luck and
Vogel (1997) proposed that people can remember four objects no
matter how many features they contain. This view has since been
tempered, with some arguing for independent storage of different
feature dimensions (Magnussen, Greenlee, & Thomas, 1996;
Olson & Jiang, 2002; Wheeler & Treisman, 2002; Xu, 2002) and
others arguing for more graded representations, in which informa-
tion load determines how many objects can be stored (Alvarez &
Cavanagh, 2004; Bays & Husain, 2008). However, nearly all
current work emphasizes that at best three or four features from a
given stimulus dimension can be encoded successfully.

Here we modify the standard paradigm by introducing regular-
ities in the displays for some observers. One group of participants
was presented with colors drawn randomly, as in classical visual
working memory tasks, such that all possible pairs of colors were
equally likely to occur. A second group of participants was pre-
sented with colors that occurred most often paired with another
color. For example, a particular observer might see red most often
around yellow, white most often around blue, whereas a smaller
percentage of the time these colors appeared with any other color.
Because this manipulation introduces redundancy into the dis-
plays, in information theoretic terms these displays contain less
information. An information theoretic view of memory therefore
predicts that the observers presented with regularities should be
able to encode more items into memory.

Method

Observers. Twenty naı̈ve observers were recruited from the
Massachusetts Institute of Technology (MIT) participant pool (age
range 18–35) and received $10 for their participation. All observ-
ers gave informed consent.

Procedure. Observers were presented with displays consisting
of four objects around the fixation point (see sample display in
Figure 1). Each object was made up of two different colored
circles, with one circle inside the other. Observers were informed
that their task was to remember the locations of each of the eight
colors. At the start of a trial, the colors appeared and remained
visible for 1,000 ms. Then the colors disappeared, and placeholder
circles were present for the next 1,000 ms (long enough to prevent
observers from relying on iconic memory; Sperling, 1960), and
then either the inside or outside circle on a random object was
darkened.
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The task was to indicate which of the eight colors had been
presented at the indicated location, by pressing one of eight color-
coded keys. Observers completed 600 trials, presented in 10 blocks
of 60 trials each. Afterward, they completed a questionnaire,
reporting the strategies they employed and whether they noticed
the presence of patterns in the displays.

The stimuli were presented using MATLAB software with the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).
The eight colors used were red, green, blue, magenta, cyan, yel-
low, black, and white.

Manipulation. Observers were randomly assigned to two
groups, patterned and uniform, which differed in how the colors
for each trial were chosen. For observers in the uniform condition,
the locations of the colors in each trial were chosen randomly, with
only the constraint that each color had to appear exactly once in a
display.

For observers in the patterned condition, the stimuli for each
trial were not chosen randomly. First, for each subject a joint
probability matrix was constructed to indicate how likely each
color was to appear inside and outside of each other color. This
matrix was made by choosing four high-probability pairs at ran-
dom (probability " .2151) and then assigning the rest of the
probability mass uniformly (probability " .0027). As in the uni-
form condition, all eight colors were present in each display. In
order to achieve this, the diagonal of the joint probability matrix
was set to zero in order to prevent the same color from appearing
twice in the same display.

The pairs were constrained so that each color was assigned to
exactly one high-probability pair. For example, if {blue–outside,
red–inside} was a high-probability pair in this joint probability
matrix, the observer would often see blue and red appear together,
in that configuration. However, blue and red each would also
sometimes appear with other colors, or in a different configuration.
So, for example, {blue–outside, yellow–inside} and {red–outside,
blue–inside} could also appear with low probability. High-
probability pairs accounted for approximately 80% of the pairs
shown during the experiment, and low-probability pairs consti-
tuted the other 20%.

In the final block of the experiment in the patterned condition,
the distribution from which the displays were drawn was changed
to a uniform distribution. This eliminated the regularities in the
display, and allowed us to assess whether observers had used the
regularities to improve their performance. Further, this manipula-
tion gives a quantitative measure of learning: the difference in
performance between Block 9 and Block 10.

Results

We estimated the number of colors observers could successfully
hold in memory using the following formula for capacity given an
eight-alternative forced choice (see the Appendix for a derivation
of this formula):

K " [(PC ! 8 ! 8) – 8]/7.

By correcting for chance we can examine exactly how many
colors from each display observers would have had to remember in
order to achieve a given percent correct (PC). It should be noted
that K is a way of quantifying the number of colors remembered
that does not necessarily reflect what observers actually represent
about the displays. For instance, observers may remember all eight
colors with uncertainty rather than some subset of the colors with
perfect certainty (see, e.g., Bays & Husain, 2008; Wilken & Ma,
2004; however, see Rouder et al., 2008, and Zhang & Luck, 2008,
for evidence of discrete fixed-resolution representations).

Performance across groups. Observers in the uniform condi-
tion remembered 2.7 colors on average throughout the experiment
(see Figure 2). This is consistent with previous results on the
capacity of visual working memory for colors (e.g., Vogel & Awh,
2008, in which the K values varied from less than 1 to more than
6 across 170 individuals; M " 2.9, SD " 1).

Critically, we found that observers in the patterned condition
could successfully remember K " 5.4 colors after learning the
regularities in the displays (Block 9). This memory capacity is
significantly higher than the K " 3.0 colors they were able to
remember when the displays were changed to be uniformly dis-
tributed in Block 10 (see Figure 2), t(9) " 4.90, p " .0009,
two-tailed; note that this is a within-subject test, and so the
between-subjects error bars in Figure 2 underestimate the reliabil-
ity of this effect. In addition, capacity for colors increased signif-
icantly across the first nine blocks of the experiment: F(8, 72) "
12.28, p # .0001, one-way repeated measures analysis of variance.
There was also a significant interaction between color capacity in

Figure 2. Results of Experiment 1: Memory performance is plotted as a
function of experimental block. In the patterned condition some colors
appeared on the same object more frequently than did others. Observers’
performance increased over time as they learned these regularities. In
Block 10 (shaded for emphasis) the regularities were removed, so that all
of the colors were drawn from a uniform distribution for both groups of
observers. Error bars correspond to $1 SEM.

Figure 1. A sample trial from Experiment 1. Eight colors were presented
as four two-color objects. The colors disappeared for 1 s and then either the
inside or outside of an object was cued. Observers had to indicate what
color was at the cued location.
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the uniform condition and color capacity in the patterned condition
across blocks, with observers in the patterned condition increasing
their capacity more over time, F(8, 144) " 2.85, p " .006.

Seven of 10 observers in the patterned condition reported no-
ticing regular patterns in the display. The magnitude of the de-
crease in memory performance from Block 9 to 10 was the same
for observers who explicitly noticed the regularities (M " 26%)
and those who did not (M " 27%), and 9 of 10 observers showed
such decreases (mean decrease across all observers " 26%). In
addition, 1 of 10 observers in the uniform condition reported
noticing regular patterns in the configuration of colors, although no
such patterns existed.

