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Influential slot and resource models of visual working
memory make the assumption that items are stored in
memory as independent units, and that there are no
interactions between them. Consequently, these models
predict that the number of items to be remembered (the
set size) is the primary determinant of working memory
performance, and therefore these models quantify
memory capacity in terms of the number and quality of
individual items that can be stored. Here we
demonstrate that there is substantial variance in display
difficulty within a single set size, suggesting that limits
based on the number of individual items alone cannot
explain working memory storage. We asked hundreds of
participants to remember the same sets of displays, and
discovered that participants were highly consistent in
terms of which items and displays were hardest or
easiest to remember. Although a simple grouping or
chunking strategy could not explain this individual-
display variability, a model with multiple, interacting
levels of representation could explain some of the
display-by-display differences. Specifically, a model that
includes a hierarchical representation of items plus the
mean and variance of sets of the colors on the display
successfully accounts for some of the variability across
displays. We conclude that working memory
representations are composed only in part of individual,
independent object representations, and that a major
factor in how many items are remembered on a
particular display is interitem representations such as
perceptual grouping, ensemble, and texture
representations.

Introduction

Working memory is the ability to hold information
actively in mind, and to manipulate that information to
perform a wide variety of cognitive tasks (Baddeley,
2000). This memory system constrains processing

across many domains. For example, individual differ-
ences in working memory capacity predict differences
in fluid intelligence, reading comprehension, and
academic achievement (Alloway & Alloway, 2010;
Daneman & Carpenter, 1980; Fukuda, Vogel, Mayr, &
Awh, 2010; Oberauer, Schulze, Wilhelm, & Süß, 2005).
Thus, understanding the architecture and limits of the
working memory system is a fundamental goal for
cognitive science, and many models have been devel-
oped to help explain the limits on mental storage
capacity (Cowan, 2001; Miller, 1956; Miyake & Shah,
1999). In the domain of visual working memory, these
models have grown particularly sophisticated and have
been formalized in an attempt to derive measures of
working memory capacity (Alvarez & Cavanagh, 2004;
Bays, Catalao, & Husain, 2009; Cowan, 2001; Luck &
Vogel, 1997; Wilken & Ma, 2004; Zhang & Luck,
2008).

Most models of visual working memory agree that
capacity can be quantified in terms of the number of
individual items stored and the precision with which
those items are stored, although these models disagree
on the nature of working memory resources and how
they are allocated to individual items (for a review, see
Brady, Konkle, & Alvarez, 2011; Suchow, Fougnie,
Brady & Alvarez, 2014). For example, some models
view memory as limited by resources that are contin-
uously divisible and flexibly allocated to either objects
or features (e.g., Alvarez & Cavanagh, 2004; Bays &
Husain, 2008; Fougnie, Asplund, & Marois, 2010;
Wilken & Ma, 2004), whereas other models view
memory as limited by fixed slots that are constrained to
represent a discrete number of objects (e.g., Awh,
Barton, & Vogel, 2007; Cowan, 2001; Luck & Vogel,
1997; Miller, 1956; Zhang & Luck, 2008).

Due to this focus on individual item representations,
the vast majority of working memory studies attempt
to isolate memory for individual items by constructing
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displays composed of simple stimuli that are randomly
chosen and randomly positioned. Such working mem-
ory displays are, as best as possible, prevented from
having any overarching structure, gist, or perceptual
grouping cues, and analyses are done by averaging over
all of the displays to attempt to remove these factors.
Results from these studies are then typically modeled
by assuming that each item is stored as an independent
unit and that items do not influence one another’s
representation (Alvarez & Cavanagh, 2004; Bays et al.,
2009; Luck & Vogel, 1997; Rouder et al., 2008; van den
Berg, Shin, Chou, George, & Ma, 2012; Wilken & Ma,
2004; Zhang & Luck, 2008; although see Huang &
Sekuler, 2010; Johnson, Spencer, Luck, & Schoner,
2009; Lin & Luck, 2009). As such, these models either
implicitly or explicitly propose that working memory
holds a list of unrelated items and that items
representations do not affect each other.

However, in contrast to these standard modeling
assumptions, it is difficult if not impossible for any
display to isolate individual item representations, as the
visual system is designed to represent structured real-
world scenes rather than simple, unrelated geometric
shapes (Felsen & Dan, 2005; Simoncelli & Olshausen,
2001). Thus, even in simple displays, the visual system
represents high-level texture and ensemble information
(Alvarez, 2011; Brady & Alvarez, 2015; Freeman &
Simoncelli, 2011; Haberman & Whitney, 2007; Portilla
& Simoncelli, 2000; Rosenholtz, Huang, Raj, Balas, &
Ilie, 2012) and performs perceptual organization
processes using simple Gestalt rules (Kubovy &
Pomerantz, 1981; Palmer, 1999) and more complex
integration mechanisms. These mechanisms take into
account spatial frequency and combine multiple low-
level features into higher order representations of
texture and scene gist (Brady & Oliva, 2012; Oliva,
2005; Oliva & Schyns, 1997). If the visual system uses
both individual item information and ensemble prop-
erties of the display—what we refer to as structured
representations—even for the simplest displays, then it
is unlikely that the number of individual items is the
only determinant of performance on visual working
memory tasks. Instead, different displays, even with the
same number of items, will vary in their memory
representations based on how the items combine into
perceptual groups and/or ensemble representations.

Indeed, there is significant evidence that such
ensemble and perceptual grouping effects affect work-
ing memory capacity estimates. This is consistent with
the general fact that nearly all memory is strongly
context-dependent (e.g., Godden & Baddeley, 1975;
Howard & Kahana, 2002; Tulving & Thomson, 1973).
Specifically in visual working memory, items appear to
be encoded with respect to a spatial context (Jiang,
Olson, & Chun, 2000), such that if the participants’
task is to detect whether a particular item changed

color, performance is worse if the other items in the
display do not reappear or if they reappear with their
relative spatial locations changed (see also Olson &
Marshuetz, 2005; Vidal, Gauchou, Tallon-Baudry, &
O’Regan, 2005). Items are also represented with a
temporal context (e.g., Kahana, Zhou, Geller, &
Sekuler, 2007; Nosofsky & Kantner, 2006; Viswana-
than, Perl, Visscher, Kahana, & Sekuler, 2010), such
that the general similarity of a set of items modulates
memory for each particular item. Displays where
objects group together into perceptual units also result
in better visual working memory performance, as
though each unit in the group was encoded more easily
(Woodman, Vecera, & Luck, 2003; Xu, 2006; Xu &
Chun, 2007). Similarly, visual working memory per-
formance is improved when items appear more similar
to one another (Lin & Luck, 2009; Viswanathan, Perl,
Visscher, Kahana, & Sekuler, 2010; see also Johnson et
al., 2009), perhaps because people encode items relative
to each other (Lin & Luck, 2009).

