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Abstract

Both visual attention and visual working memory tend to be studied either with very
simple stimuli and low-level paradigms, which are designed to allow us to understand
the representations and processes in detail, or with fully realistic stimuli that make such
precise understanding difficult but are more representative of the real world. In this
chapter we argue for an intermediate approach in which visual attention and visual
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working memory are studied by scaling up from the simplest settings to more complex
settings that capture some aspects of the complexity of the real-world, while still
remaining in the realm of well-controlled stimuli and well-understood tasks. We believe
this approach, which we have been taking in our labs, will allow a generalizable set of
knowledge about visual attention and visual working memory while maintaining
the rigor and control that is typical of vision science and psychophysics studies.

1. Introduction

Both visual attention and visual working memory tend to be studied

with very simple stimuli and low-level paradigms. In particular, the average

attention or visual working memory study presents several simple shapes

(possibly in distinct colors) on a simple, homogeneous background, and then

asks about the allocation of attention or the limits of working memory in

such situations. There are significant benefits to this approach; in particular,

using simple stimuli allows us to understand the representations of the stim-

uli, because we have a significant understanding of basic visual processing

and of the representations of simple stimuli in the visual system; furthermore,

this approach limits the ability of participants to engage in overly compli-

cated strategies.

However, studying attention and memory with simplified stimuli, made

up of discrete, single-feature objects on blank backgrounds, leaves much left

unstudied about how attention and visual working memory function in

more realistic settings. By contrast, studying attention and memory in fully

real-world settings is challenging, and may not allow for sufficient control of

the stimuli or of participants’ strategies to allow researchers to fully under-

stand the underlying representations or to make computational models that

capture participants’ behavior. Thus, as in many domains, the study of visual

cognition faces a trade-off between deep, process-level understanding and

external validity.

In this chapter we argue that both of these approaches are best sup-

plemented and linked by an intermediate approach in which visual attention

and visual working memory are studied by scaling up from the simplest

settings to more complex settings that capture some aspects of the complexity

of the real-world (e.g., real-world objects instead of colored squares; objects’

sounds in addition to visual objects; surfaces and scenes in addition to objects),

while still remaining in the realm of well-controlled stimuli and well-

understood tasks. We believe this approach, which we have been taking
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in our labs, can allow a more generalizable set of knowledge about visual

attention and visual working memory while maintaining the rigor and con-

trol that is typical of vision science and psychophysics studies. In particular,

in the current chapter we argue for scaling up visual attention (Section 2)

and visual working memory (Section 3) in ways that capture certain impor-

tant aspects of the real world. In particular, in the section on visual attention,

we review work from our labs and others on how attention operates over

objects, rather than only spatial positions or simple single features

(Section 2.2); what the role of semantic categories is in selective attention

(Section 2.3); the role of ensembles or sets of objects, rather than individual

objects (Section 2.4); and the role of audition in visual attention and visual

perception (Section 2.5). In the section on visual working memory, we

review work on ensemble representations and other effects of non-

independence between items (Section 3.2); onmemory for surfaces and scene

layout (Section 3.3); on the impact of learning and existing semantic knowl-

edge on visual working memory (Section 3.4); and on the role of expertise in

visual working memory, and what might cause the effects of expertise on

capacity (Section 3.5). Together, we take the position that important

work can be done using controlled stimuli and well-understood tasks, while

nevertheless scaling up the study of visual attention and visual working

memory to take into account more real-world factors. As we will show, this

approach has afforded insights into attention and working memory that were

not apparent only from the literature using simple stimuli—for example, this

kind of work demonstrates the important role of semantics and high-level

features in many “visual” attention and memory situations; shows the impor-

tance of considering that objects are not often treated independently, but tend

to be encoded relative to each other or in sets (which allows people to

circumvent capacity limits); and shows the importance of considering how

multimodal stimuli like sounds, as well as visual surfaces and scene layout,

are integrated into visual recognition of objects.

2. Visual attention

2.1 Introduction
Only a small portion of the information hitting our retinas reaches our

conscious visual experience. At any given time, we are typically only aware

of those parts of a visual scene that we are paying attention to. For example,

when actively looking for something (e.g., the keys on a cluttered desk),

or when being drawn to a particularly salient stimulus (e.g., the loud honk
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of a car), we are not aware of all of the objects and surfaces present. Attention

refers to a mechanism that selects information from the enormous number of

sensory inputs and prioritizes that information for further processing. Thus,

attention is fundamental for our perceptual experiences, determining what

and how sensory inputs reach awareness.

Decades of research on attention have shown how attention operates in

terms of spatial locations and simple features (for a review, see Carrasco,

2011). For example, by directing spatial attention to a particular region in

the visual field, processing of objects appearing at that location is enhanced

(Posner & Petersen, 1990). Similarly, by tuning attention to a particular

feature, such as the color red, objects containing the attended color receive

a boost in visual processing (Sàenz, Buraĉas, & Boynton, 2003). This line

of work has been exceptionally successful at revealing basic computational

principles of attentional selection, for example, by showing that attention

can increase the neural gain (Luck, Chelazzi, Hillyard, & Desimone,

1997; Moran & Desimone, 1985), modulate neural noise (Mitchell,

Sundberg, & Reynolds, 2007), or shift neural tuning functions (David,

Hayden, Mazer, & Gallant, 2008; Motter, 1994) in sensory cortices. The

majority of this research has been done using simple, low-level visual stimuli,

such as oriented bars or moving dot patterns, with the benefit of tapping into

a fairly strong understanding of how these simple features are represented

in the visual system. However, this research does not fully capture many

important aspects of how we use attention in the real world, where we need

to select multi-feature objects in complex scenes, and where objects make

noises and do not appear as isolated, unisensory entities.

While current theories of attention often do not explain how attentional

selection occurs in more realistic scenarios, the human attention system must

be equipped with mechanisms that can handle a rich, multisensory environ-

ment that is populated by complex, natural entities (e.g., animals, people, and

real-world objects). What do we know about how attention operates across

multi-feature objects, real-world objects and semantic categories? How does

attention deal with inputs across sensory modalities? Here, we review recent

papers that address some of these questions and discuss outstanding challenges

in understanding how attention operates in more realistic scenarios.

2.2 From simple features to multi-feature objects: Principles
of attentional selection

Many theories of visual attention highlight the importance of simple features,

such as color, orientation, or direction of motion, for stimulus selection.

These “feature-based” theories are supported by findings of enhanced visual
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processing (Ling, Liu, & Carrasco, 2009; Liu, Stevens, & Carrasco, 2007) and

increased neural activity (Liu, Larsson, & Carrasco, 2007; Liu, Slotnick,

Serences, & Yantis, 2003; O’Craven, Rosen, Kwong, Treisman, & Savoy,

1997; Sàenz, Buraĉas, & Boynton, 2002) when attention is directed to a

relevant feature (e.g., a specific color or direction of motion) among other

irrelevant features. Many studies have shown that this attentional enhance-

ment is not spatially isolated, but acts to boost processing throughout the

visual field (Andersen, Hillyard, & M€uller, 2013; Sàenz et al., 2003;

Serences & Boynton, 2007; St€ormer & Alvarez, 2014; White & Carrasco,

2011), influencing the processing of visual information outside the spatial

focus of attention (Fig. 1A). This global feature enhancement lead to the

development of the “feature-similarity gain model” (Martinez-Trujillo &

Treue, 2004; Treue & Martinez-Trujillo, 1999), which claims that attention

modulates the responses of individual neurons based on the similarity between

the tuning of that neuron and the attended feature. As a result of this modu-

lation, attention to a specific feature will lead to increased population-level

tuning toward the attended feature, and enhanced processing of that feature

throughout the visual field. Similar to this feature-based selection account,

simple objects, such as surfaces of spatially intermingled dots defined by color

and motion direction, can be selectively attended (Ciaramitaro, Mitchell,

Stoner, Reynolds, & Boynton, 2011; Ernst, Boynton, & Jazayeri, 2013;

Wannig, Rodrı́guez, & Freiwald, 2007), even though the surfaces occupy

the same spatial location. Attention to surfaces results in increased neural

activity to the attended surface and improved behavioral performance

(Ciaramitaro et al., 2011; Wannig et al., 2007), just like attention to simple

isolated features.