Postperceptual inference. One concern is that observers might
simply have remembered one color from each pair and then
inferred what the other colors were after the display was gone. This
would suggest that observers were actually remembering only
three or four colors and were using a postperceptual guessing
strategy to achieve a higher performance in the memory test. This
leads to two predictions. First, when a color from a low-probability
pair is tested (20% of the time), observers should guess wrong and
thus should show worse performance on these pairs over time.
Second, on these trials they should guess wrong in a specific
way—that is, they should guess the high-probability color of the
item in the adjacent location. For example, if an observer remem-
bers only that the outside color of an object was blue, and the
inside color is tested, they should wrongly infer and report the
high-probability color that is often paired with blue.

To test these two predictions, we separated out trials where the
tested item was from a high-probability pair and those where the
tested item was from a low-probability pair. In other words, if blue
often appeared inside red, we considered only the %20% of trials
where blue appeared with another color or in another configura-
tion. On these trials, an explicit inference process would cause
observers to report the wrong color. However, we still found that
performance improved over blocks (see Figure 3). Capacity (K ),

the number of colors remembered, was significantly greater in
Block 9, when the low-probability pairs were in the context of
high-probability pairs, than in Block 10, when all the pairs were of
low probability, t(9) " 4.08, p " .003.

We next analyzed trials in the first nine blocks where a color
from a low-probability pair was tested and observers answered
incorrectly (on average there were 35 such trials per observer, for
a total of 350 such trials across all 10 observers in the first
experiment). If observers do not know what color was present and
are explicitly inferring what was on the display using the high-
probability pairings, then their responses should more often reflect
the high-probability color of the adjacent item. However, on these
trials, observers reported the high-probability color of the adjacent
item only 9% of the time (where chance is 1/7, or 14%). Further,
observers wrongly reported the high-probability color of the tested
color only 2% of the time. In fact, the only systematic trend on
these low-probability error trials is that observers tended to swap
the inner and outer colors much more often than chance: 41%
of the time when observers were incorrect, they mistakenly re-
ported the adjacent color. Interestingly, the rate of swaps with the
adjacent color was lower in the high-probability pairs: On trials
where a high-probability pair was tested, only 27% of error trials
were explained by observers incorrectly reporting the adjacent
color. This could be taken to suggest that the high-probability pairs
tend to be encoded as a single perceptual unit or chunk.

This analysis strongly argues against a postperceptual account
of increased memory capacity, where unencoded items are inferred
during the testing stage. Not only do observers mostly get trials
with the low-probability pairs correct—suggesting they are not
performing postperceptual inference—but even on the trials where
they do make mistakes, they do not tend to report the associated
high-probability colors, as would be predicted by an inference
account.

Instead we suggest that observers learned to encode the high-
probability pairs using a more efficient representation. For exam-
ple, suppose a display contains two high-probability pairs and two
low-probability pairs. Over time, the high-probability items are
encoded more efficiently, leaving more memory resources for the
low-probability items. Such an account explains why even colors
presented in low-probability pairs showed improved memory per-
formance relative to the uniform group, but only when they were
on the same displays as high-probability pairs. In addition, an
analysis across trials demonstrated that, on trials with more high-
probability pairs in the display, more items were successfully
encoded (K " 3.2, 3.2, 3.6, 4.0, and 4.7 for 0, 1, 2, 3, and 4
high-probability pairs in the display, averaged across the entire
experiment). This increase in capacity as a function of the number
of high-probability pairs was significant, F(4, 36) " 4.25, p "
.0065. Furthermore, the only difference between displays contain-
ing three or four high-probability pairs was whether the remaining
pair’s colors were presented in the proper inner–outer configura-
tion. Nevertheless, there was a trend for performance in these two
conditions to differ, suggesting that learning may have been spe-
cific to the spatial configuration, t(9) " 1.78, p " .11. Together
with the fact that observers did not often flip the inner and outer
colors of the high-probability pairs, this suggests that observers
may have been encoding the inner and outer colors as a single
bound unit or chunk.

Figure 3. Results of Experiment 1 when considering only cases where the
colors appeared in low-probability pairings. The dark squares represent data
from observers in the patterned condition for the 20% of trials where a
low-probability pair was tested; the gray circles represent the data from
observers in the uniform condition. The gray circle in Block 10 corresponds to
100% of uniform trials, because all pairs were of low probability in this block
(which is shaded for emphasis). Error bars correspond to $1 SEM.
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Discussion

The present results indicate that, if we consider working mem-
ory capacity in terms of the number of colors remembered, ob-
servers were able to use the regularities in the displays to increase
their capacity past what has been assumed to be a fixed limit of
approximately three or four colors. When colors are redundant
(i.e., are correlated), then observers can successfully encode more
than simply three or four colors. This suggests that the information
content of the stimuli is incredibly important to determining how
many can be successfully stored (see Alvarez & Cavanagh, 2004,
for converging evidence of fewer high-information-load items
being stored).

These data can also be interpreted with respect to current psy-
chological constructs for analyzing the capacity of visual working
memory (slots) and working memory more broadly (chunks). In
visual working memory, it has been argued that objects with
multiple features (e.g., color and orientation) can be stored in a
single slot as effectively as objects with only a single feature (Luck
& Vogel, 1997; Vogel, Woodman, & Luck, 2001). In these mod-
els, the unit of memory is thus considered an object, a collection of
features that are spatiotemporally contiguous (Luck & Vogel,
1997; see Scholl, 2001, for evidence pertaining to the definition of
objects in mid-level vision). However, it has been found that
memory for objects with two values along a single feature dimen-
sion does not show the expected within-object advantage, suggest-
ing that what can be stored in a slot is a single value along each
feature dimension, rather than an entire object (e.g., a single object
with two colors on it, as in the present experiment, is not repre-
sented in a single slot; see for further discussion Olson & Jiang,
2002, Wheeler & Treisman, 2002, and Xu, 2002). This is consis-
tent with the present data from the uniform group, where capacity
was approximately three colors rather than three multicolor objects
(six colors).

The data from the patterned group represent a challenge to this
view. The ability of the patterned group to remember up to six
colors represents a capacity of more than a single color per object,
suggesting that capacity cannot be fixed to 3–4 objects with a
single value along each feature dimension. Instead, the present
data can be framed in terms of a slot model only if slots can hold
not just one color, but multiple colors from the same object as the
objects are learned over time. In this sense, slots of visual working
memory become more like chunks in the broader working memory
literature (Cowan, 2001). We return to this issue in Experiment 2,
when we explore whether these regularities can be used when they
are present across objects.

We next performed an information theoretic analysis of the
current data to examine if observers have a fixed working memory
capacity when measured in bits. We can estimate the amount of
redundancy in the displays to test the hypothesis that observers
actually have the same amount of resources to allocate in both
uniform and patterned conditions. On this account, the difference
in memory performance comes from the fact that the patterned
displays allow observers to allocate their memory space more
effectively. This allows us to make quantitative predictions about
working memory capacity given a specific amount of redundancy
in the display.