In addition to effects of item similarity and
perceptual grouping, participants are better able to
recognize changes to displays if those changes alter the
ensemble statistics of the display; For example, if a
display is changed from mostly black squares to mostly
white squares, participants notice this change more
easily than a matched change that does not alter the
global statistics (Brady & Tenenbaum, 2013; Victor &
Conte, 2004; see also Alvarez & Oliva, 2009). This can
have important impacts on working memory models:
For example, changes that completely change the
identity of an item are also likely to alter the global
texture of the display, confounding estimates of how
many items can be remembered with memory for
spatial ensembles or texture information (Brady &
Alvarez, 2015). Such ensemble representations also
result in biases in memory for individual items, such
that participants tend to report items as more similar to
the other items on a trial than they really were (Brady
& Alvarez, 2011; Huang & Sekuler, 2010; Orhan &
Jacobs, 2013). Thus, there are a number of known
influences of interitem representations on visual work-
ing memory, above and beyond the effects of memory
for individual items. Yet, to date these effects have not
been demonstrated and modeled in standard working
memory tasks.

In the present study, we explore the visual system’s
tendency to make use of perceptual grouping, ensemble
representations, and other forms of structured repre-
sentations in a standard color working memory task. In
doing so, we seek to illustrate and understand the
impact that forming structured representations has on
quantifying working memory capacity. Although much
work has suggested that the assumption of independent
object representations is too simplistic, it is nevertheless
often assumed that the primary constraint in visual
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working memory is the number of individual items that
can be stored, with only minor adjustments needed to
account for how objects influence each other (e.g.,
Johnson et al., 2009; Lin & Luck, 2009, 2012). This
assumption of independence is particularly prevalent in
simple color memory experiments (e.g., Zhang & Luck,
2008), as the vast majority of perceptual grouping and
ensemble effects have been demonstrated with either
spatial memory or more complex stimuli (e.g., Brady &
Alvarez, 2011, 2015; Brady & Tenenbaum, 2013; Xu,
2006), and the canonical color memory task (e.g., Luck
& Vogel, 1997; Zhang & Luck, 2008) is often assumed
to avoid many confounds and complications present in
other visual working memory experiments (e.g., Lin &
Luck, 2012). Thus, memory for color is an important
test bed for understanding the role of context in
individual item memory.

To explore the role of interitem effects and
structured representations in visual working memory,
we introduce a novel technique for probing the
contents of visual working memory based on showing
the same individual displays to hundreds of partici-
pants. This technique allows us to understand the
contents of working memory for each item in each
display. Intuitively, even though displays are randomly
generated, some are likely to be easier or harder to
remember. For example, a display might be easier to
remember if all the left-most items are warm colors and
all the right-most items are cold colors, compared to a
display where the items are heterogeneous and inter-
mixed. By examining the representation of each item on
each display, we can determine the extent to which
working memory performance is affected by interitem
factors that vary across displays even when set size is
constant.

We find that participants are highly consistent in
which items and displays are hardest or easiest to
remember and how precisely they are remembered. In
addition, participants seem to represent ensemble
information independent of their memory for individ-
ual items (e.g., even when participants are wrong about
the colors of the items, they maintain information
about the variance of the colors). A simple grouping or
chunking strategy cannot explain this individual-

display variability, but a model that includes a
hierarchical representation of items plus the mean and
variance of the colors on the display can account for
some of the variability across displays. These findings
demonstrate that a major factor in how many items are
remembered on a particular display is interitem
representations such as perceptual grouping, ensemble,
and texture representations. We conclude that item-
based models of visual working memory should be
updated to capture the rich, structured nature of
working memory representations.

Methods

Participants

For the main experiment, 300 participants were
recruited on Amazon’s Mechanical Turk. All partici-
pants were from the United States, were over 18 years
old, and gave informed consent in accordance with the
procedures and protocols approved by the Harvard
Committee on the Use of Human Subjects. Turk users
form a representative subset of adults in the United
States (Berinsky, Huber, & Lenz, 2012; Buhrmester,
Kwang, & Gosling, 2011), and data from Turk users
are known to closely match data from the lab on
working memory tasks (Brady & Alvarez, 2011; Brady
& Tenenbaum, 2013). All participants indicated they
had normal or corrected-to-normal color vision. All
participants were paid approximately 50 cents for
several minutes of their time.

Procedure

Participants were given instructions on the memory
task, and then consented to participate in the study.
They were then asked to confirm they had normal or
corrected-to-normal color vision and to confirm the
entire experimental display was visible on their
computer monitor. After they did so, the main
experiment began. On each trial, participants saw three
colored circles, presented a fixed distance from the
center of the screen, as in Figure 1. The colors were
present for 1000 ms and then disappeared for 1000 ms.
Then an item was cued and participants used a color
wheel on the screen to select the color the cued item had
been, entering their response by clicking the mouse
button (see Figure 1). Participants were next cued to
another item and asked to report that item’s color, until
all three items had been tested. Items were tested in a
random order for each participant.

Critically, each of our participants saw the exact
same 48 displays, with the order of displays random-

Figure 1. Participants performed a continuous report task,

where they were briefly shown a set of colors and then had to

report the exact color of items that were present at a cued

location. They reported all three colors on each trial, with each

location cued one at a time in a random order.
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ized across participants. These displays were generated
by independently choosing a random color for each
location, in line with previous experiments examining
working memory capacity (Zhang & Luck, 2008). In
contrast to previous work, however, testing all partic-
ipants on the same displays enabled us to determine
what participants represent about particular items and
particular displays. The colors’ spatial locations were
randomized across participants, thus enabling us to
focus on the contribution of the particular set of colors
to performance independent of their locations. This
ensured that a propensity to encode objects from
particular spatial locations would not cause some
colors in a particular display to be represented more
often or more accurately than other colors.

Stimuli

We used the same color space as used in Zhang and
Luck (2008). In particular, we used a fixed luminance
circle (L*¼ 70) through L*a*b* color space with a
radius of 60 centered on the point a*¼ 20, b*¼ 38. We
used Adobe Flash to present the stimuli, as this
software uses the color profile participants have chosen
for their monitor. Because of the nature of experiments
run on the Internet, we could not ensure participants’
monitors were properly color calibrated. However,
variations in the color calibration of participants’
monitors can only artificially decrease the consistency
between participants. Since our main result is the
remarkable consistency across particular participants
on the same displays, it is unlikely that color calibration
was a major concern.