How does this basic principle of global gain for simple features and surfaces

relate to the selection of more complex, real-world objects? Real-world

objects consist of multiple features that need to occur in a particular config-

uration to create a cohesive object (e.g., to perceive a face, eyes need to be

aligned next to each other, and nose andmouth need to appear below to com-

pose the canonical configuration of a face). Furthermore, as they occur in the

real world, objects often differ in many simple lower-level features, such as

orientation, color, or size, resulting in a substantial variety of low-level features

even within an object category. Despite these difficulties, we are extremely

quick in detecting objects in visual scenes (Potter, 1993; Potter &

Faulconer, 1975) and in attending to and finding objects in visual search

(Reeder & Peelen, 2013). How does attention deal with this complexity?

A number of studies indicate that simple features play a critical role for

the selection of objects by showing that attention spreads throughout an
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object, such that attending to a single visual feature of an object results in

enhancement of all of that object’s features, often in a seemingly obligatory

fashion (Ernst et al., 2013; Katzner, Busse, & Treue, 2009; O’Craven,

Downing, & Kanwisher, 1999; Schoenfeld et al., 2003). This within-object

spreading of attention does not always seem to be confined by object bound-

aries, however. Studies from our lab and others have shown that features that

are not directly attended but belong to an attended object can be globally

enhanced (Arman, Ciaramitaro, & Boynton, 2006; Boehler, Schoenfeld,

Heinze, & Hopf, 2011; Chapman & St€ormer, 2018 [preprint]; Lustig &

Beck, 2012; Melcher, Papathomas, & Vidnyánszky, 2005). For example,

Fig. 1 Example displays from feature-based attention and multi-feature object studies,
adapted from Chapman & St€ormer, 2018 [preprint] (see also St€ormer & Alvarez, 2014).
(A) When participants are asked to attend to a color on one side (e.g., red on the left),
visual processing of the attended color is enhanced throughout the visual field, even
at task-irrelevant and unattended locations (e.g., the red dots on the right side of the
display). (B) When participants are instructed to attend to one feature, for example,
the color red, of a two-feature object or surface (all red dots are also moving upward),
the secondary irrelevant feature (upward motion) is enhanced throughout the
visual field, suggesting that attention to a single feature first spreads to other features
of the same object but then can also spread across locations (Chapman & St€ormer, 2018;
preprint).
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when attending to the color of an object (e.g., red) that happens to move in a

particular direction (e.g., upward), visual processing of that motion direction

(upward) is enhanced throughout the visual field (Chapman & St€ormer,

2018 [preprint]; Fig. 1B). Together, these studies indicate that feature-based

attention can spread throughout objects, but that this spreading is not

necessarily constrained to object boundaries, suggesting that simple visual

features are crucial for the behavioral benefits of attention to more complex

(multi-feature) objects.

While these studies investigate attentional selection for objects that

consist of multiple features, moving one step closer to how attention

operates in more complex settings, they often still use fairly simple visual

objects (e.g., an object consisting of two simple features, e.g., color and

motion). One benefit of this approach is that it is more straightforward to

link the findings to the previous literature on feature-based attention.

Yet, in our daily lives, selection is often based on more complex objects

and object categories. For example, when looking for a person in a busy street

scene, or when trying to detect an animal in the forest, we need to focus our

attention on real-world object categories rather than one or two simple

low-level features. How does attention operate across the vast object space

that we are able to see and recognize?

One possibility is that when selecting complex objects, attention is tuned

to the most diagnostic parts of that object and selection occurs based on these

object parts or features rather than the entire object. For example, when

looking for a car, attention would be tuned to the boxy shape and the round-

ness of the wheels (Evans & Treisman, 2005; Peelen & Kastner, 2014;

Reeder & Peelen, 2013; Treisman, 2006), or when looking for fruits in

the tree, attention would be tuned to their red color. But of course such

part-based tuning can only occur when objects consist of diagnostic features,

which is often not the case (target and distractors may share several lower-

level visual features or shape parts). Thus, in many situations it would be

most adaptive if attention was tuned to high-level object categories.

2.3 Attentional selection at the level of real-world objects
and semantic categories

Several studies have investigated how attention to images of real-word

objects, such as faces, houses, or cars, modulates visual processing and affects

behavior. One standard paradigm consists of presenting two superimposed

objects so that they compete at the same spatial location, and asking

participants to attend to one of them (e.g., attend to a face overlaid on a
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house image). The main result from these studies is that attention enhances

neural responses in object-selective brain regions (Baldauf & Desimone,

2014; Cohen & Tong, 2015; O’Craven et al., 1999), demonstrating that

attention can exert similar effects on the visual representations of complex

objects as on those of simple features.

One core principle of the selection of simple visual features is that these

features are enhanced across the visual field (see Section 2.2; Andersen et al.,

2013; Sàenz et al., 2002; Serences & Boynton, 2007; St€ormer & Alvarez,

2014; Treue & Martinez-Trujillo, 1999; Zhang & Luck, 2009). Does this

global property also exist for real-world objects? In a recent study we inves-

tigated whether attention to complex real-world objects enhances object

representations in a spatially global way (St€ormer, Cohen, & Alvarez, in

press). As a test case, we focused on the well-learned category of faces

and examined a face-selective signal in the electroencephalogram (EEG)

as a marker of category tuning (i.e., the face-selective N170). Across two

experiments we found that face processing was enhanced when participants

attended to faces (vs. buildings or houses) even at task-irrelevant and

unattended locations (Fig. 2), suggesting that object-based attention can

elicit similar, spatially-global effects on visual processing as has previously

been found for simple features. To ensure that the observed effects were

due to attending to the object category and not simple low-level features,

we used stimuli that varied in low-level visual features (e.g., for faces: hair-

style, viewpoint, age, etc.; for buildings: houses, skyscrapers, towers; etc.)

and included a control condition in which we asked participants to attend

to scrambled face parts (instead of full-fledged faces). Critically, we only

observed the spatial spreading of attention to other faces when participants

were looking for complete faces but not when looking for face parts, indi-

cating that attention enhances high-level visual processing across locations

only when tuned to a specific feature configuration (the whole face) and

not just to a few diagnostic parts of the object (e.g., the eyes). This is con-

sistent with another functional magnetic resonance imaging (fMRI) study

that showed spatially global effects of attention in object-selective cortex

(e.g., lateral-occipital areas, LO) during a real-world visual search task in

which participants were looking for people or cars (Peelen, Fei-Fei, &

Kastner, 2009). While that study showed spatially global effects in brain

regions sensitive to basic visual shapes (LO), our study extends these findings

by demonstrating spatially global spreading of attention to even higher levels

of visual processing, namely to the level of object categories (i.e., faces).

Together, these studies suggest that attention to familiar and well-learned
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Fig. 2 (A) Task design and (B) data from St€ormer et al. in press. When participants are
asked to attend to faces at one location (e.g., left visual half-field) in a rapid stimulus
stream, early visual processing of face probes presented on the unattended side
(e.g., right visual half-field) is enhanced, as reflected by an amplitude increase of the
face-sensitive N170 component in the EEG wave. This enhancement is only present
when participants attend to full-fledged faces, and not when attending to scrambled
face parts or buildings or houses.
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object categories, like faces, people, and cars, can operate in a spatially global

way similar to basic simple visual features.