Modeling

Modeling provides a formal framework for theories of compression
and allows us to test the hypothesis that there is a limit of visual
working memory capacity, not in terms of the number of colors that
can be remembered, but in terms of the amount of information
required to encode those colors. The modeling has four stages.
First, we model how observers might learn the color regularities
based on the number of times they saw each pair of colors. The
probability of each color pair is estimated with a Bayesian model
that accounts for the frequency with which each color pair ap-
peared, plus a prior probability that the colors will be paired
uniformly. Second, we assess how these learned statistics translate
into representations in bits, using Huffman coding (Huffman,
1952). Huffman coding is a way of using the probabilities of a set
of symbols to create a binary code for representing those symbols
in a compressed format. This allowed us to estimate the number of
bits required to encode each item on the display. Third, we show
that the information theoretic model successfully predicts observ-
ers’ data, suggesting they perform near optimal compression.
Finally, we show that a discrete chunking model can also fit the
data. Importantly, the best-fitting chunking model is one that
closely approximates the information theoretic optimal. MATLAB
code implementing the model can be downloaded from the au-
thors’ website (http://visionlab.harvard.edu/members/tim/).

Learning the Color Pairs

We used a Dirichlet-multinomial model (Gelman, Carlin, Stern,
& Rubin, 2003) to infer the probability distribution that the stimuli
were being drawn from, given the color pairs that had been
observed. We let d equal the observations of color pairs. Thus, if
the trial represented in Figure 1 is the first trial of the experiment,
after this trial d " {1 yellow–green, 1 black–white, 1 blue–red, 1
magenta–cyan}. We assume that d is sampled from a multinomial
distribution with parameter &. In other words, we assume that at
any point in the experiment, the set of stimuli we have seen so far
is a result of repeated rolls of a weighted 64-sided die (one side for
each cell in the joint probability matrix; i.e., one for each color
pair), where the chance of landing on the ith side of the 64-sided
die is given by &i. Note that this is a simplification, since the
experiment included the additional constraint that no color could
appear multiple times in the same display. However, this constraint
does not have a major effect on the expected distribution of stimuli
once a large number of samples has been obtained and was thus
ignored in our formalization.

We set our a priori expectations about & using a Dirichlet
distribution with parameter '. The larger ' is, the more strongly
the model starts off assuming that the true distribution of the
stimuli is a uniform distribution. The ' parameter can be approx-
imately interpreted as the number of trials the observers imagine
having seen from a uniform distribution before the start of the
experiment. Using statistical notation, the model can be written as

& ! Dirichlet(')

d * Multinomial(&)

To fit the model to the data we set a fixed ' and assumed that
the counts of the pairs that were shown, d, are observed for some
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time period of the experiment. Our goal is to compute the posterior
distribution p(&|d, '). The mean of this posterior distribution is an
observer’s best guess at the true probability distribution that the
stimuli are being drawn from, and the variance in the posterior
indicates how certain the observer is about the estimate. The
posterior of this model reduces to a Dirichlet posterior where the
weight for each color pair is equal to the frequency with which that
color pair appears in d, plus the prior on that pair, 'i.

Encoding the Color Pairs

Any finite set of options can be uniquely encoded into a string
of bits. For example, if we wished to encode strings consisting of
the four letters A, B, C, and D into strings of bits, we could do so
by assigning a unique two-bit code to each letter and then concat-
enating the codes. Imagine we had assigned the following codes to
the letters: A " 00, B " 01, C " 10, D " 11. The string ACAABAA
could then be written as 00100000010000 (14 bits) and uniquely
decoded to retrieve the original string.

Importantly, however, this naı̈ve method of generating a code
performs quite badly in the case where some letters are much more
likely to appear than others. A better method gives items that occur
most frequently the shortest codes, while less frequent items are
assigned longer codes. So, for example, if p(A) " .5, and p(B) "
.2, p(C) " .2, and p(D) " .1, then we can achieve a great deal of
compression by representing strings from this language using a
different code: A " 0, B " 10, C " 110, D " 111. Using this code,
the string from above, ACAABAA, would be represented as
0110001000 (10 bits), a significant savings even for such a short
string (29%). Note that it can still be uniquely decoded, because no
item’s code is the same as the beginning of a different item’s code.

Huffman coding (Huffman, 1952) is a way of using the proba-
bilities of a set of symbols to create a binary code for representing
those symbols in a compressed format (as in the example of A, B,
C, and D above). Here, we used Huffman coding to estimate how
much savings observers should show as a result of the fact that the
color pairs in our experiment were drawn from a nonuniform
distribution. In the Appendix, we demonstrate that the same results
also hold for another way of assessing compression using self-
information.

We used the probabilities of each color pair, as assessed by the
Bayesian model described above, to generate a unique bit string
encoding the stimuli on each trial, averaged for each block of the
experiment. We supposed that if observers were using some form
of compression to take advantage of the redundancies in the
display, the length of the code that our compression algorithm
generates should be inversely proportional to how many objects
observers were able to successfully encode. In other words, if there
were many low-frequency color pairs presented (as in Block 10),
these items should have longer codes, and observers should be able
to successfully remember fewer of them. Alternatively, if there are
many high-frequency color pairs presented, the better they should
be able to compress the input, and the more colors they will
remember.

Information Theory

With these learning and coding models, we can compute a
prediction about the memory performance for each subject for

each block. In order to assess the fit between the model and the
behavioral data, we used the following procedure. For each display
in a block, we calculated the number of bits required to encode that
display based on the probabilities from the learning model. Next,
we correlated the average number of bits per display from the
model with the memory performance of the observers. We ex-
pected that the fewer bits per display needed, the better observers’
memory performance, and thus we expected a negative correlation.

This prediction held quite well, with the maximum fit between
this Huffman code model and the human data at ' " 34, where r,
the correlation coefficient between the human and model data, is
–.96 (see Figure 4; p # .0001). This large negative correlation
means that when the model predicts there should be long bit strings
necessary to encode the stimuli, human visual working memory
stores a low number of items. This is exactly as you would expect
if visual working memory took advantage of a compression
scheme to eliminate redundant information. In addition, this mod-
eling suggests that if observers encoded the displays completely
optimally, they would be able to remember approximately 6.1
colors. By Block 9, observers were remembering 5.4 colors on
average, significantly better than with no compression at all, but
not quite at the theoretically maximal compression.

The fit between the human data and the model is reasonably
good across a broad range of values for the prior probability of a
uniform distribution (see Figure 5). The fit is not as high where the
prior is very low, since with no prior there is no learning curve—
the model immediately decides that whatever stimuli it has seen
are completely representative of the distribution (as a non-
Bayesian model would do). The fit is also poor where the prior is
very high, because the model never learns anything about the
distribution of the stimuli, instead generating codes the entire time
as though the distribution was uniform. However, across much of
the middle range, the model provides a reasonable approximation
to human performance.

Importantly, this model allows us to examine if there is a fixed
information limit on memory capacity. The Huffman codes pro-
vide a measure of the average number of bits per object, and the
memory performance gives a measure in number of colors remem-
bered. Thus, if we multiply the average bits per item specified by

Figure 4. The average length of the Huffman code for a single color, by
block. Block 10 is shaded to emphasize that in this block the regularities
were removed, so all colors were drawn from a uniform distribution for
both groups of observers.