Control experiments

In addition to the main experiment, an additional
1,200 participants ran in three control experiments: 300
at Set Size 1; 300 at Set Size 6; 300 in a replication of
the main experiment (Set Size 3) with the displays
rotated 1808 in color space (e.g., red became green); and
300 in a replication of the main experiment (Set Size 3)
where only a single item was tested on each display. At
Set Size 6, only half of the items were tested on each
display, and which items were tested was counterbal-
anced across participants such that all six items were
tested on each display equally often across participants.

Data quality

In general, we find that participants on Mechanical
Turk enjoy our color memory task, and perform as well
as participants we run in the laboratory. This is

consistent with the fact that Mechnical Turk users have
been known to outperform participants in the lab on
difficult cognitive tasks (Goodman, Cryder, & Cheema,
2013). We excluded no subjects from our analyses and
yet found strong consistency between participants. In
the current experiments, our participants on Mechan-
ical Turk had capacities approximately the same as the
participants from Zhang and Luck (2008), even for
difficult trials where we would expect the largest
difference (e.g., at Set Size 6, pmem ¼ 0.41 in Zhang &
Luck, 2008, and pmem ¼ 0.42 in our participants).

Modeling methods

Overview

Error data from the continuous report task can be fit
using several formal models of working memory, which
we can then compare using standard model comparison
techniques. On each trial, participants reported a single
color for each item, and we calculated the circular
distance (in degrees on the color wheel) between the
color they reported and the actual color of the item.
When combined across multiple participants, this
procedure results in a histogram of errors that appears
to consist of roughly a normal distribution centered near
the correct response, along with a collection of responses
far from the correct response, effectively uniformly
distributed over the color wheel (see Figure 2).

We can estimate parameters of these error distribu-
tions to compare several working memory models,
which we group into three classes: item-based, chunk-
based, and hierarchical. Item-based and chunk-based
models are essentially the same, focusing on the
number of independent units (items or chunks) that can
be stored, except that multiple items are sometimes
treated as a single unit in the chunk-based model. In
contrast, the hierarchical model posits multiple, inter-
acting levels of representation (e.g., individual items
and clusters of individual items). Here we describe how
variants of each model class can be formalized in terms
of parameters that can be estimated from the observed
error distributions.

Item-based models

The standard item-based model

Item-based models assume that participants’ color
reports are entirely item based, such that: (a) If the cued
target item was remembered, but there was some noise
or uncertainty in its exact color, then the error
distribution would be a normal distribution centered
around zero, with wider distributions indicating noisier

Journal of Vision (2015) 15(15):6, 1–24 Brady & Alvarez 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934653/ on 11/25/2015



representations. (b) If the cued item was not remem-
bered, then the observer would guess randomly,
resulting in a uniform distribution of errors. Standard
item-based models assume that the overall error
distribution is a mixture of these two types of responses
(Zhang & Luck, 2008). Thus, item-based models can be
formalized using a mixture model that combines a von
Mises distribution (a circular normal distribution) to
capture the remembered-item responses, and a uniform
distribution to capture the more disparate responses
(Zhang & Luck, 2008).

This standard item-based model has three parame-
ters: pmem, the proportion of responses that were target-
related (i.e., the proportion that come from the von
Mises distribution rather than the uniform distribu-
tion); a bias term indicating whether participants’
target-related responses were, overall, shifted clockwise
or counterclockwise relative to the correct response;
and a standard deviation parameter, SD, indicating the
fidelity of participants’ target-related responses (see
Appendix for further details). Item-based models
interpret the pmem parameter in terms of item capacity
(the number of items represented), and the SD
parameter as the precision with which participants
represent items in memory. While this may be an
incorrect theoretical interpretation of these parameters,
they can nevertheless provide a reasonable summary of
the response distribution even if they are not properly
interpreted in terms of capacity and precision alone.
Details of the model specification and model fitting
procedures can be found in the Appendix.

We can fit such an item-based model to either all the
data across all the displays, as is standard, giving a
three-parameter model, or we can fit a separate value of
bias, SD, and pmem for each item on each of our 48
displays separately, giving a 432 parameter model (48
displays 3 3 items/display 3 3 parameters/item). To fit
the model we used the MLE function of the Mem-
Toolbox (memtoolbox.org; Suchow, Brady, Fougnie,
& Alvarez, 2013), which relies upon MATLAB’s
standard function minimization techniques, with sev-
eral starting points for the optimization used to avoid
local minima.

Item-based, swap model

In addition to a standard mixture model, we also
consider a ‘‘swap model,’’ as described by Bays et al.
(2009). This model is similar to the standard mixture
model of Zhang and Luck (2008) but with the addition
of another parameter to capture the possibility that
participants sometimes report the wrong item from a
display. Thus, in addition to considering the target
color, this model also considers the m distractor colors
present on the same display, and the likelihood of
reporting these values incorrectly, pdistractor. Details of

the model specification and model fitting procedures
can be found in the Appendix.

Chunk-based models

Chunk-based models posit that groups of similar
items will be chunked together, and stored as a single
unit in memory (e.g., upon noticing two of the items are
a similar green, only a single green will be stored in
memory with a tag indicating it goes with both
locations). There are no formal models of chunking in
the literature that we could apply to the current data,
and there are a wide variety of possible formalizations
of such a model. Rather than formalize a particular
chunking model, we conducted a number of analyses
that test specific predictions of the chunk-based
account (see the Results section). These predictions
were qualitative predictions that are either (a) neces-
sarily for any chunk-based model and/or (b) impossible
to account for using any version of a chunk-based
model. This allows us to examine this entire class of
models at once without explicitly formalizing a chunk-
based model to fit to the error histograms.

Structured representation model

Finally, we consider a model based on hierarchically
structured representations, which posits that working
memory stores multiple, integrated levels of represen-
tation. Specifically, it assumes that memory stores
individual item information and information about
clusters of items, and that these levels of representation
are nonindependent: The distribution of individual
items constrains the likely clusters in the display, and
the set of likely clusters in the display influences the
representation of each individual item (as in Brady &
Alvarez, 2011; Orhan & Jacobs, 2013). Critically, this
model, like the standard item-based model, only has
three parameters: the probability of retaining individ-
ual item information, the precision of individual item
representations, and the strength of clustering between
items. A detailed specification of this model and model-
fitting procedures are described in the Appendix.

Results

Variance between displays is high at Set Size 3

The results showed a striking degree of variability in
error histograms across individual displays and indi-
vidual items (see Figures 2 and 3), even within displays
at Set Size 3 (Figure 3; see Supplemental Material for
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graphs of all items in all displays). To emphasize the
magnitude of variability at Set Size 3, it is useful to
compare the variability across set sizes (Figure 2, left
column) to the variability within Set Size 3 displays
(Figure 2, center column). For example, notice that one
of the better remembered Set Size 3 displays (Figure 2,
center/bottom) shows more accurate representations
than the overall Set Size 1 distribution (Figure 2, left/
top). In general, this variability is important because
models based on individual items, like slot or resource
models, cannot account for this variability because they
assume items are independently represented and so
predict no interactions between them.