Even though recent studies have begun to address the question of how

attention operates across realistic objects, the categories and objects tested

thus far have been restricted to a small set of stimuli, leaving open the ques-

tion of whether similar effects hold for the vast number of objects that people

can recognize. It is conceivable that attentional mechanisms depend on the

representations over which they operate, which does not necessarily need to

mean low- vs. high-level within the visual processing hierarchy, but could

depend on the strength and robustness of the representations themselves. For

example, if an object category is well-known, highly familiar, and often

attended to, attention may operate on the full-fledged object (not just its

parts or features) and result in similar effects as attention effects of low-level

features (e.g., St€ormer et al. in press). However, if a novel or less well-known

object with a weaker underlying representation needs to be attended, atten-

tion may be tuned to the diagnostic parts of it (Evans & Treisman, 2005;

Peelen & Kastner, 2014; Reeder & Peelen, 2013; Treisman, 2006).

Another line of research has used a different approach to address the

question of how attention operates in more realistic viewing conditions.

Instead of using a rather small but well-controlled stimulus set, one study

used a very large (�1000) set of object and action categories to investigate

how attention modulates the representational semantic space across the

whole brain (Cukur, Nishimoto, Huth, & Gallant, 2013). In that study,

stimuli were presented in a movie clip while participants were looking

for either people or vehicles. Using fMRI, the study measured how cortical

responses across the brain changed depending on what category participants

were searching for, and found that the brain representations were altered

by attention. In particular, the amount of cortex activated by the attended

category increased while neural activity corresponding to the task-

irrelevant, unattended categories was reduced. These findings suggest that

high-level attention can change the category selectivity of cortical voxels

to be tuned toward the behaviorally relevant category at the expense of

unattended irrelevant categories. Another neuroimaging study showed that

attention increased the discriminability of neural population responses in

higher-level visual areas. In that study, participants watched short videoclips

of animals and either attended to their behavior (e.g., running, swimming)

or to their taxonomy (e.g., insect, fish). It was found that the neural repre-

sentations of the attended information were more discriminable relative to

the unattended information in higher-level visual areas, as if attention
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expanded the neural distances within the attended category of information

(Nastase et al., 2017). Together, these studies are in agreement with some

psychophysical data and theoretical accounts that have suggested that during

visual search attention shifts tuning functions toward the attended target

(Compte & Wang, 2005; Lee, Itti, Koch, & Braun, 1999; Lu & Dosher,

2004; Olshausen, Anderson, & Van Essen, 1993).

While these fMRI studies demonstrate that attention to object categories

can have large-scale effects across the brain, it remains an open question what

the underlying neural mechanisms are. One possibility is that these modu-

lations are due to selective increases in neural gain operating differentially on

subpopulations of neurons contained within a voxel. Another possibility is

that they are the direct consequence of shifts in categorical tuning at the neu-

ral level. Both mechanisms have been shown to exist for simple, low-level

features (David et al., 2008; Martinez-Trujillo & Treue, 2004; McAdams &

Maunsell, 2000; Motter, 1994), but it yet needs to be determined what

happens at the level of object categories and in higher-level brain regions.

Thus, taken together, a large amount of work on visual attention has

focused on attention to simple features. While understanding how this scales

up to fully realistic scenes is quite challenging, newer work has suggested that

attention can operate not only over basic features like color but also over

categories of objects, and appears to show similar tuning properties in some

cases, for example, the spatial spreading of attention to faces. Furthermore,

recent findings suggest that feature-attention in general not only enhances

relevant features of the attended objects but also spreads to other features

of attended objects and across locations, enhancing these features. However,

there remain many questions about the nature of visual attention, feature

attention and object-based attention as applied to realistic objects and scenes.

2.4 Attention to, and processing of, “ensembles” and
groups of objects

In addition to representing individual features or objects, people can quickly

and accurately compute summary statistics of simple visual features, like the

mean size of the items (Ariely, 2001; Chong & Treisman, 2003), the mean

orientation (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), and

the mean location (Alvarez & Oliva, 2008). People are also capable of

representing more than just the mean, for example, representations of

variance (Solomon, Morgan, & Chubb, 2011). In these types of tasks people

are usually briefly presented with an array of items (e.g., oriented lines,

different sized stimuli) and are asked to subsequently report the average
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orientation or size of the set of stimuli they just saw. Importantly, this kind of

ensemble processing goes beyond the typical basic attentional paradigm by

providing evidence that despite the best intention of the experimenters,

people often will not treat items independently but also process information

about the “ensemble” of the display even in displays of simple stimuli (e.g.,

Brady & Alvarez, 2011). However, the ability of people to encode informa-

tion about entire sets of objects provides the opportunity to examine more

real-world use cases of attention (e.g., dividing attention between individ-

uals or processing items as an entire set) while maintaining control of stimuli.

Several studies have also shown that ensemble perception can operate on

sets of high-level objects, rather than simple visual features, with a particular

focus on faces. That is, observers can report the average emotion and gender

of a briefly presented group of faces (Haberman & Whitney, 2007, 2009) as

well as the average facial identity of a group (de Fockert & Wolfenstein,

2009; Neumann, Schweinberger, & Burton, 2013; Yamanashi Leib et al.,

2012), and facial attractiveness (Walker & Vul, 2014). To evaluate whether

these effects occur at a high level of processing (i.e., holistic face processing)

and are not driven by averaging low-level visual features (e.g., the whiteness

of the teeth, the roundness of the eyes, etc.), some studies have tested

whether ensemble statistics can also be extracted from inverted or scrambled

faces, and have generally found that this is not as accurate (Haberman &

Whitney, 2009; Yamanashi Leib et al., 2012). Consistent with the inter-

pretation that these summary statistics can be formed at a configural and

holistic face processing stage, recent studies have also shown that these

facial summary statistics can be computed over viewpoint-invariant

representations and not just 2-D image level information (Neumann

et al., 2013; Yamanashi Leib et al., 2014). In other words, people can

compute summary statistics like “average identity” even across sets of faces

that differ in viewpoint from each other (and thus differ significantly in

low-level features).

In addition to facial expressions, gender, and identity, it has also been

shown that participants are able to report the average gaze direction and

mean head rotation of crowds of people (Florey, Clifford, Dakin, &

Mareschal, 2016; Sweeny & Whitney, 2014), as well as the mean biological

motion direction of point-light walkers (Sweeny, Haroz, &Whitney, 2013),

although all with considerably smaller set sizes (e.g., processing only a few

items, rather than many at once). Based on these findings, it has been

suggested that ensemble perception may be particularly useful for high-level

visual perception to guide social interactions, for example, by facilitating the
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recognition of crowd panic that may involve the average and variance

of heading direction, motion speed, and average emotion (Whitney &

Yamanashi Leib, 2018).

It remains an open question how people compute ensemble statistics,

how they are related to attention, and the extent to which they are directly

perceptually available. For example, it may be that whenever you grab many

objects with your attention, you automatically get an ensemble representa-

tion of those objects. Some have even proposed a more dramatic departure

from previous theories, with summary statistic representations being the

core cause of “attentional” capacity limits. It remains unclear exactly how

ensemble representations relate to attention. It also remains unclear whether

the high-level “ensemble” effects (e.g., faces) reflect the same type of sum-

mary representation and involve similar computations as ensembles for sets

of simple stimuli (e.g., motion directions, orientations).

There is some reason to believe that at least some ensemble tasks do not tap

into a fundamentally different representation than tasks where people are

asked about just a single item. For example, in our ownwork, we have shown

that much of the noise in ensemble computation comes from perceptual

noise—e.g., people with noisy representations of a single gabor orientation

also have noisy representations of themean orientation of a set of gabor stimuli

(Haberman, Brady, & Alvarez, 2015). Furthermore, recent work from our

labs has shown that under some circumstances, people may use attention

strategically to answer questions about ensemble properties (like the variance

in size of a set of objects), in effect converting the question into one they can

answer using visual search (Lau & Brady, 2018a, 2018b). For example, we

show that participants seem to rely heavily on the range of the set of objects

(the largest and smallest object) rather than directly computing variance, and

seem to perform visual search to find these objects, leading tomore reliance on

items near fixation and less reliance on objects far from fixation. Thus, we

believe that much work remains to be done to address exactly what strategies

and representations participants use when they are asked to report themean or

variance of a set. Their ability to report something approximately like a mean

does not imply they necessarily have a direct representation of the mean; in

many cases they may be relying upon other, seemingly complex strategies that

ultimately give something that approximates a statistical summary representa-

tion (e.g., Myczek & Simons, 2008).