492 BRADY, KONKLE, AND ALVAREZ



the Huffman code times the number of items remembered, we get
an estimate of the number of bits of information a given set of
observers recalled in a given block (see Figure 6).

Notice first that both groups of observers in the uniform condi-
tion and the patterned condition show roughly the same total
capacity in bits, despite the overall difference in the number of
items remembered between the groups. Second, the total bit esti-
mate remains remarkably constant between Block 9 and Block 10
in the patterned group, even though the memory performance
measured in number of colors showed a significant cost when the
statistical regularities were removed. Thus, while the patterned
group was able to remember more colors throughout the experi-
ment, this increase was completely explained in the model by the
fact that the items to be remembered were more redundant and
presumably took less space in memory.

Chunking Model

The information theoretic modeling gives a way of formally
specifying how compressible a set of input is, given the accumu-
lated statistics about the previous input. Huffman coding and
self-information are ways to formalize this and are thus a form of

rational analysis or computational theory, specifying the optimal
solution to the computational problem facing the observer (Ander-
son, 1990; Marr, 1982). Interestingly, we find that observers
closely approximate this optimum. However, Huffman coding and
self-information are not meant as serious candidates for the psy-
chological mechanism people use for implementing such compres-
sion. Indeed, it is a different level of analysis to understand what
psychological algorithms and representations are actually respon-
sible for allowing more items to be encoded in memory when those
items are redundant. For instance, is the nature of the compression
graded over time, or all-or-none?

In the information theoretic models (Huffman coding, self-
information), the “cost” of encoding each color pair is equal to the
log of the chance of seeing that pair relative to the chance of seeing
any other pair. This is the optimal cost for encoding items if they
appear with a given probability, and provides for graded compres-
sion of a color pair as the items’ probability of co-occurrence
increases. However, the actual psychological mechanism that peo-
ple use to remember more items could be either graded as in the
rational analysis, or could function as a discrete approximation to
this optimum by sometimes encoding highly associated items into
a single representation. Chunking models are one way of ap-
proaching this kind of discrete approximation (e.g., Cowan et al.,
2004). They show increased memory capacity for highly associ-
ated items but convert the compressibility to a discrete form:
Either a single chunk is encoded or the two colors are separately
encoded into two chunks. This distinction between graded com-
pression and all-or-none compression is important because it pre-
dicts what is actually encoded by an observer in a single trial. The
current results do not address this distinction directly, however,
because we do not examine the representational format of the color
pairs on each trial. However, a broad literature expresses a pref-
erence for viewing compression in working memory as based on
discrete chunking (e.g., Chase & Simon, 1973; Cowan, 2005;
Miller, 1956; however, see Alvarez & Cavanagh, 2004, Bays &
Husain, 2008, and Wilken & Ma, 2004, for support for a graded
view). Thus, we sought to examine whether our data could be
accurately modeled using this kind of approximation to the infor-
mation theoretic analysis presented above.

To implement a simple chunking model, one needs to determine
a threshold at which associated items become a chunk. The most
naı̈ve chunking model is one in which observers reach some fixed
threshold of learning that a pair of colors co-occur and treat them

Figure 5. The correlation between the information theoretic model and the human behavioral data as a function
of the value of the prior, '.

Figure 6. The size of memory estimated in bits, rather than number of
colors (using the Huffman coding model). Block 10 is shaded to emphasize
that in this block the regularities were removed, so all colors were drawn
from a uniform distribution for both groups of observers. Error bars
represent $1 SEM.
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as a chunk thereafter (perhaps after this new chunk enters long-
term memory). However, this simple model provides a poor fit to
the current data. In such a model, each subject will have a strong
step-like function in his or her graph, and the graded form of the
group data will arise from averaging across observers. However, in
the present data, single observers showed a graded increase in
performance by block, suggesting this kind of model does not
accurately represent the data.

A more sophisticated class of chunking models have a proba-
bilistic threshold, allowing for single observers to treat each color
pair as one chunk more often if they strongly believe it is a chunk,
and less often if they are unsure if it is a chunk. In the case where
the chance of chunking in such a model is logarithmically propor-
tional to the association between the items, this chunking model is
exactly equivalent to a thresholded version of the information
theoretic compression model and therefore makes the same pre-
dictions across large numbers of trials. However, a chunking
model could also assume that the possibility of chunking is linearly
proportional to the association between the items, pchunk(i, j) " + !
&i, j, in which case it would be possible that the chunking model’s
fit would differ significantly from that of the more ideal compres-
sion algorithms. We did not find this to be the case for the current
experiment.

The graph from the best fit linear chunking model is shown in
Figure 7. The best fit constant of proportionality was 15, which
provided a fit to the data of r " –.90 (e.g., for each pair, the chance
of being chunked on any given trial was equal to 15 ! &i, j, such
that once the probability of seeing a given color pair was greater
than 1/15th, that color pair was always encoded as a single chunk).
Interestingly, this constant of proportionality—because it causes
such a steep increase in the chance of chunking even at very low
associations and plateaus at a 100% chance of chunking by the
time the association reaches 1/15, or 0.067—approximates the
shape of a logarithmic curve. The correlation between the proba-
bility of chunking under this linear model and the optimal cost
function derived via information theory (using self-information) is
therefore approximately r " –.73. This model thus provides an

excellent approximation to the ideal compression algorithm as
well.

Thus, we find that the best chunk-model matches the data well
and generates a flat estimate of the number of chunks needed
across the entire experiment. Importantly, however, the expected
probability of chunking in this model closely matches the optimal
information-theoretic cost function (higher cost " lower probabil-
ity of chunking). This is to be expected because the information
theoretic model predicted 92% of the variance in the behavioral
data. This suggests that chunking can be usefully thought of as a
discrete approximation to an ideal compression algorithm and
therefore can be thought of as a possible psychological implemen-
tation of compression.

It is important to note that, despite the assumptions we make in
this modeling section, it unlikely that the degree of association
between items determines when they form chunks in long-term
memory. Instead, it may be that human chunk learning depends on
how useful a particular chunk would be in describing the world
while avoiding “suspicious coincidences” (see, e.g., Orbán et al.,
2008, who provided an elegant Bayesian analysis of this problem).
Our analysis of chunking here is meant only as a proof of the
concept that chunking models in general implement a form of
compression that approximates the true information theoretic op-
timum.

Discussion

The modeling work we present illustrates two main conclusions:
First, compression of redundancies must be taken into account
when quantifying human visual working memory capacity; sec-
ond, this compression can be modeled either in a graded fashion,
or in an all-or-none fashion ( probabilistic chunking), which
closely approximates ideal compression algorithms.

The fact that the estimate of the amount of information observ-
ers are able to store is constant across the entire experiment,
whereas the estimate in terms of number of colors varies a great
deal, suggests that compression of redundancies must be taken into
account when quantifying human visual working memory capac-
ity. In addition, it is important to note that fitting our information
theoretic model by minimizing the correlation to the data is not
guaranteed to provide a fit that results in a flat line in terms of the
total information remembered. In fact, in most instances a negative
correlation will not lead to a flat estimate across the experiment,
since a flat line additionally depends on a proportional amount of
decrease at each step. The information theoretic modeling results
provide significant evidence that the capacity of working memory
is a fixed amount of information. Because the chunking model is
the discrete version of an optimal compression scheme, this model
leads to a fixed capacity measured in discrete units (chunks) just as
the information theoretic model let to a fixed capacity measured in
continuous information (bits).