We can also fit a standard mixture model (e.g., with
a bias, pmem, and SD) to the error distributions across
displays at each set size, and separately for each
individual item in each individual display. Fitting each
item in each display independently with such an item-
based model reveals that different displays have
different standard deviations (SD) and probabilities of
reporting a target-related response (pmem), and that

these differences across displays are reliable (see Figure
3). Split-half correlations provide estimates of the
reliabilities of bias, SD, and pmem for each display as r¼
0.98, 0.87, and 0.86, respectively. The variance between
different individual displays at Set Size 3 is thus both
large and reliable across different participants. Some
items show higher or lower precision than the average
item, in a way that is consistent across participants.
And some items show higher or lower probabilities of
being remembered than other items, also in a way that
is quite consistent across participants.

High variance between displays at Set Size 3
rejects standard item-based models

One way to formalize the variation across individual
displays is by comparing a standard item-based model
fit to the data across all displays, which assumes all
displays have the same bias, capacity (pmem), and

Figure 2. (A) Error histograms across all displays at Set Sizes 1, 3, and 6, and item-based model fits to these histograms. Participants’

responses are modeled as a mixture of a circular normal distribution (corresponding to the remembered items) and a uniform

distribution (corresponding to guesses or other nontarget related responses). (B) Data and model fits for a representative set of three

of the 48 individual displays we tested at Set Size 3. Different displays have different standard deviations (SD), and different rates of

target memory (pmem), in contrast to what we’d expect if participants represented each item equally well and without any interactions

among items, in which case all Set Size 3 displays should look similar. (C) Fits to the individual items within the second display (the

item in full color corresponds to the shown data). Individual items on individual displays have highly reliable but distinct

representations, also contrasting with the prediction of slot and resource-based models.
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fidelity (SD) to a model that fits each item indepen-
dently and thus assumes all items in all displays are
entirely independent, with each item having a separate
bias, pmem, and SD. Contrasting these models is a test
of the idea that items are not equal and interchange-
able. In particular, it tests whether it is better to assume
that all Set Size 3 displays have the same bias, SD, and
pmem or to assume that there is no relationship at all
between the bias, SD, and pmem for one Set Size 3
display and another.

We compare these two models with formal model
comparison techniques, rather than simply look at the
goodness-of-fit (e.g., r2), because these two models have
vastly different numbers of free parameters, and models
with more free parameters will generally fit better than
models with fewer parameters. Model comparison
techniques like Bayesian information criteria (BIC) or
Akaike information criteria (AIC) penalize models for
complexity to prevent such overfitting. In this case,
even the model comparison technique that most

Figure 3. Variance in participants’ memory for individual items. Each individual item is plotted as a separate point (48 displays 3 3

items/display¼ 144 items plotted). The tested item for each point is shown with a dashed black circle. The large spread—well beyond

that expected from measurement noise—demonstrates that different items on different displays are remembered with reliably

different precisions (SD, y-axis) and are reported correctly with different frequencies (pmem , x-axis). The average size of the error bars

for an individual item is shown in the top right corner of the graph. The visible spread indicates that within Set Size 3, the pmem values

for individual items ranged from nearly 0.5 to nearly 1.0, and the SDs ranged from below 108 to nearly 358. This is a difference in

capacity estimates of nearly 50% for different items, and, even more importantly, the range of precisions present within Set Size 3 is

larger than the difference in mean precision across set sizes (mean SD at Set Size 1 was 14.18, at Set Size 6, it was 25.78, while within

Set Size 3 alone, SD estimates range from 9.98 to 33.68).
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punishes models for having more parameters (BIC,
which penalizes complex models heavily) indicates that
the data provide more evidence for a 432 parameter
model that treats each individual item as totally
independent (48 displays 3 3 items/display 3 3
parameters/item) than the traditional three-parameter
model that treats all items on all displays as inter-
changeable. Furthermore, this difference is very large
(BIC difference: 6,449; a difference of 10 or more is
considered strong evidence). This effect is even stronger
when using AIC, which penalizes complex models less
but is more widely used (AIC difference: 10,170).
Bootstrapping on these model comparison values
reveals that this difference is not driven by a small
number of participants but is consistent across
participants (SEM on BIC preference: 6291; t[299] ¼
24.141, p , 0.001). Thus, the assumptions that all
displays at the same set size share a set of parameters
and are interchangeable appears to be untenable. In
other words, a set of parameters describing each
individual display separately (despite the complexity of
this model) is preferred over an item-based model that
assumes a single capacity and precision of representa-
tion constrains performance in all displays.

To demonstrate that these model comparison
techniques are correctly penalizing the more complex
model, we can examine what happens if we shuffle the

data—that is, if we randomly reassign participants’
errors to different displays than they originally came
from. This shuffling procedure should cause all displays
to share the same parameters. In fact, after shuffling,
model comparison techniques strongly prefer the model
with only three parameters rather than the model that
treats each item as requiring its own parameters (BIC
difference: 4,118 in favor of the simpler model),
suggesting such techniques correctly penalize the more
complex model. This validity demonstrates that the
true, unshuffled data provide strong evidence against
treating all displays interchangeably.

Variance across items within a display could be
accounted for in existing item-based models, because
these models can posit of trade-offs in which only a
subset of items are encoded or given more resources
(e.g., participants might systemically choose to encode
blue items more than red, which, in fact, there is some
evidence participants do: Morey, 2011). However, even
collapsing responses across all three items in a display
reveals a large amount of variance between displays
(see Figure 2 for some examples), with capacity
estimates ranging from 1.8 to 2.9 and SDs ranging from
12.88 to 32.58. This demonstrates the failure of any
model that treats displays as a whole as exchangeable,
even if items within each display are not exchangeable.
For example, resource models that assumes a trade-off
between which items get more resources within a single
display, but a fixed pool of resources across displays
(Bays & Husain, 2008) or slot models that assume a
fixed number of slots must be used to represent each
display (Zhang & Luck, 2008) cannot account for this
reliable variance between displays as a whole.

High variance between displays at Set Size 3
accounts for a significant fraction of variable
memory precision

Recently, some models have allowed for the possi-
bility that memory is resource-limited and the amount
of the resource might vary across trials (Fougnie,
Suchow, & Alvarez, 2012; van den Berg et al., 2012). In
particular, they have shown that participants remember
items with different precisions on different trials (van
den Berg et al., 2012) and even for different items on
the same trial (Fougnie et al., 2012).