Interestingly, while the majority of the work on “ensemble” represen-

tations (e.g., simultaneous representation of information about the entire set

or ensemble of items) has focused on statistical summaries like the mean,
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ensemble representations do not always collapse information to a single

point estimate (e.g., a mean or variance) but instead sometimes preserve spa-

tial information. When considering more real-world scenarios—where

there is not just a single set of relatively homogeneous stimuli on a white

background—it almost seems necessary that some spatial information would

necessarily be preserved in computing ensemble information. This class of

spatial ensemble representations includes the spatial distribution of orienta-

tions (Alvarez & Oliva, 2009); the relative homogeneity of a display

(Victor & Conte, 2004); and basic texture statistics (Brady & Tenenbaum,

2010, 2013). These spatial ensemble representations are quickly and accurately

computed, even outside the focus of spatial attention. As an example of such a

representation, Fig. 3 shows a sample spatial ensemble task. In such a task,

participants are better at detecting changes that flip the ensemble structure

(e.g., flip the vertical/horizontal arrangement) then those that do not,

suggesting that they representmore than just individual objects, andmore than

just average orientation; they also encode a spatial ensemble representation

(Alvarez & Oliva, 2009; Brady et al., 2017).

Why are participants able to compute spatial ensemble representations so

quickly, even without focal attention (Alvarez & Oliva, 2009) and in the

visual periphery (Balas, Nakano, & Rosenholtz, 2009; Rosenholtz,

Huang, Raj, Balas, & Ilie, 2012)? One idea has been that these properties

are consistent with a potential role of such representations in rapid scene rec-

ognition. The spatial ensemble patterns people are most sensitive to appear

to closely mimic the patterns of oriented elements traditionally used in com-

puter vision algorithms to holistically recognize scenes (e.g., Oliva &

Torralba, 2006). It is thus possible that human sensitivity to these patterns

in simple displays, like grids of gabors and displays of colored circles, arises

because such patterns mimic the mid-level features people use to recognize

surfaces and the spatial layout of scenes (Brady et al., 2017).

Together, we believe work on ensemble perception—both of summary

statistics and spatial ensembles—provides an important bridge between sim-

ple stimuli and real-world scenes. The kinds of distributed patterns of infor-

mation across objects that are typically studied in ensemble tasks are likely a

major part of real-world recognition and how we use and distribute our

visual attention in the world.

2.5 Cross-modal influences on perception and attention:
Real-world objects make sounds

In the real world, visual objects are often accompanied by sounds, smells,

tactile information, or taste. How does the human brain integrate the inputs
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across these different sensory modalities to form coherent, multisensory

representations, and what role does attention play? Previous research

has often focused on understanding perception and attention through a

single, isolated sensory modality. While this research has provided us with

Fig. 3 A sample spatial ensemble task from Brady, Shafer-Skelton, and Alvarez (2017),
adapted from Alvarez and Oliva (2009). In this task, participants are briefly shown a grid
of 8�8 gabors (for <100ms) while their attention is spread diffusely. This display is
unique in that there is a large-scale structure in the gabor elements: the top ones
are vertical-ish and the bottom ones horizontal-ish. Note that this is a pattern of high
spatial frequency—there is no information in the low spatial frequencies; blurring the
display results in a solid gray field. After seeing the stimulus, there is then a delay inter-
val, followed by the reappearance of the gabors. Sometimes the display is exactly the
same; but sometimes every gabor element has rotated by 45°. Crucially, this can result in
either the same ensemble structure (local change only) or can flip the spatial ensemble
structure (local+ensemble change). Participants are considerably better at detecting
changes that flip the ensemble structure, suggesting that they represent more than just
individual objects, and more than just average orientation; they also encode a spatial
ensemble representation. In addition, participants who aremost benefited by the ensem-
ble structure are also the best at rapidly recognizing visual scenes (Brady et al., 2017).
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substantial knowledge on basic mechanisms of attention, it misses important

aspects of the real world, where the sound of a car beeping may be critical

not just to orienting our attention to an important location in the world, but

may even prime us to be ready to recognize a car when we direct our atten-

tion to that location. Therefore, to better understand visual perception and

visual attention as a whole it is vital that we understand how perception and

attention integrate information across different sensory modalities.

Some of the seminal work on multisensory integration has shown

that highly specialized neurons alter their firing patterns in superadditive,

additive, or subadditive ways when in the presence of cross-modal audiovi-

sual input. A pioneering study by Meredith and Stein (1983) that used

simple, low-level auditory (a short hissing sound) and visual (a small bar

of light) stimuli showed that neurons in the cat superior colliculus

(a midbrain region) respond with roughly equal firing rates to both stimuli.

Interestingly, however, when these stimuli were presented cross-modally

(i.e., simultaneously), some neurons produced an integrated response that

substantially exceeded the sum of their responses to unimodal stimuli while

others showed greatly reduced responses, indicating that they are specific

multisensory neurons that are sensitive to cross-modal inputs. Building on

this work, multisensory neurons that respond to more complex, naturalistic

stimuli have been identified in various brain regions across nonhuman

species (Ghazanfar, Maier, Hoffman, & Logothetis, 2005; Wallace,

Ramachandran, & Stein, 2004; for a review see Stein & Stanford, 2008).

For example, one study separated the auditory and visual components from

videos of rhesus monkey vocalizations and showed that when the stimuli

were presented cross-modally, neurons in the rhesus ventrolateral prefrontal

cortex responded with firing rates that were far greater than responses to the

unimodal stimuli alone (Sugihara, Diltz, Averbeck, & Romanski, 2006).

Thus, there is significant evidence showing that particular neural

populations are sensitive to cross-modal inputs.

Other studies have shown that multisensory influences can also occur

in early sensory areas that are traditionally thought of as being unisensory.

For example, we recently showed that hearing a salient sound can activate

human visual cortex, even when the sounds are task-irrelevant (McDonald,

St€ormer, Martinez, Feng, & Hillyard, 2013; St€ormer, Feng, Martinez,

McDonald, & Hillyard, 2016). Interestingly, these cross-modal effects

occurred in a spatially specific way such that a sound from the left side

of space elicited activity in right visual cortex, and vice versa. The spatially

selective nature of these cross-modal effects suggests that spatial
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processing—or more specifically, spatial orienting of attention—is inher-

ently linked to the visual cortex. What are the behavioral consequences

of these sound-induced changes in visual excitability? A series of studies

have shown that sounds can facilitate visual processing in different ways:

peripheral sounds increase the detection of faint visual stimuli at the

location of the sound (Dufour, 1999; Frassinetti, Bolognini, & Làdavas,

2002; McDonald, Teder-S€alej€arvi, & Hillyard, 2000); enhance contrast

perception (St€ormer, McDonald, & Hillyard, 2009); facilitate visual

discrimination (Feng, St€ormer, Martinez, McDonald, & Hillyard, 2014);

and accelerate the perceived timing of visual stimuli (Mcdonald, Teder-

S€alej€arvi, Russo, & Hillyard, 2003; Zampini, Shore, & Spence, 2005). Thus,

orienting attention to a salient peripheral sound can have multiple influences

on visual perception, suggesting that spatial attention operates across auditory

and visual sensory modalities. Given that in the real world visual objects are

often preceded by sounds (e.g., the honk of a car alerts us to where a car is

about to appear in our field of view), it seems particularly adaptive that

attention to auditory inputs is rapidly transmitted to visual areas.