Although our model suggests a working memory capacity of 10
bits, this number should not be taken as indicative of limits on
human performance. The exact number—10 bits—depends criti-
cally on assumptions about how the colors are encoded (three bits
per color in our model, given the eight possible color choices). It
is important, however, that the estimate of memory size be con-
stant across the experiment and across conditions not depend on
our choice of encoding scheme but only on the redundancy inher-

Figure 7. The size of memory (in chunks) for Experiment 1 estimated
using the probabilistic linear chunking model. Block 10 is shaded to
emphasize that in this block the regularities were removed, so all colors
were drawn from a uniform distribution for both groups of observers. Error
bars represent $1 SEM.
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ent in the associations between colors. If observers actually re-
quired 100 bits to encode each color then our estimate of capacity
in bits would change to about 300 bits—but the estimate would
still remain consistent across the experiment, because each color
still provides the same proportional amount of information about
each other color. Thus, it is safe to conclude that our results are
compatible with a fixed amount of information limiting memory
performance, but it is difficult to quantify the exact number of bits
without specifying the true coding model (see the General Discus-
sion for further discussion of the problem of specifying an encod-
ing scheme).

Experiment 2: Regularities Between Objects

The aim of Experiment 2 was to examine if compression can
affect encoding across objects as well as within objects. This
experiment was very similar to Experiment 1, with the only dif-
ference being how the colors were presented on the display. In
Experiment 2, colors were presented side-by-side as separate ob-
jects, in close proximity but not spatially contiguous.

While there are many possible definitions of object, we use the
term to refer specifically to a spatiotemporally contiguous collec-
tion of visual features in mid-level vision (Scholl, 2001; Spelke,
1990). This definition is motivated by both neuropsychological
and behavioral evidence (Behrmann & Tipper, 1994; Egly, Driver,
& Rafal, 1994; Mattingley, Davis, & Driver, 1997; Scholl, Pyly-
shyn, & Feldman, 2001; Watson & Kramer, 1999). For example,
simply connecting two circles with a line to form a dumbbell can
induce object-based neglect, in which the left half of the dumbbell
is neglected regardless of the half of the visual field in which it is
presented (Behrmann & Tipper, 1994). If these two circles are not
connected, neglect does not operate in an object-based manner.
Thus, based on this definition of what counts as an object, the
displays of Experiment 1 contained four objects whereas the
displays of Experiment 2 contained eight objects (see Figure 8).

In the present experiment, we examined whether or not working
memory capacity can take advantage of the statistics between
objects. If visual working memory capacity limits are object-
based, that is, if capacity is constrained by mid-level visual ob-
jects, then observers will not be able to take advantage of regu-
larities across objects. However, if multiple visual objects can be
stored together (akin to “chunks” of letters, as in FBI–CIA), then
people will be able to remember more colors from the display as
they learn the statistics of the input.

Method

Observers. Twenty naı̈ve observers were recruited from the
MIT participant pool (age range 18–35) and received $10 for their
participation. All gave informed consent.

Procedure. Observers were presented with displays consisting
of eight objects arranged in four pairs around the fixation point
(see a sample display in Figure 8). Each object was made up of
only one colored circle. Here the two associated colors appeared
on separate objects, but we provided a grouping cue in order to not
significantly increase the difficulty of the learning problem. All
other aspects of the stimuli and procedure were identical to those
of Experiment 1.

Results

Performance across groups. Observers in the uniform condi-
tion remembered K " 3.4 colors on average throughout the ex-
periment (see Figure 9), consistent with previous results on the
capacity of visual working memory for colors (Vogel & Awh,
2008) and the results of Experiment 1.

We found that observers in the patterned condition could suc-
cessfully remember K " 5.4 colors after learning the regularities in
the displays (Block 9). This memory capacity is significantly
higher than the K " 3.3 colors they were able to remember when
the displays were changed to be uniformly distributed in Block 10
(see Figure 9), t(9) " 9.72, p # .0001. In addition, capacity
increased significantly across the first nine blocks of the experi-
ment, F(8, 72) " 7.68, p # .0001. There was a significant
interaction across blocks between capacity in the uniform condi-
tion and capacity in the patterned condition, with observers in the
patterned condition remembering more colors over time, F(8,
144) " 2.27, p " .025.

Eight of 10 observers reported noticing regular patterns in the
display. The magnitude of the decrease in memory performance
from Block 9 to 10 was the same for observers who explicitly
noticed the regularities (M " 22%) and those who did not (M "
23%), and 9 of 10 observers showed such decreases (mean de-
crease across all observers " 23%). Three of 10 observers in the
uniform condition reported noticing regular patterns in the config-
uration of colors, although no such patterns were present.

We once again separated out trials where the tested item was
from a high-probability pair from those where the tested item was
from a low-probability pair. When we examined only the low-
probability trials, we still found that capacity in Block 9 was
significantly higher than in Block 10, with 4.9 colors remembered
in Block 9 and 3.4 colors remembered in Block 10, t(9) " 4.84,
p " .0009. Thus, as with Experiment 1, we did not find evidence
that people were remembering more items from the display by
using postperceptual inference.

Performance across experiments. We compared the first nine
blocks in the patterned condition of this experiment to the first nine
blocks in the patterned condition of Experiment 1. There were no
main effects or interactions (all Fs # 1). Furthermore, we com-
pared the drop in performance between Block 9 and Block 10
across the two experiments. The size of the drop was not signifi-
cantly different, t(9) " 0.58, p " .58, suggesting that learning was
of a comparable magnitude in both experiments.

Verbal interference. One potential concern is that observers
could have used some verbal memory capacity to augment their

Figure 8. A sample trial from Experiment 2. Eight colors were presented
and then disappeared, and after 1 s, one location was cued. Observers had
to indicate what color was at the cued location.

495COMPRESSION IN WORKING MEMORY



visual working memory in either the current experiment or Exper-
iment 1. Many past studies have found that estimates of visual
working memory capacity are similar with and without verbal
interference (e.g., Luck & Vogel, 1997; Vogel et al., 2001). How-
ever, because of the added element of learning regularities in our
experiments, we decided to test the effects of verbal interference
on our paradigm. Because of the similarities between Experiment
1 and Experiment 2, we ran a control experiment using only the
paradigm of Experiment 2.

We conducted this control experiment with 7 observers using an
identical paradigm to Experiment 2’s patterned condition, but with
the addition of a verbal interference task (remembering four con-
sonants throughout the duration of the trial, with a new set of four
consonants every 10 trials). Observers successfully performed both
the verbal interference task and the visual working memory task,
with a capacity of 4.5 colors in Block 9 but only 3.2 colors in
Block 10, t(6) " 2.10, p " .08. Capacity in Block 9 under verbal
interference was not significantly different than that obtained in
Block 9 of Experiment 2, t(9) " 1.07, p " .31. These data show
that observers are still capable of learning the regularities to
remember more colors when subject to verbal interference in a
challenging dual-task setting.