There are two possible explanations for variability in
participants’ precision. One is that it results from
variability within participants (either within trials or
across trials). However, resources that vary because of
internal states of the observer or stochastic noise at
encoding or maintenance are insufficient to explain the
systematic differences we find across displays, because
the differences we find are consistent across partici-
pants within a display but not consistent across

Figure 4. Residuals from the (A) aggregate model fit across all

displays, and (B) separate models fit to each display. In both

cases the data is ‘‘peakier’’ than the model fit; however, this is

significantly attenuated when taking into account the reliable

differences between individual displays.
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displays. Another possibility is that the number of
resources available varies based on which exact
configuration of colors is present on the display (either
because of interactions between item’s representations
or because these models are incorrect in treating all
memory as item-based, and some memory resources are
actually used for encoding ensemble structures). This
would be consistent with our finding of large variability
between items and displays that is systematic across
participants. To examine the relative contributions of
these two sources, we analyzed our display-by-display
data to look at how much variability was accounted for
by across-display factors.

In particular, to demonstrate the variability in
precision, van den Berg et al. (2012) showed that the
standard model fits fail to account for the shape of the
distribution of participants’ responses; rather than
being a von Mises distribution, participants responses
are instead ‘‘peakier’’ than a von Mises distribution,
consistent with a mixture of von Mises distributions
with different precisions. To visualize this peakiness,
they show the residuals of the data after taking into
account the model fits. The residuals clearly indicate
the models are not peaky enough to account for the
data.

How much of this variability (e.g., the underrepre-
sentation of near-the-target responses in the residual)
can be accounted for by the reliable-across-participants
differences we have observed? Figure 4 shows the
residuals for the standard, aggregate model fit to all
displays, and the residuals when fitting a separate
model to each item on each trial. The residual is
notably smaller when taking into account the variabil-
ity across items that is consistent across participants.

In particular, the sum of squared residuals is 31% as
large when fitting each display independently. This
suggests that more than two thirds of the variability
reported by (van den Berg et al., 2012) is reliable across
participants (e.g., can be captured by modeling
particular items from particular displays independently,
rather than in aggregate). Approximately one third of
this variability thus appears to be independent of the

stimuli shown, perhaps due to variations in degradation
over time (Fougnie et al., 2012).

Thus, a large portion of the variability in particular
items’ fidelity in memory appears to be reliable across
participants because it is a function of the colors on the
display and their relationship to each other.

Variance between displays results in different
parameter estimates in item-based models

We find that model parameters fit to data aggregated
across displays is reliably different than the average of
parameters fit to individual displays. This is important
because models of working memory make specific
predictions as to how model parameters will vary with
set size (e.g., Zhang & Luck, 2008), but the standard
analysis method aggregates data across displays. We
find that the standard deviation of participants’ reports
is significantly overestimated by this standard analysis
technique at Set Size 3 (fit to aggregate: SD¼ 22.5;
average of fits to individual displays: 20.0; overesti-
mate: t[143] ¼ 4.71, p , 0.001). Furthermore, in our
control experiments run at Set Size 1 (fit to aggregate:
SD¼ 14.1; average of fits to individual displays: 12.4;
overestimate, t[47]¼ 8.24, p , 0.0001), SD is also
overestimated. However, at Set Size 6, this same
overestimate does not occur (fit to aggregate: SD ¼
25.7; average of fits to individual displays: 25.4; no
overestimate: t[287] ¼ 0.41, p . 0.10), and the
overestimation at Set Size 3 is reliably greater than the
overestimation at Set Size 6 (t[430] ¼ 2.69, p¼ 0.007).
This suggests that analyzing individual items and
displays can change inferences even within item-based
models like those used by Zhang and Luck (2008) to
argue for a plateau in memory fidelity between Set Size
3 and Set Size 6. This suggests that the variance we
observe in particular displays is meaningful for
comparing working memory models, even when those
models are fit to the average across all displays.
Ignoring item and display-based effects can systemat-

Figure 5. SD across the color wheel, from Set Size 1 experiment (blue) and the exact same colors in the Set Size 3 experiment, where

they have varying contexts from the other two items on the display (green). Errors bars represent 61 SEM, calculated by

bootstrapping.
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ically distort the average precision and guess rates, and
can do so differently at different set sizes.

This variance across items and displays is not
substantially influenced by differences in
precision for individual colors

There is some evidence to suggest participants are
consistent in which colors they report most precisely
even in single item displays (Bae, Olkkonen, Allred,
Wilson, & Flombaum, 2014), as well as which items
they tend to encode from particular displays (Morey,
2011). This could reflect reliable variance in how
precisely participants perceive different colors or
reliable variance in how likely they are to pick different
colors from the response wheel.

However, there are several reasons to believe such
effects do not account for the majority of the variance
we demonstrate here. First, reliable differences in
precision for particular colors should impact our
estimates of SD, but not pmem, yet we find significant
variance across items and displays in both SD and in
pmem. Second, such effects are relatively small—much
smaller than the large variance we observe across
displays. To quantify this, we can examine our control
experiment where we had 300 participants perform a
memory task at Set Size 1. We measured performance
at Set Size 1 using a subset of the colors used in our
main Set Size 3 experiment (one from each display). As
shown in Figure 5 (blue line), we find some inhomo-
geneity across the color wheel in how precisely
participants represent colors at Set Size 1, but this
variance is relatively small and confined to a small
number of colors. In addition, this variance in SD is an
order of magnitude smaller than the variance in SD we
observe in our main experiment at Set Size 3 (green
line), and the two are relatively uncorrelated, with the
variance in SD by color in Set Size 1 accounting for
only 5.0% of the variance we observe at Set Size 3.

Indeed, Bae et al. (2014) also found that such effects
get smaller and less reliable with larger set sizes,
perhaps reflecting the fact that constraints on memory
capacity and additional contextual and ensemble
factors begin to dominate any effects of individual
colors at higher set sizes.

Thus, while there are reliable differences in the
precision with which participants represent particular
colors and/or reliable differences in their propensity to
pick particular colors during the response window (e.g.,
Bae et al., 2014), these effects account for very little of
the variance we observe across displays at Set Size 3.
Instead, the relationship of the colors on the display to
each other (e.g., perceptual grouping, ensemble effects,
etc.) appears to be the primary determinant of this
variance between items and displays at Set Size 3.

The variance across items and displays is not
due to swaps

We tested whether an alternative item-based model,
the swap model of Bays et al. (2009), could account for
the variance across items and displays. This model
posits that error distributions include some proportion
of misreports of the wrong item from the display. Such
swaps would certainly lead to display-specific and item-
specific error distributions. However, we find that this
swap model does not account for a significant
proportion of the current data. These swaps, when a
model including them is fit across all displays, are
estimated to occur less than 2% of the time. If such a
model is fit to the displays individually, it is apparent
that swaps are estimated to occur only on displays
where the items are extremely nearby in color space,
consistent with the possibility these putative swaps are
in reality systematic shifts in the color reported
(towards other colors in the display) rather than true
swaps. A similar conclusion—few swaps, and most of
them the result of nearby items in color space—holds in
our control experiment at Set Size 6 (see Appendix).