Other studies have shown that sounds also influence visual perception in a

spatially non-specific way. For example, when a single light flash is presented

centrally with two tones, people often report seeing two light flashes (Mishra,

Martinez, Sejnowski, & Hillyard, 2007; Shams, Kamitani, & Shimojo, 2000).

Furthermore, visual target detection has been shown to be improvedwhen an

uninformative tone burst is presented during a difficult visual search task (Van

der Burg, Olivers, Bronkhorst, & Theeuwes, 2008). Giard and Peronnet

(1999) showed that after having learned audio-visual pairings, simple object

recognition (e.g., vertically vs. horizontally oriented oval) was faster andmore

accurate in the presence of the paired audio-visual stimuli compared to

unimodal trials. Using EEG they also demonstrated that the integration of

these signals happens at an early stage of sensory processing. Together, these

studies demonstrate that visual processing is strongly influenced by inputs

from other sensory modalities (in particular, audition, as reviewed here);

thus, to fully understand visual perception and attention, it is important

to consider these multisensory influences.

Many studies reviewed so far focus on multisensory influences for

simple, low-level stimuli such as noise or tone bursts and basic shapes.

How is sensory information from multiple modalities combined for

complex, real-world stimuli such as the sound of a bird tweet and the sight

of bird? One possibility is that real-world sounds are highly specific to a

particular object and so are less able to facilitate visual processing for object
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categories than other, more abstract cues (Edmiston & Lupyan, 2015;

Lupyan & Thompson-Schill, 2012). In line with this, Boutonnet and

Lupyan (2015) recorded EEG while participants rapidly categorized an

image as being either congruent or incongruent with a previously heard

auditory stimulus and showed that participants were slower, and showed less

robust early sensory processing, when the auditory cue was a real-world

sound (e.g., a dog’s bark) compared to a spoken-word (e.g., “dog”).

However, it is possible that real-world sounds nevertheless influence

multiple stages of visual processing thereby activating higher-level,

semantic-level features (Chen & Spence, 2010; Iordanescu, Guzman-

Martinez, Grabowecky, & Suzuki, 2008; Schneider, Engel, & Debener,

2008), even if they activate more specific features, on average, than do words

(Boutonnet & Lupyan, 2015). Consistent with this account, a recent fMRI

study showed that real-world auditory stimuli can activate early visual cortex

reliably enough to decode and accurately predict which auditory stimuli are

being heard (Vetter, Smith, &Muckli, 2014). Similar towhat has been shown

for simple stimuli (e.g., McDonald et al., 2013), it appears that the timing

between auditory and visual inputs is critical to elicit any multisensory effects.

For example, Chen and Spence (2011) demonstrated that the degree to

which real-world compared to spoken-word auditory stimuli exert influence

on high-level visual processing was highly dependent on when (early vs. late)

the auditory stimuli were presented in relation to the visual objects.

In sum, recent work points to critical influences of auditory stimuli on

visual processing, both for simple and for complex, real-world objects,

highlighting the importance of trying to understand perceptual and atten-

tional processes across sensory modalities. While many studies point to

important links between these modalities, it is still unclear what the mech-

anisms are by which information is integrated across the senses, and whether

similar mechanisms play a role for simple, low-level stimuli as for complex,

real-world objects. In future work, it will be important to expand research

on visual perception and visual attention to also consider multisensory influ-

ences that help structure neural dynamics and behavior in real-world

settings. Broadly, scaling up to incorporate crossmodal integration will be

critical to understanding visual attention in the real-world.

2.6 Visual attention conclusion
In this section we have argued that visual attention can be usefully studied by

scaling up from the simplest settings to more complex settings that capture
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some aspects of the complexity of the real-world, while still remaining in the

realm of well-controlled stimuli and well-understood tasks. We focused

on only a limited subset of attention tasks, particularly those that are not

traditionally tightly coupled to real world problems, but for which there

is the potential to scale-up to more realistic scenarios. Indeed, many realistic

attention tasks have been well studied throughout the literature in visual

attention, which we do not focus on in this chapter. For example, multiple

object tracking (Pylyshyn & Storm, 1988) is a common everyday task, and

has been well studied, including the extent to which performance and

abilities at this task vary across populations (St€ormer, Li, Heekeren, &

Lindenberger, 2013) and are affected by intuitive physical knowledge about

how objects move in the world (Lau & Brady, 2018b [preprint]). Similarly,

visual search is an extremely common real-world attention task, and is well

studied in the literature on visual attention (e.g., Wolfe & Horowitz, 2004),

including relevant work on the attentional mechanisms that underlie search

(e.g., which items are hardest to search among: St€ormer & Alvarez, 2014) as

well as how we learn across searches (e.g., Brady & Chun, 2007; Chun &

Jiang, 1998). Thus, there is a rich history of well-controlled visual attention

literature aimed at more real-world tasks. We have argued that the literature

on basic mechanisms and limits of attention can also benefit from a consid-

eration of more real-world problems (e.g., crossmodal integration; summary

statistics across many objects; etc.).

3. Visual working memory

3.1 Introduction
Visual working memory is a system used to actively store and manipulate

visual information (Baddeley, 2012). This memory system is severely limited

in capacity (Cowan, 2001), and the capacity limits of the active storage sys-

tem in particular are closely related to measures of intelligence and academic

achievement (Alloway & Alloway, 2010; Cowan, 2005; Fukuda, Vogel,

Mayr, & Awh, 2010), suggesting that active storage in visual working mem-

ory may be a core cognitive ability that underlies, and constrains, our ability

to process information across domains (Brady, Konkle, & Alvarez, 2011).

The vast majority of studies on visual working memory have focused on

memory for simple stimuli like colored squares, oriented lines or novel

shapes; these are all stimuli about which participants have minimal back-

ground knowledge or expectations. These simple, meaningless stimuli are
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assumed to best assess the core capacity of working memory because they

have no semantic associations and are repeated from trial-to-trial, which

minimizes participants’ ability to use other memory systems, like episodic

visual long-term memory (Cowan, 2001; Lin & Luck, 2012). Episodic

long-term memory is the process of forming memory traces and later

retrieving them without continued active maintenance, and it can be used

at any time scale (evenwithbrief delays).Contributions fromthis system,which

operates best with conceptually meaningful stimuli and when there is little

interference from items repeating across trials (Konkle, Brady, Alvarez, &

Oliva, 2010; Wickens, Born, & Allen, 1963; Wiseman & Neisser, 1974), are

thought to be minimal in working memory tasks that use simple, meaningless

stimuli.

However, while studies using such simplified stimuli have provided crit-

ical insights into the structure of the working memory system and the nature

of its capacity, they also leave out many important aspects of visual memory

in the real world. In particular, in the remaining part of the chapter we argue

that (1) meaningfulness, knowledge, and familiarity play an important role in

visual working memory and in shaping its capacity; (2) memory for scenes

and surfaces is critical in the world, not just memory for objects; (3) even in

the case of memory for objects, important regularities between objects often

give rise to ensemble information, rather than just individual object repre-

sentations. Many of these factors are rarely studied in the context of visual

working memory, and when they are it is often with stimuli that—while

having extremely strong external validity—are difficult to fully understand

in terms of representations and processes (e.g., memory for totally real-world

scenes; Hollingworth, 2004). How does visual working memory function

when these more realistic factors are present? Can we understand this

in well-controlled experiments where we can build computational models

and understand the memory representations participants form?