Modeling. We once again modeled these results to see if they
were compatible with a model in which compression is explained
via information theory. The maximum fit between the Huffman
code model and the human data occurred at ' " 31 where r, the
correlation coefficient between the human and model data, is –.96
( p # .0001). This large negative correlation means that when the
model predicts there should be long bit strings necessary to encode
the stimuli, observers’ memory capacity in terms of the number of
colors remembered is low. This is exactly what one would expect
if visual working memory had a fixed size in bits and took
advantage of a compression scheme to eliminate redundant infor-
mation.

In addition, this model allows us to once again examine if there
is a fixed-bit limit on memory capacity. The Huffman codes gives

a measure of average bits per object, and the memory performance
gives a measure in number of objects remembered. As in Exper-
iment 1, multiplying the average size of the Huffman code times
the number of items remembered gives us an estimate of the
number of bits of information a given set of observers recalled in
a given block (see Figure 10). Notice that once again both the
groups of observers in the uniform condition and the patterned
condition showed the same total capacity in bits, despite the
overall difference in the number of items remembered between the
groups. Second, the total bit estimate remained remarkably con-
stant between Block 9 and Block 10 in the patterned group, even
though the memory performance measured in number of items
showed a significant cost when the statistical regularities were
removed.

One interesting prediction of the model is that the patterned
group should actually be worse at Block 10 than the uniform
group, since the patterned group now has a set of statistics in mind
that are no longer optimal for the displays. Indeed, the pattern in
the behavioral data trends this way, but the difference between
both groups in Block 10 was not significant (see Figure 9), t(9) "
0.64, p " .47. One possible explanation for why performance for
the patterned group does not fall completely below the uniform
group is that observers notice that their model has become inap-
propriate after several trials in Block 10 and begin using a rela-
tively local estimate of the probability distribution (e.g., across the
last few trials) or revert to a uniform model. This suggests a good
deal of flexibility in the model observers use to encode the display.

In addition, we modeled these results using a probabilistic
chunking model where the chance of chunking was linearly pro-
portional to the probability of the color pair. Using the same
parameters as in Experiment 1, this model too provided a good fit
to the data (r " .94; see Figure 11), and it produced an almost flat
estimate of the number of chunks over time in both groups.

Discussion

Observers in the patterned group were able to successfully take
advantage of the redundancy in the displays, as their capacity

Figure 9. Results of Experiment 2. In the patterned condition some colors
appeared on adjacent objects more frequently than did others. Observers’
performance increased over time as they learned these regularities. In
Block 10 (shaded for emphasis) the regularities were removed, so that all
of the colors were drawn from a uniform distribution for both groups of
observers. Error bars correspond to $1 SEM.

Figure 10. The size of memory estimated in bits, rather than number of
objects (using the Huffman coding model). Block 10 is shaded to empha-
size that in this block the regularities were removed, so all colors were
drawn from a uniform distribution for both groups of observers. Error bars
represent $1 SEM.
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increased significantly over time. These data, as well as the esti-
mated capacity in bits from the modeling, reveal strikingly similar
patterns between Experiment 1 and Experiment 2. This suggests
that observers were equally able to take advantage of the redun-
dancy in the displays when the redundancies were present between
adjacent mid-level visual objects rather than within such objects.

This experiment has some implications for the classic slot model
of visual working memory (Luck & Vogel, 1997; Zhang & Luck,
2008). Specifically, a strict interpretation that one slot can hold
only one mid-level visual object from the display does not account
for the present data. The patterned group was able to remember
more objects over time, so the capacity of working memory cannot
be a fixed number of mid-level visual objects. However, if multi-
ple objects can fit into one slot, then the present data can be
accounted for. Indeed, this suggests that slots in visual working
memory should be viewed similarly to chunks in verbal working
memory (Cowan, 2001). Thus, in the present experiment visual
chunks could be formed that consist of pairs of colored objects (see
also Orbán et al., 2008, for evidence of statistical learning of
chunks of multiple objects). Of course, another possibility is that
working memory capacity should be thought of as graded, rather
than based on chunks or slots at all (e.g., Alvarez & Cavanagh,
2004; Bays & Husain, 2008, 2009). This would make it more
closely approximate the information theoretic ideal and would
account for the present data directly.

An important factor in the present experiment is that we pro-
vided a grouping cue for observers by putting the two colors that
will covary in closer proximity to each other than to the other
colors. We expect that learning would still be possible even if the
items were not specifically grouped, as others have demonstrated
that statistical learning can operate across objects, even in cases
when the display is unparsed, and that such learning results in the
formation of visual chunks (Fiser & Aslin, 2001, 2005; Orbán et
al., 2008; see also Baker, Olson, & Behrmann, 2004). However,
our aim in this experiment was not to create a difficult learning
situation; rather, our aim was to demonstrate that visual working
memory can take advantage of these learned statistics to remember

more of the display even when the statistics relate the co-
occurrence of different objects, as in the work of Fiser and Aslin
(2001). It is an avenue of future research to explore what kinds of
statistics can be gleaned from the input and where the statistical
learning mechanisms fail. It will also be important to discover if
situations exist in which observers can successfully learn statistical
regularities but are unable to take advantage of those regularities to
efficiently store items in memory.

Finally, as in Experiment 1, the modeling showed that even
though people are remembering more items, their working mem-
ory capacity is actually constant when quantified by the amount of
information remembered (or the number of chunks stored). In
general, this suggests that the tools of information theory com-
bined with Bayesian learning models enable us to take into account
the compressibility of the input information and provide clear,
testable predictions for how many items observers can remember.
This suggests that compression must be central to our understand-
ing of visual working memory capacity.

General Discussion

We presented two experiments contrasting memory capacity for
displays where colors were presented in random pairs versus in
recurring patterns. In the first experiment, the colors that formed a
pattern were presented as part of the same object. In the second
experiment, the colors that formed a pattern were presented on two
different but spatially adjacent objects. For both experiments we
found that observers were successfully able to remember more
colors from the displays in which regularities were present. The
data indicate that this is not due to postperceptual inference but
reflects an efficient encoding. We proposed a quantitative model of
how learning the statistics of the input would allow observers to
form more efficient representations of the displays and used a
compression algorithm (Huffman coding) to demonstrate that ob-
servers’ performance approaches what would be optimal if their
memory had a fixed capacity in bits. In addition, we illustrated that
a discrete model of chunking also fits our data. The degree of
compression possible from the display was highly correlated with
behavior, suggesting that people optimally take advantage of sta-
tistical regularities to remember more information in working
memory.

We thus show that information theory can accurately describe
observers’ working memory capacity for simple colors that are
associated with each other, since such a capacity depends on
compression. By using a statistical learning paradigm, we control
the statistics of the input, allowing us to measure the possible
compression in this simple task. Since in the world almost all items
we wish to remember are associated with other objects in the
environment (Bar, 2004), using information theory to quantify the
limits of working memory capacity is likely of more utility for
natural viewing conditions than measuring the number of indepen-
dent items that people can remember.