While some working memory experiments likely
result in many swap errors (e.g., when items are closely
spaced and/or appear in unpredictable locations;
Emrich & Ferber, 2012), the current experiment was
designed to minimize the chance of such errors: Only
three items are presented, in stable and predictable
locations across trials, and these locations are widely
spaced. Furthermore, sufficient encoding time is given
(1000 ms). All of these factors likely result in few swap
errors (e.g., Bays et al. 2009; Emrich & Ferber, 2012).

The variance across items and displays is not
due to simple grouping or chunking

We find reliable variance in the precision and
likelihood of remembering across both individual items
and entire displays, and this variance does not appear
to be due to swaps of items with other items. One
possible explanation is thus an all-or-none grouping or
chunking strategy. For example, a model where
participants can sometimes represent multiple items as
a single unit or chunk, as in cases where Gestalt
grouping makes participants see two items as one (Xu,
2006; Xu & Chun, 2007). Such chunking or grouping
models have not been formalized, but they nevertheless
make specific predictions that are not supported by the
current data.

Specifically, if participants are in fact storing
multiple items as a single chunk, then items that are
similar should tend to be reported as the exact same
color. To examine this, we looked at all pairs of items
on the same display that were less than 208 apart in
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color space and asked how often participants responses
for these items tended to be nearly identical. We
operationalized ‘‘nearly identical’’ as the responses
being ,58 apart (given this is approximately the noise
usually seen when matching colors present on the
screen; Brady, Konkle, Gill, Oliva, & Alvarez, 2013).
The chunking account predicts that when participants
remember the items successfully, they should respond
nearly identically for the two items, as they have stored
only a single color representing both locations.
However, this will only be true for items that were
remembered successfully; times where the chunk was
forgotten (e.g., guess responses) will result in many
responses further apart than this. Thus, we examined
only relatively accurate responses—those within 208 of
the correct answer for both items. We find that, on
average only 36.1% of these accurate responses are
within 58 of each other, whereas 38.5% of the actual
item pairs considered are within 58 of each other. Thus,
participants do not have a tendency to report items as
nearly identical when they are similar but distinct.

Example displays are shown in Figure 6, along with
their responses, to visualize this in particular displays
that feature similar but distinct items. Note that the

histogram of responses is clearly distinct even for items
that are very similarly colored.

This conclusion is not substantially affected by the
particular cut-offs we chose: Considering only re-
sponses within 108 of the correct answers (to further
ensure this is not affected by guessing) gives qualita-
tively the same result, with 34.0% of responses being
within 58 of each other. If we operationalize ‘‘nearly
identical to’’ in a broader way, and examine the
proportion of responses within 158 of each other, we
find that 64.1% of participants’ responses to these items
were within 158 of each other, as compared to 53.8% of
the actual item pairs. This remains inconsistent with an
account where participants always report these similar
items as the same exact color.

Participants represent more than just individual
items

Existing work has shown the presence of ensemble/
texture representations (Alvarez, 2011; Brady & Al-
varez, 2015; Haberman &Whitney, 2012; Rosenholtz et
al., 2012) and shown the influence of these ensemble
representations on individual item representations

Figure 6. Two examples of displays with similar items, where we would expect chunking to be most prevalent. For each display, the

responses of participants are shown as a histogram (gray bars) and the correct color is shown by a vertical black line on the color bar

underneath. A mixture model fit to each item’s responses individually is shown in green. The gray line with squares marks the average

mixture model fit across all items in all displays. Differences between the green line fit to the histogram and the gray line reveal ways

that responses to these items are different than the average item. Notice that even for items that are very similar (e.g., the middle

and bottom row on both sides) participants responses are very clearly distinct; the distributions for the two items are not identical

but are properly shifted so they are biased toward the correct response in each case.
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(Brady & Alvarez, 2011; Brady & Tenenbaum, 2013).
In the current data, we find evidence of such ensemble
representations even when participants don’t seem to
possess any individual item memory. In particular,
participants seem to be aware of ensemble properties
like the variability of the colors on the display (e.g.,
whether all the colors similar or all different) even when
they fail to remember any of the individual item colors.
If we examine only trials where the colors participants’
reported were entirely wrong for every item (not within
the correct one fourth of the color wheel; i.e., error
.458 for each item), we still find a significant
correlation between the variability of the colors
participants’ report and the variability of the items on
the display (r¼ 0.40; p¼ 0.004). Thus, when all three
colors are relatively similar, participants report similar
colors for all three, even if they are entirely wrong
about the particular colors; when all three colors are
different, participants report colors that are further
apart in color space, and this is true even when
participants do not remember any of the individual
colors. This provides direct evidence for ensemble
representations separately from individual item repre-
sentations. In addition, this provides strong evidence
against chunking and grouping as the only mechanism
causing variability across items and displays, since
these accounts do not predict any direct representation
of ensemble properties or summary statistics.

The variance across displays is not caused by
asking participants to report all of the items

One possibility is that the nonindependence between
items could be an artifact of the task we had

participants perform. In particular, participants were
asked to report all the items in each array, rather than
just one item (as is usually done). This may have caused
participants to adopt a global or holistic strategy to
encode all the items. Furthermore, it is possible that
retrieving one item at test may have biased subsequent
reports, for example, through proactive interference or
priming.1

Thus, we ran an additional control experiment. This
experiment was identical to the main experiment,
except that participants were asked about only a single
item from each display. We can then examine whether
participant’s error distributions are similar for the main
experiment as for this control experiment, to ask
whether these concerns might have caused the nonin-
dependence we observer between items.

We find that participants’ error distributions are
nearly identical when tested on only one item (see
Figure 7 for examples). In addition, fitting the standard
model parameters to each of the 48 items tested here
and comparing them with the same 48 items in the main
experiment shows correlations of r¼ 0.98 (p , 0.0001)
for bias, r¼0.90 (p , 0.0001) for SD, and r¼0.76 (p ,
0.0001) for pmem. These values are comparable to the
reliabilities estimated within each experiment (r¼ 0.98,
0.87, and 0.86, respectively). Thus, there does not
appear to be any effect of testing multiple items on
participants’ error distributions.