3.2 Visual working memory stores not just individual items,
but ensemble information

The vast majority of visual working memory studies attempt to isolate

individual object representations and understand capacity in terms of

individual objects. In a typical visual working memory display, participants

see several simple, isolated objects on a solid background and are asked to

hold these items briefly in mind, and then either detect whether any of

the objects changed when they reappear (Luck & Vogel, 1997) or report

one of the items from memory (Wilken & Ma, 2004; Zhang & Luck, 2008).
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Experiments like this reveal a stark capacity limit: participants are able to

hold in mind only a few objects under most conditions. Over the past

20 years, a huge amount of research has used paradigms like this one to

investigate the most important issues that arise when considering how

people remember individual objects. For example, many researchers have

focused on how flexibly we can allocate our working memory resources

to different numbers of objects (e.g., “slots” vs. “resources”; Alvarez &

Cavanagh, 2004; Bays, Catalao, & Husain, 2009; Schurgin, Wixted, &

Brady, 2018 [preprint]; Zhang & Luck, 2008). Another major area of

work has demonstrated that visual working memory capacity, even in

simple displays, is predictive of fluid intelligence as well as other important

cognitive abilities (Fukuda et al., 2010; Unsworth, Fukuda, Awh, &

Vogel, 2014).

Surprisingly little work has examined the relationship between ensemble

representations—discussed in Section 2.4—and the individual items that are

stored in visual working memory. The existing work that has examined this

connection has often found that ensemble structure plays an important role

in the representation of even simple visual working memory displays (e.g.,

Brady & Alvarez, 2011, 2015b; Brady & Tenenbaum, 2013; Orhan &

Jacobs, 2013; Sims, Jacobs, & Knill, 2012; Swan & Wyble, 2014). Thus,

although typical visual working memory displays are, as best as possible,

prevented from having any overarching structure or gist, nevertheless

participants seem to make use of not only individual object representations

but also ensemble representations when encoding these displays. This means

that items in visual working memory are not encoded independently (Brady

et al., 2011; see also Jiang, Olson, & Chun, 2000; Johnson, Spencer, Luck, &

Schoner, 2009; Lin & Luck, 2009). This is true both in the case of explicit

perceptual grouping, where items are combined and treated as though they

were a single perceptual unit (e.g., Morey, Cong, Zheng, Price, & Morey,

2015), and in cases where it appears participants do encode individual items

separately but also encode ensemble information (e.g., Brady & Alvarez,

2011, 2015a, 2015b).

Understanding the relationship between ensemble representations and

individual objects is important for the insight it provides into visual working

memory representations, and also important because the use of ensemble

structure has frequently been overlooked in existing visual working memory

experiments, leading to vastly different characterizations of the cognitive

architecture. This is true for both simple ensemble representations—leading

to memories that integrate item and ensemble information even when not
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required (Brady & Alvarez, 2011)—and spatial ensemble representations

(e.g., those that preserve spatial structure, akin to peripheral texture

representations).

One of the most well-cited papers in the visual working memory liter-

ature provides an example of a spatial ensemble effect (Awh et al., 2007). In

this paper, the authors argue for a “slot” model of visual working memory

capacity. They suggest that people always represent three to four objects and

argue that only the precision with which these objects are represented is

affected by how complex these objects are. Supporting this, they find that

people can easily detect large changes to complex objects (e.g., a cube

changing to a Chinese character; see Fig. 4), with performance consistent

with remembering four individual objects. But small changes (changes from

a cube to another cube) often cannot be detected. This is taken as evidence

Fig. 4 (A) Participants performed a change detection task with either within-category
(small) or cross-category (large) changes. All participants saw exactly the same initial
displays but were tested on different items. (B) Replicating Awh, Barton, and Vogel
(2007), participants seemed to remember only one object well enough to detect
within-category changes, but four objects with sufficient fidelity to detect large
changes. Error bars correspond to 1 standard error of the mean. (C) The individual dis-
plays where participants performed best on the cross-category changes (right) were
those in which the cubes were clustered together, such that participants could detect
a change from a cube to a character based on a change in clustering (an ensemble or
texture representation) rather than an individual item memory. The figure shows the
two worst displays (left) and two best displays (right) for illustration of this effect, with
the capacity estimate for cross-category changes (K) for each display listed above it.
Note that even the worst displays still contain fairly significant ensemble information,
since they have only two kinds of objects present.
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of low-resolution representations, and a capacity limit of only �1 high-

resolution object. However, one key assumption of this work is that perfor-

mance is supported solely by the maintenance of individual objects, with no

contribution from ensembles. In recent work (Brady & Alvarez, 2015a), we

have shown that this is incorrect, and that the claim that participants remem-

ber four individual, low-resolution items does not capture the representa-

tions formed of these displays. For example, an item analysis (see Fig. 4),

which looks at which displays were easiest and hardest for participants to

detect large changes in (cube!character), shows that the displays where

participants perform best are actually the displays where participants are most

likely to rely on ensemble representations. Participants rely on representa-

tions of the spatial structure of these displays (e.g., on the far right display

in Fig. 4C, the top right of the display is darker and “heavier” than the

remainder of the display). Once ensembles are taken into account, it is clear

that fewer complex objects are individually stored than expected. This is in

contrast to strong claims of fixed capacity required by slot models, and thus

provides evidence for a more continuous-resource-like architecture for

visual working memory. These results show the importance of taking into

account ensemble representations when characterizing working memory,

rather than treating all information participants remember as though it arises

solely from individual object representations.

In further work (Schurgin & Brady, 2019) we have shown that it is also

the case that this use of spatial ensemble representations results in a non-fixed

capacity estimate, again arguing against slot-like views. That is, people

seemingly remember more information with more items present, contrary

to a fixed capacity view of working memory; however, this appears to be

because ensemble information becomes more important at larger set sizes.

In particular, changes to the stimuli that do not affect the similarity of indi-

vidual items, but do affect how well ensemble representations capture the

difference between stimuli, result in significant changes in calculated mem-

ory “capacity” (Schurgin & Brady, 2019). Thus, we believe it is of funda-

mental importance for models of visual working memory to consider that in

nearly every display with multiple objects, people do not encode items inde-

pendently, and thus we cannot conceive of the capacity of working memory

without considering how people use ensemble and other relational informa-

tion, and how this information about multiple items integrates with infor-

mation about single items (e.g., Chunharas, Rademaker, Brady, & Serences,

2019 [preprint]).
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Broadly, then, a growing body of work shows that people do not

remember items in working memory independently. Perceptual grouping,

ensemble statistics/summary statistics, spatial ensemble representations, and

relational encoding between items may all play a significant role in memory

even in the simplest displays. Understanding the way people use these rep-

resentations and possibly rely on them in strategic ways—and how this may

scale up to real-world scenes—thus remains an important area of work for

visual working memory researchers.

3.3 The world has more than objects: Scenes and surfaces
in visual memory

While most workingmemory literature focuses on studyingmemory for dis-

crete objects or sometimes ensembles of multiple objects, both neuroimag-

ing and behavioral studies find evidence for a general dissociation between

perceptual processing of discrete objects and the larger surfaces that make up

a scene. For example, a large amount of work has shown that there are scene-

selective brain regions in humans, which respond selectively to scenes com-

pared to objects (Epstein, 2005; Epstein & Kanwisher, 1998; Kravitz,

Saleem, Baker, & Mishkin, 2011) and which seem to represent features of

a scene’s spatial layout (e.g., openness) rather than the objects it contains

(Epstein, 2005; Lescroart & Gallant, 2019; Park, Brady, Greene, & Oliva,

2011). In addition, behavioral experiments show that it is possible to recog-

nize briefly presented scenes even without being able to recognize any of the

objects in those scenes (Oliva & Torralba, 2001; Schyns & Oliva, 1994),

providing evidence of the independence of scene recognition from object

recognition. Does this distinction hold in working memory? The sensory

recruitment view of working memory suggests that perceptual regions are

involved in working memory (e.g., Serences, 2016; Serences, Ester,

Vogel, & Awh, 2009), so the perceptual distinction between objects and

scene representations may well persist into working memory.

While very little work successfully dissociates effects of scene layout from

those of objects or low-level features like orientation, some studies have

made progress in understanding memory in natural scenes. For example,

it has been shown that previews of scenes facilitate subsequent processing

related to that scene, including subsequent visual search for an object present

in that scene (Castelhano & Henderson, 2007; Võ & Henderson, 2010).