Resolution Versus Number

One interesting factor to consider is whether the increase in
percent correct we observed during training in the patterned group
could be due to an increase in the resolution at which observers
store the colors, rather than an increase in the number of colors

Figure 11. The size of memory (in chunks) for Experiment 2 estimated
using the probabilistic linear chunking model. Block 10 is shaded to
emphasize that in this block the regularities were removed, so all colors
were drawn from a uniform distribution for both groups of observers. Error
bars represent $1 SEM.
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remembered per se (similar to the claims of Awh, Barton, &
Vogel, 2007).

We believe several factors speak against such an account. In
particular, if a fixed number of items are remembered and only the
resolution of storage is increasing, then the fixed number of items
remembered would have to be at least six (the number of colors
remembered by the patterned group in the ninth block of trials).
This seems very unlikely, given that previous estimates of the
fixed number are on the order of three or four (Cowan, 2001; Luck
& Vogel, 1997), even for studies that explicitly address this issue
of the resolution with which items are stored (Awh, Barton, &
Vogel, 2007; Zhang & Luck, 2008). In addition, while Awh et al.
(2007) provided some evidence that for complex objects there may
be a difference in resolution between different object classes, both
Rouder et al. (2008) and Zhang and Luck (2008) have recently
argued for discrete fixed-resolution representations in the domain
of color (although see Bays & Husain, 2009, for a critique of this
work). These articles provide evidence that for simple features like
color, the colors are either remembered or not remembered, rather
than varying in resolution. Finally, it is not clear why the covariance
introduced in the colors would affect the resolution of a single color,
and what the proper relationship would be between the resolution
and the association strength. For these reasons we believe it is
unlikely that the current data reflect changes in the resolution of
the items rather than the quantity of items stored.

Relationship Between Slots and Objects

Much of the work on visual working memory has emphasized
the privileged role of objects in memory capacity. For example,
there is often an advantage to representing two features from the
same object as opposed to two of the same features from two
different objects (Luck & Vogel, 1997; Xu, 2002). In fact, visual
working memory is often conceptualized as containing 3–4 slots,
in which one object, and all its features, can be stored in one slot
(e.g., Luck & Vogel, 1997; Zhang & Luck, 2008) with some
degree of fidelity. In this literature, objects typically are assumed
be the units of mid-level vision, specifically a spatiotemporally
contiguous collection of features.

Our data suggest that at least the simplest version of an object-
based capacity limit, in which one object in the world is stored in
one slot in the mind, is not sufficient. If observers have a fixed
working memory capacity of 3–4 objects on average, then both the
uniform and patterned groups should show the same memory
performance in Experiment 2. Similarly, if observers can remem-
ber at most 3–4 values along a single feature dimension (like
color), then both the uniform and patterned groups should show the
same memory performance in Experiment 1. However, in both
Experiment 1 and Experiment 2, the patterned groups were able to
remember almost twice as many objects by the end of the exper-
iment. Thus, if there are slots in the mind, they must be able to hold
more than one mid-level visual object, much like how chunks can
contain multiple digits or words in the verbal working memory
literature. The critical point here is that visual working memory
should not be said to hold only 3–4 mid-level visual objects or 3–4
values along a single feature dimension, but instead needs to allow
for visual chunking. Alternatively, visual working memory capac-
ity may be characterized in a more graded fashion rather than using

slots or chunks as a unit of measure (Alvarez & Cavanagh, 2004;
Bays & Husain, 2008; Wilken & Ma, 2004).

Chunking

The current behavioral data cannot directly address whether the
proper way to characterize the capacity of the system is in terms of
a continuous measure of information or in terms of a model in
which items are stored discretely in chunks or slots (Cowan, 2001;
Luck & Vogel, 1997; Miller, 1956; Simon, 1974). Our information
theoretic analysis puts a theoretical limit on how compressible this
information should be to a learner. However, exactly how this
compression is implemented in psychological constructs remains
an open question. One possibility is that associated items become
more and more compressible over time (i.e., start to take up less
space in memory). Another possibility is that pairs of items take up
either two chunks or one, depending on a probabilistic chunking
threshold. Importantly, a continuous model of compression can be
closely approximated by a discrete model, as long as the threshold
for forming a chunk is related to the cost of the items in informa-
tion theoretic terms. In fact, any chunking model that will account
for our data will need to form chunks in a way that is compatible
with our information theoretic analysis. In this sense, information
theory allows us to constrain chunking models significantly and
has the potential to break us out of the circular dilemma of
determining what ought to count as a single chunk (Simon, 1974).

Coding Model

It is important to emphasize that compression must be defined
with respect to a coding model. Naı̈ve information theoretic mod-
els (e.g., Kleinberg & Kaufman, 1971), which simply assume that
all items are coded with respect to the possible choices for a
particular task, are not adequate ways of characterizing the capac-
ity of the memory system. For example, using such a coding
scheme it takes 1 bit to represent a binary digit and 3.3 bits to
represent a decimal digit. However, as described clearly in Miller
(1956), if observers can remember a fixed amount of information,
then on the basis of the number of decimal digits they can remem-
ber, they ought to be able to remember many more binary digits.

Some hints at what the psychological coding model might be
like in this case come from evidence that shows observers tend to
store digits phonetically (Baddeley, 1986). Thus, perhaps a proper
information theoretic model would encode both binary and deci-
mal digits with respect to the entire set of phonemes. Of course,
even the phonetic coding scheme is not sufficient for capturing
how much information is in a string, as the conceptual content
matters a great deal. For example, people can remember many
more words if the words make a coherent sentence than if they are
randomly drawn from the lexicon (Simon, 1974). This is also true
in memory for visual information: Sparse cartoon drawings are
remembered better when given a meaningful interpretation
(Bower, Karlin, & Dueck, 1975; see also Wiseman & Neisser,
1974). Presumably abstract line drawings have much longer cod-
ing strings than when those same line drawings can be encoded
with respect to existing knowledge.

In the current experiment, we specifically avoided having to
discover and specify the true coding model. By exploring com-
pression within the domain of associations between elements (col-
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ors in the current study), we need to specify only the information
present in their covariance. Specifying how long the bit string is
for a display of eight colored circles would require a complete
model of the visual system and how it encodes the dimensions of
colored circles. Because the true coding model is likely based in
part on the natural statistics of the visual input, and given the
frequency of a gray screen with eight colored circles on it in our
everyday visual experience, the bit strings for such a display are
likely quite long. Instead we used a paradigm that builds associ-
ations between elements over time, allowing us to control the
coding model that could be learned from the regularities in the
displays. This method avoids many of the pitfalls traditionally
associated with information theoretic models (e.g., those examined
by Miller, 1956). Importantly, our results demonstrate that in this
simplified world of associated colors, visual working memory is
sensitive to the incoming statistics of the input. This approach
opens the door for future work to apply information theoretic
models to human cognition without first solving for the perceptual
coding schemes used by the brain.