A structured representation model of working
memory explains some aspects of performance

While item-based or chunk-based models cannot
account for the variability across items and displays, a

Figure 7. Example error distributions for three items, when tested in the main experiment (top), and in the control experiment where

only one item is tested per trial (bottom). Responses are nearly identical whether participants are tested only a single item or on all

three items. Note that the tested item is always shown on the right, but in the actual experiment, different participants saw the

display with the three items in different locations.
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model based on structured individual item and
ensemble representations can successfully explain some
of the variance in participants’ performance (Brady &
Alvarez, 2011; Orhan & Jacobs, 2013). In particular,
the data are compatible with a model where partici-
pants treat the display as being made up of clusters of
items, representing both individual item information
and the mean color and variance of these clusters in a
single structured representation (as in Brady & Alvarez,
2011).

Within this framework, item-level and cluster-level
representations are not independent, but are instead
integrated. Consequently, the structured representation
model predicts a shift in the representation of each item
toward the mean of the other items represented in the
same cluster, as well as different precisions (SDs) for
items that cluster well with other items versus those

that do not (Brady & Alvarez, 2011; Orhan & Jacobs,
2013). A similar hierarchical representation is known to
be present in memory for visual size and in spatial
memory (Brady & Alvarez, 2011; Orhan & Jacobs,
2013); and such representations can be considered
optimal under certain conditions, since they make use
of information from all of the items to inform
judgments for any particular item (Brady & Alvarez,
2011; Orhan & Jacobs, 2013). Furthermore, such
models have explicit representations of ensemble
properties like the mean and variance of a cluster and
of the entire set of items on the display, which is
consistent with our finding that participants sometimes
retain this information in the absence of specific item
memories (e.g., know the variance of the colors even
when they do not remember the actual colors).

Figure 8. Schematic of the structured representation model. Participants see a display (bottom row) and encode noisy samples of the

colors present (perceptual samples; second row from bottom). Participants then attempt to infer, based on these samples, the true

colors the items were (item color; middle row). To do so, they make use of not only the samples they encoded, but are influenced, by

potential ensemble groupings of the colors (top row). Thus, the colors that participants report are influenced not only by the sampled

colors, but also by structure of potential clusters that could be present in the display. For example, both the first and second item

might be seen as coming from a particular ensemble group with a particular center color and variance (highlighted in black; second

row from top), in which case both this ensemble information and the sample that was encoded will inform the color that participants’

report. Alternatively, all three colors might be seen as coming from a single high variance ensemble, and then all three colors would

be pulled towards each other. Importantly, the model posits that participants do not simply choose a single ensemble that could

explain the display, but instead integrate over all possible ensembles in making their response.
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How do participants decide which items to cluster
together? In the case of spatial memory, it has been
suggested that, rather than picking a single clustering of
the display, the visual system infers a probability
distribution over many such clusterings (Orhan &
Jacobs, 2013). This allows the representation of items
at multiple levels of abstraction simultaneously, and
results in biases toward the means of all possible
clusters to which an item might be assigned. We
propose a similar model can explain important variance
in visual working memory for colors. Thus, in
estimating the color of the set of items on the display,
participants would integrate out their uncertainty
about the clustering of the set of items, weighting each
possible ensemble representation by how well it would
explain the colors that are present, but ultimately
considering many such ensembles in their response (see
Figure 8).

We formalized an implementation of this model and
examined its fit to the data. The details of the model are
outlined in the Appendix. We allowed three free
parameters to vary: how noisy participants initial
encoding of the colors was (taking into account both
perceptual and memory noise), equivalent to SD in the
item-based models; the concentration parameter, which
captures how likely different items are to come from the
same cluster as each other (low values: more clustering;
high value: less clustering); and the rate at which a
particular cluster of items is corrupted or lost from
memory (equivalent to pmem in the item-based models).
The best-fit parameters were equivalent to an SD of
22.58 and a pmem of 0.70, with a concentration
parameter suggesting mild clustering (C ¼ 15). Note
that while the proposed memory representation is
hierarchical, and there are many parameters in the
model whose value depend on the particular colors
present on a given display, the only parameters that are
not 100% determined by the colors on the particular
display are the SD, pmem, and C parameters. Thus,
when fit to the data of a given participant or set of

participants, the model is not hierarchical in the
traditional statistical sense (e.g., Morey, 2011). Instead,
it is simply a model that makes distinct predictions on
different displays depending on the colors present on
those displays, with all predictions yoked to the set of
three parameters that are free to vary to fit to the data.

The intuition behind the model is expressed in Figure
8. Rather than thinking of the entire model, consider a
single example first. For instance, imagine that you
remember each item both as an individual and as part
of a particular cluster, with a particular mean and
variance (as represented by the ensemble representation
with a darker line in the second row of Figure 8). What
is the optimal inference about the color of the item, if
you have some belief about what color the item was
from your perceptual encoding of that item (with noise,
based on the SD parameter; fourth row), but you also
believe the item to be drawn from a particular higher
level cluster (second row)? It turns out that, according
to Bayes rule, the optimal response is not to report a
color based purely on your perceptual memory, but to
bias your response toward the ensemble mean (e.g.,
Brady & Alvarez, 2011; Huttenlocher, Hedges, &
Vevea, 2000). For example, if you encoded the left item
in Figure 8 as blue/green with uncertainty (SD), but
you also encoded that this item is in a cluster with the
green item, then it is more likely that the item was
actually greener than your perceptual estimate (as
opposed to bluer than your perceptual estimate). Thus
the optimal response distribution is centered not
around the center of the individual item distribution,
but is centered around a weighted average of this
individual item memory and the associated ensemble,
with the ensemble given more weight when the
individual item memory is noisy (e.g., SD was high) or
when the ensemble was itself narrow (e.g., the cluster
you encoded was very tight, as if both items were nearly
the same color).

This example provides the intuition behind the
structured representation model. However, in the

Figure 9. Predictions for three items from different displays. Notice that on each kind of display—displays where the item groups well

(left), a display where no items group (middle), and a display where an item is an outlier relative to the others (right)—the model

correctly predicts shifts in the mean and the direction of the skew, in addition to the width of the distribution and the rate of

nontarget related responses.

Journal of Vision (2015) 15(15):6, 1–24 Brady & Alvarez 14

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934653/ on 11/25/2015



actual model, items are not assigned a single ensemble
representation. Instead, many possible ensemble dis-
tributions are considered and are weighted based on
how well they explain the items on the display. For
example, if all three items are pink, an ensemble
representation with a center on green would be very
unlikely; an ensemble with low variance centered on
pink would be much more likely; but a slightly wider
ensemble representation with a center on more red
would also be possible, etc. The C parameter controls
how likely multiple items are to be drawn from the
same ensemble representation as each other. If this
value were close to 0, there would be a strong
preference for ensemble representations where all three
items are drawn from the same ensemble; if it were very
high, there would be a strong preference for ensembles
where each item is assigned a unique distribution (and
thus there is very little pull toward the other items).