The memory representations retained in these studies are not totally

low-level; that is, they are abstracted from the exact visual features (e.g.,

Castelhano & Henderson, 2007 show size invariance). However, these
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studies do not make it clear what specifically about the scene is remembered

across the delay or to what extent this memory reflects the layout of the

major surfaces of the scene as opposed to hypotheses about particular objects

and their locations.

A different literature has aimed to test memory for scene layout, but

without a focus on visual working memory per se (as it has used very short

delays). In particular, Sanocki and colleagues have examined memory for—

and preview benefits related to—the 3D spatial layout of a scene. They have

done this using a paradigmwhere a preview of the scene is shown (with only

some information present, largely layout information), and asked whether

such previews facilitate a depth judgment on two items that subsequently

appear within that scene (e.g., Sanocki, 2003, 2013; Sanocki & Epstein,

1997; Sanocki, Michelet, Sellers, & Reynolds, 2006). The idea is that

participants’ task—deciding which of two objects in a scene is closer in depth

to the viewer—specifically targets scene layout representation, requiring

participants to have remembered which parts of a scene are near or far from

the observer (as opposed to only having held in mind a distribution of

possible locations of objects). This “scene priming” paradigm is widely cited

as an example of scene layout information being maintained in memory

(e.g., by Chun & Jiang, 1998; Oliva & Torralba, 2001).

However, the effect is often diminished when some low-level informa-

tion is varied (Sanocki, 2003), and recent work from our labs calls into ques-

tion the original interpretation of these studies as reflecting memory

for scene layout (Shafer-Skelton & Brady, 2019). Most notably, the effect

disappears when a longer (200ms) delay and a mask separate the preview

and target images, preventing high-capacity fragile memory such as iconic

memory from contributing to the effect (e.g., by making the target dots

easier to find). Further experiments suggest that these effects may result from

participants being faster to detect the target dots after a relevant preview (due

to shared features between the preview and target images facilitating the

pop-out of the target dots), rather than being faster at performing the depth

judgment (Shafer-Skelton & Brady, 2019). These results dramatically

broaden the space of possible interpretations of these paradigms, calling

for new behavioral work establishing whether scene layout information

can be maintained in working memory.

One critical motivation for this work is to better understand the role that

memory for scenes and surfaces could play in constructing a (seemingly)

complete view of the world from the smaller views we perceive with each

fixation. As we move our eyes, it is often claimed that nearly all information
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about the world is lost between subsequent fixations, with only information

already in working memory or long-term memory persisting to form an

integrated scene representation (Aagten-Murphy & Bays, 2018; Luck,

2008). Yet working memory’s limited capacity makes this seem too

impoverished to result in the robust scene representations we ultimately

form. One idea is that in addition to objects being stored in working mem-

ory, as nearly always studied in the literature, we also store scene information

like spatial layout. Because of evidence that some scene information may

be extracted more quickly than object information (Greene & Oliva,

2009) and processed with less attention (Li, VanRullen, Koch, & Perona,

2002), scene-specific information may provide a much stronger basis for

constructing a complete view of the world across saccades.

Understanding working memory for scene layout is also important for

studying working memory capacity in general. While a great deal of work

has focused on quantifying memory for simple shapes in the same domain,

theymay underestimate our capacity in the real world, where there are many

diverse types of information that could draw on distinct resources for their

maintenance.

While much remains to be done in understanding the role of surfaces in

spatial layout and the way these are stored in memory, some work from our

lab has looked at the benefit of depth itself on visual working memory. For

example, in Chunharas, Rademaker, Sprague, Brady, and Serences (2019),

we recently showed that separating memoranda in depth increases visual

working memory performance. That is, when items are on different depth

planes, they appear to interfere with each other less. This suggests a role for

depth—and possible surface segmentation more broadly—in shaping what is

remembered in visual working memory.

3.4 We have knowledge about the objects we wish
to remember: Learning and knowledge in visual
working memory

Working memory training has become an important topic, in particular the

possibility that training on working memory tasks will transfer not only to

different stimuli but also increase other abilities like fluid intelligence

( Jaeggi, Buschkuehl, Jonides, & Perrig, 2008). The ability of working mem-

ory training to transfer to other abilities is controversial (Chooi & Thompson,

2012; Shipstead, Redick, & Engle, 2012; Thompson et al., 2013). However,

most studies find that persistent training on a particular working memory

task improves performance on that task (e.g., Thompson et al., 2013).
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In visual working memory, studies have investigated stimulus effects,

specifically the effects of repeated exposure to the same memory displays

on visual working memory capacity (Olson & Jiang, 2004; Olson, Jiang, &

Moore, 2005). However, they have not provided clear evidence that

familiarity with the stimuli can increase capacity. For example, one study

found evidence that learning did not increase the amount of information

remembered, but that it improved memory performance by redirecting

attention to the items that were subsequently tested (Olson et al., 2005).

However, we have shown that visual working memory performance is

reliably improved when participants are taught novel associations between

otherwise-meaningless elements (e.g., colored circles). For example, Brady,

Konkle, and Alvarez (2009) found that repeated exposure to pairs of stimuli

(e.g., red next to yellow) led participants to remember more colors as they

learned this association. This improved capacity was evident even after con-

sidering the possibility that such associations could allow for perceptual

“guessing” strategies. For example, Brady, Konkle, and Alvarez (2009) dem-

onstrated that when an item happened to not be in its usual pair (red hap-

pened to be next to blue, not yellow), participants did not falsely guess

“yellow” for the item next to red. These capacity improvements occurred

even though none of the elements were connected to broader conceptual

meaning and thus provide some evidence that exposure or familiarity alone

could improve working memory capacity (in the context of paired stimuli).

Thus, at least with simple stimuli like letters and colors, while exposure to

independent stimuli alone does not increase performance in working mem-

ory (Chen, Yee Eng, & Jiang, 2006; Eng, Chen, & Jiang, 2005; Olson &

Jiang, 2004), building items into larger associative units can improve work-

ing memory.

What about the case of memory for realistic objects? In the real world,

we almost always remember objects that don’t only consist of associated pairs

of visual features (as in Brady, Konkle, & Alvarez, 2009), but also these

objects themselves are meaningful and connect to existing semantic knowl-

edge. How does such knowledge impact visual working memory?

In experiments using simple stimuli, the active working memory system

is often estimated to have a fixed capacity no matter how long participants

are given to encode those items (Luck & Vogel, 1997), a capacity sometimes

deemed to depend on the limits of attentional processes, in line with its

active nature (Cowan, 2001). However, by contrast to the fixed capacity

that is observed with simple stimuli, similar tasks with real-world objects

have found that participants remember more items with more time, without
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an obvious capacity limit (Brady, Konkle, Oliva, & Alvarez, 2009; Melcher,

2001, 2006). Furthermore, paradigms with real-world objects where inter-

ference is minimized also show that participants can remember a very large

number of objects without reaching a fixed capacity limit (Endress &

Potter, 2014).

These differences in capacity estimates for simple stimuli and real-world

objects could simply be due to the fact that working memory operates

equally well on both stimulus types, but real-world objects can additionally

benefit from the high-capacity episodic long-termmemory system or a form

of more accessible long-term memories (Cowan, 1988). For example, many

theories suggest that with expertise and familiarity, non-active forms of

memory may become quickly available and thus may be used for performing

tasks (e.g., Ericsson & Kintsch, 1995). This suggests that performance could

be enhanced with expertise and familiarity by a working memory system

that may be non-active and does not depend on sustained neural firing.

Alternatively, it is possible that, at least to some extent, the active working

memory system has a different (and higher) capacity for real-world stimuli

than for simple stimuli.

Recent work from our labs has made use of a neural correlate of visual

working memory—observable in the EEG—called the contralateral delay

activity (CDA), to examine whether or not the maintenance of real-world

objects relies on the same active working memory system as simple stimuli.