Moving beyond simple pairwise associations between colors,
for more complex stimuli and in more real-world situations, ob-
servers can bring to bear rich conceptual structures in long-term
memory and thus achieve much greater memory performance (e.g.,
Ericsson, Chase, & Faloon, 1980). These conceptual structures act
as internal models of the world and therefore provide likelihoods
of different items appearing in the world together. For example,
observers know that computer monitors tend to appear on desks,
that verbs tend to follow subjects, and that kitchens tend to be near
dining rooms. Importantly, our information theoretic framework
can, at least in principle, scale up to these more difficult problems,
since it is embedded in a broader Bayesian framework which can
make use of structured knowledge representations (Kemp &
Tenenbaum, 2008; Tenenbaum, Griffiths, & Kemp, 2006).

Relation to Learning and Long-Term Memory

Compressibility and chunking are rarely formalized outside the
literature on expertise (e.g., chunking models; Gobet et al., 2001),
and thus the relation between visual working memory capacity and
the learning of relations between items has received little attention
in the literature (although see Cowan et al., 2004, for an analysis
in the verbal domain). However, there are several interesting data
points about the role of learned knowledge in working memory
capacity more broadly; for example, adults have a greater working
memory capacity than do children (Simon, 1974). In addition,
there is a large literature on expertise and chunking (Chase &
Simon, 1973; Gobet et al., 2001), where there is significant ap-
preciation of the fact that long-term knowledge is a significant
factor in working memory capacity (see also Curby, Glazek, &
Gauthier, 2009; Olsson & Poom, 2005; Scolari, Vogel, & Awh,
2008).

By relating working memory capacity and chunking strongly to
information theory, our results suggest a broad purpose for a
particular kind of long-term knowledge acquisition: statistical
learning. In particular, a great deal of recent work has focused on
a set of statistical learning mechanisms that are capable of extract-
ing many different regularities with only minutes of exposure and
appear to be relatively ubiquitous, occurring in the auditory, tac-
tile, and visual domains and in infants, adults, and monkeys (Brady

& Oliva, 2008; Conway & Christiansen, 2005; Fiser & Aslin,
2002; Hauser, Newport, & Aslin, 2001; Kirkham, Slemmer, &
Johnson, 2002; Saffran, Aslin, & Newport, 1996; Turk-Browne,
Jungé, & Scholl, 2005). The present results suggest that one of the
primary reasons for being sensitive to such regularities might be
that it allows us to remember more in working memory by elim-
inating redundancy in our representations. They also emphasize
how quickly such long-term memories can be built and can start to
influence capacity measures—observers in the present studies
demonstrated significant improvements in working memory ca-
pacity by Block 2, only a few minutes into the experiment. In
addition, it is important to keep in mind that statistical learning
mechanisms need not be limited to learning simple associations
between items. Both the learning process and the representations
that are learned can be, and likely are, much richer than simple
associations (see, for example, Orbán et al., 2008, and Frank,
Goldwater, Mansinghka, Griffiths, & Tenenbaum, 2007).

Conclusion

The information we can hold in working memory is surprisingly
limited. However, in the real world there are strong associations
and regularities in the input, and our brain is tuned to these
regularities in both perception and memory (Anderson, 1990;
Field, 1987). In an information theoretic sense, such regularities
introduce redundancies that make the input more compressible.

We have shown that observers can take advantage of these
redundancies, enabling them to remember more colors in visual
working memory. In addition, while we showed this using simple
associations between colors, the Bayesian modeling framework we
used has the potential to scale up to learning over more complex
representations. Thus, we believe that the tools of probabilistic
modeling and information theory can help in understanding how
observers form long-term memory representations and use them in
working memory. More generally, our data support the view that
perceptual encoding rapidly takes advantage of redundancy to
form efficient codes.
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Appendix

Model Results Using Self-Information

The self-information at seeing a given item, i, expressed in bits, is

S " ,log2( pi).

More bits of information (S) are gained by seeing items that are
of low probability (small pi) than items that are of high probability
(large pi). The number of bits of self-information is the mathemat-
ical optimum for how many bits must be required to encode
particular stimuli from a given distribution (Shannon, 1948).

In practice, it is difficult or impossible to achieve codes that are
exactly equal in length to the self-information for an item, simply
because codes must be discrete. Hence, throughout the article we
focused on a particular coding scheme—Huffman coding—that is
both simple and approximates optimal compression. However, it is
worthwhile to ask whether we find similar results looking not at
the length of the Huffman codes for all the items in a given block,
but instead at the number of bits of surprise for those items. Thus,
we modeled our experiment using surprise to calculate the number
of bits for each item rather than the length of the code generated by
Huffman coding.

We used the same values for the priors as the Huffman code
results in the main text: ' " 34 and ' " 31, respectively, for the
two experiments. The number of bits of self-information correlate
at r " –.94 (Experiment 1) and r " –.95 (Experiment 2) with
human memory performance. Figures A1 and A2 show the results
of multiplying the number of bits of surprise with the number of
colors remembered by observers for Experiments 1 and 2, respec-
tively. The results once again support the idea of compression as
a major factor in visual working memory: Observers are able to
remember an approximately fixed number of bits, remembering
more colors when the items are more redundant.

Derivation of K Formula

In an eight-alternative forced choice, observers may choose the
correct answer for one of two reasons: (a) they may know the

correct answer, or (b) they may guess the correct answer by
chance. In order to estimate capacity (the number of items remem-
bered out of the eight items in the display), we need an estimate of
the first kind of correct answer (knowing the colors), discounting
the second kind of correct answer (guesses).

To begin deriving such a formula we write percent correct (PC)
as a function of the two different kinds of answer—answers for
those items that observers remember, which they get right 100% of
the time, and answers for those items that observers do not re-
member, which they get right 1/8th of the time. If observers
successfully remember K items from a display of eight items, PC
may thus be formulated as:

PC ! -(K/8) ! 1] . {[(8 – K )/8] ! 1/8},

where the first term accounts for items correctly remembered and
the second term accounts for items on which the observer guesses.
For example, if an observer remembers two items (K " 2), then for
2/8ths of the items he or she chooses the right answer 100% of the
time, whereas the other 6/8ths of the time, he or she guesses and
chooses the right answer 1/8th of the time. Simplifying and solving
for K, we get

(PC " 8 " 8) ! (8 " K ) . 8 – K

(PC " 8 " 8) – 8 ! (8 " K ) – K

(PC " 8 " 8) – 8 ! K ! (8 – 1)

K " [(PC ! 8 ! 8) – 8]/7.

This equation then allows us to directly calculate the capacity of an
observer (K) as a function of percent correct (PC).
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Figure A1. The size of memory for Experiment 1 estimated using self-
information. Block 10 is shaded to emphasize that in this block the
regularities were removed, so all colors were drawn from a uniform
distribution for both groups of observers. Error bars represent $1 SEM.

Figure A2. The size of memory for Experiment 2 estimated using self-
information. Block 10 is shaded to emphasize that in this block the
regularities were removed, so all colors were drawn from a uniform
distribution for both groups of observers. Error bars represent $1 SEM.
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