Behavioral data have consistently revealed that with long encoding times,

participants are able to remember more real-world objects than simple

colors, despite the fact that the real-world objects are more complex

(Brady, Konkle, Oliva, et al., 2009; Brady, St€ormer, & Alvarez, 2016;

Melcher, 2006). Is this additional information a result of storage in visual

working memory systems, or is it a result of performance being enhanced

by the use of non-active memory systems like episodic long-term memory?

To examine this, we directly compared the CDA when people were

remembering colors and real-world objects (Brady et al., 2016). We found

that the CDA was reliably greater for remembering five objects than for

remembering five colors (but not different when the amount remembered

was the same for each stimulus set, e.g., with three of each presented).

Because the CDA indexes working memory storage in particular, this sug-

gests that the behavioral finding that additional real-world objects are

remembered beyond the limit on color memory is at least partially the result

of active storage in visual working memory systems, rather than being solely

due to the use of the episodic long-term memory system (Brady et al., 2016)
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or other forms of non-active storage (Ericsson & Kintsch, 1995). However,

it remains an open question to what extent real-world objects have a fixed

capacity limit that is simply higher than that of colors vs. to what extent the

concept of “how many things you can remember” is not a valid description

of visual working memory (e.g., if the capacity of active storage is largely

limited by interference between items, then there is no fixed limit).

There are many important differences between remembering simple

stimuli like colored squares and remembering real-world objects. First,

real-world objects connect to conceptual knowledge; second, real-world

objects are familiar; and third, they are perceptually more complex than

the standard simple stimuli like colored circles or oriented lines. In long-

term memory, it has generally been proposed that conceptual knowledge

(i.e., meaningfulness) associated with real-world objects is the critical attri-

bute that gives rise to enhanced memory (Bower, Karlin, & Dueck, 1975;

Konkle et al., 2010; McWeeny, Young, Hay, & Ellis, 1987). Some existing

data are consistent with the hypothesis that conceptual information, rather

than complexity itself, is relevant for visual working memory as well. For

example, with complex but meaningless objects like 3D cubes, participants

perform poorly in memory tasks even with just one or two objects, even

with long encoding times (Alvarez & Cavanagh, 2004; Olsson & Poom,

2005), unless ensemble coding processes are used to combine information

across objects (Brady & Alvarez, 2015a, 2015b). Thus, perceptual complex-

ity without conceptual meaning results in lower performance than simple

stimuli with the same number of objects, whereas for meaningful objects

performance is better than simple stimuli. However, the capacity differences

for real-world objects relative to complex but meaningless objects could also

be due to physical differences in the stimuli.

Thus, in recent work, we have expanded this line of evidence about

meaningfulness, showing that even for stimuli that are perceptually identical,

there is a major benefit to visual working memory if participants understand

these stimuli and can recognize them as meaningful objects. In particular,

using Mooney images (black and white two-tone images), we have shown

in both long-term memory (Brady, Alvarez, & Stormer, 2019) and visual

working memory (Asp, St€ormer, & Brady, 2018, 2019) that participants

better remember Mooney images in which they perceive the face. That

is, even for identical images, being able to recognize something as a mean-

ingful “unit” (a face) rather than treating it as a set of meaningless mid-level

features results in improved memory performance. In visual working

memory, this results in improved “capacity,” and also a larger CDA,
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again suggesting a change in the capacity of the active storage system rather

than the use of non-active forms of memory.

Together, then, there is significant evidence that visual working memory

is importantly different depending on the content of the memory. In partic-

ular, stimuli that form meaningful units, or even stimuli that have learned

associations (e.g., color pairs), seem to allow for greater performance in

visual working memory.

3.5 Expertise and visual working memory
In addition to general knowledge and associations impacting visual

working memory, it is often the case in the real world that we must engage

working memory in complex tasks for which we have some particular level

of expertise. How does visual working memory take into account such

person-specific prior knowledge in a particular area?

It is widely known that expertise and knowledge improve our ability to

maintain information (long-term working memory; Ericsson & Kintsch,

1995; chunking in chess experts; Gobet et al., 2001; etc.). For example,

experts show an increased visual working memory capacity for images in

their domain: expert car dealers have a greater capacity to remember cars

compared to novices (Curby, Glazek, & Gauthier, 2009).

Recent work has examined the impact of expertise in working memory

in other more applied domains of expertise. For example, building on work

studying expert radiologists which shows they have increased long-term

recognition memory for medical images (Evans et al., 2011), we have

recently been examining whether this expertise also impacts their ability

to remember mammogram images over shorter, working memory delays

(Schill, Wolfe, & Brady, 2019). We have hypothesized that similar to the

effects observed in long-term memory, there could be expertise-specific

effects in working memory not because of the well-known benefits of

chunking (e.g., Cowan, 2001; Gobet et al., 2001), but because of improve-

ment that occurs because of existing memory for what variation exists for an

image in an expert’s domain (e.g., they know howmammogramsmight vary

and so can encode diagnostic features).

Consistent with this idea, one line of recent work has claimed that exper-

tise effects in visual working memory may arise in particular from enhanced

consolidation of items into memory—that is, from the ability to encode

more information more quickly, rather than a change in the total limit

on what can be encoded (Xie & Zhang, 2018). In particular, by looking
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at expert Pokemon players, who have knowledge of some particular indi-

vidual Pokemon but not others (because of the time period of their intro-

duction), Xie and Zhang have found across a number of papers this

consolidation effect (Xie & Zhang, 2017a) as well as enhanced capacity

for stimuli in experts (Xie & Zhang, 2017b).

Future studies that delve further into the relationship between visual

working memory and expertise will enable researchers to look at how exper-

tise develops over time, and to test ways to expedite the process of becoming

an expert. Ultimately, this could lead to novel advancements in the literature

on both applied and basic theories of memory, as well as new methodology

to predict and enhance cognitive performance in real-world tasks.

Overall, we believe there is significant evidence that working memory is

impacted by existing knowledge, both in terms of the general meaningful-

ness of the stimuli as well as person-specific expertise. How might such

conceptual knowledge or other crystallized long-term memories enhance

active storage in working memory? One hypothesis is that active mainte-

nance is limited by interference between the neural populations that must

be held active (e.g., Cohen, Konkle, Rhee, Nakayama, & Alvarez, 2014).

Because having more crystallized knowledge about an object or object

category results in more relevant neural populations to support memory,

attentional mechanisms can maintain more active information successfully

when dealing with meaningful objects (Wyble, Swan, & Callahan-

Flintoft, 2016). According to this account, neural activity during the storage

period of a memory task should be increased for more meaningful stimuli

since the active maintenance mechanisms that allow the storage of informa-

tion successfully maintain more representations of items when the items are

meaningful, and thus there are more relevant—and more distinct—neural

populations that contain information about these items.

In addition, it may be that the concept of long-term working memory is

important (Ericsson & Kintsch, 1995); in particular, that experts and others

with significant semantic knowledge partially use working memory to hold

in mind retrieval structures that guide their ability to quickly access relevant

visual long-term memories.

4. Conclusion

Both visual attention and visual working memory have typically been

studied most often with simple stimuli and low-level paradigms. There are

significant benefits to this approach; in particular, using simple stimuli allows
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us to understand the representations of the stimuli, because we have some

understanding of basic visual processing and of the representations of simple

stimuli in the visual system at these levels. However, studying the world with

simplified stimuli, made up of discrete, single-feature objects on blank back-

grounds, leaves much left unstudied about how attention and visual working

memory function in more realistic settings. We have argued here that visual

attention and visual working memory can be studied by scaling up from the

simplest stimuli to more complex scenarios that capture some aspects of

real-world settings (e.g., scene structure instead of just segmented objects,

meaningful stimuli, auditory inputs), while still remaining in the realm of

well-controlled stimuli and well-understood tasks. We believe this approach,

which we have been taking in our labs, will allow a more generalizable set

of knowledge about visual attention and visual working memory.
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