The middle row of Figure 8 shows the kind of item
color distributions that result from this model. The
ways in which these distributions differ from the
perceptual encoding distributions in the fourth row is
based on pulls toward the different possible ensemble
representations, weighted by how likely those ensemble
representations are. For example, the middle column
shows the green item. The distribution for this item has
its mode on roughly the correct answer, but all of its
skew is toward the blue/purple side. This is because the
only ensembles that are high likelihood on this display
account for either only this item (and thus result in little
skew), or result in clustering this item with either the
blue and purple item or just the blue or just the purple
item, which in all cases results in skew in that direction.

This model provided a strong qualitative fit to the
data (see Figure 9). In addition, model comparison
metrics showed that this model provided a vastly better
explanation of the data than the standard model that
assumed all displays were interchangeable despite
having the same number of free parameters (BIC
difference: 4,401; SEM: 6308; t[299]¼14.3, p , 0.001).
The predictions of this model are shown in Figure 8 on
particular individual displays. To ensure that this
model was not subject to overfitting, we collected an
entirely new set of data with 300 new subjects, using the
same displays as before but with the items rotated 1808
in color space (e.g., red items became green). The same
model with the exact same parameter values derived
from the previous data provided a very strong fit. This
zero parameter model easily outperformed the model
that treated all displays interchangeably (BIC differ-
ence: 3,630) on this independent dataset.

The fit of this model provides some evidence that
participants’ representations are multifaceted, com-
posed of individual item representations that are
modulated by ensemble statistics (Brady & Alvarez,
2011). In particular, if we wish to fit models that

provide strong explanatory value—for example, reduce
the space of a complicated set of data to just a few
simple principles and a few parameters—then this
model provides a significant improvement over fitting a
standard mixture model that assumes the same
parameters hold on each individual item and each
individual display.

In addition, this model explicitly represents both a
cluster’s mean and cluster’s variance. Thus, this model
has the ability to explain why participants sometimes
forget all of the individual colors in a display but
nevertheless retain the information about the variance
of the items (e.g., ensemble information). In particular,
if the cluster means become corrupted but not the
cluster variances, then the model predicts the report of
incorrect colors, but the correct retention of how
spread out on the color wheel these items are.

How good of an explanation is this structured
representation model?

The structured representation model we propose
provides a better fit than the standard model that
assumes that all items on all displays share a single
precision and guess rate, even with the same number of
parameters fit to the data. How does this model
compare to a model that assumes all displays are
independent and all items have entirely separate bias,
SD, and pmem?

The completely independent model, with 432 pa-
rameters, actually outperforms the structured repre-
sentation model (BIC difference: 2,693; SEM: 6307,
t[299] ¼ 8.8, p , 0.001). This suggests that, while the
structured representation model is an improvement
over the standard model that assumes the displays and
items are all interchangeable, it is still far from a
completely satisfactory explanation of the data. How-
ever, given that the model with 432 parameters
provides little to no explanatory value—it does not
reduce the space of a complicated set of data much at
all, instead simply providing a complicated restatement
of the data—the structured representation model may
still be considered an improvement, just as the standard
mixture model provides a useful simplification of the
data. In particular, the structured representation model
provides just a few simple principles and parameters,
and this model provides a significant improvement over
fitting a standard mixture model that assumes the same
parameters hold on each individual item and each
individual display.

What makes the structured representation model fail
to out-fit the model that assumes representations are
entirely independent for each item? Some factors are
likely to be systematic: For example, there is some
evidence that items that are very close by in color space
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actually repel each other, rather than attracting each
other, possibly because they are explicitly coded as
distinct (e.g., Johnson et al., 2009). There is some
tendency for this in our data (e.g., see Figure 6) and it is
directly the opposite of the prediction of the hierarchical
attraction in the structured representation model.

Other factors are likely to be more idiosyncratic. In
particular, there may be factors that cause variance
across items and displays in ways that are very difficult
to model (e.g., particular color combinations may have
semantic meaning, causing attraction to pre-existing
prior states, like red–green–blue).

General discussion

The current results demonstrate a failure of item-
based and chunk-based models to account for data
from individual working memory displays. In particu-
lar, these data show that performance on working
memory tasks is strongly affected by interactions
between items within a display, and provide evidence
that higher level ensemble properties are explicitly
encoded even in simple color memory displays (e.g., the
variance of colors on a display). These results provide
evidence against influential item-based models that
predict (or assume) no variability across displays,
including recent slot models and resource models of
visual working memory capacity. In fact, the present
results suggest that individual object representations
may compose only a part of working memory
representations, and suggest that hierarchically struc-
tured representations may play an important role in
memory, even for the canonical color memory task. We
propose that these findings require a new framework
for studying visual working memory, focusing on
structured memory representations composed of mul-
tiple, interacting levels—including both individual-item
information and interitem ensemble information.

Implications for estimating the capacity of
working memory

The present finding suggests that estimates of
working memory capacity must take interitem effects
into account in order to accurately estimate item limits.
Our analyses suggest that current capacity estimates,
which are generally derived from item-based models
and which assume 100% of participants’ responses are
based on individuated item representations (e.g., Bays
et al., 2009; Zhang & Luck, 2008), are likely
overestimating capacity for individual items. In par-
ticular, even displays of three colors tend to have some
structure in them, which people can use to remember

the colors, and that could be seen as a way for
participants to inflate their capacity estimates beyond
the core capacity of their visual working memory
systems, in the same way that all-or-none chunking is
seen as inflating capacity estimates (e.g., Cowan, 2001).
For example, Cowan (2001) advocated using nonsense
stimuli and eliminating the ability to chunk (thereby
combining information about multiple items) to get at
the core capacity of the system. However, if even
displays of three colors show some structure, then, if
this logic is correct, we would need to look at the least
structured displays—those that reveal the lowest
capacity—to show the true, core capacity of the visual
memory system.

Thus, examining pmem in the displays with the lowest
capacity estimates should provide an estimate of how
many individual items can be remembered independent
of grouping and ensemble factors that may help
participants remember information in some displays by
combining information sources across items. For Set
Size 3 displays, the lowest reliable capacity was only 1.8
items, as compared to the mean across displays of nearly
2.6 items—a 44% overestimate. For Set Size 6 displays,
the lowest reliable capacity was 1.3 items, compared to
the mean across displays of 2.5 items. These low capacity
displays (visible in Figure 3), tend to have the least
structure and fewest relations between items.

Thus, our data indicate that existing models of
working memory capacity overestimate the capacity of
memory for individual items by confounding all
encoding strategies participants use (ensembles,
grouping, individual items) with an estimate of how
many individual items they can remember. When
display structure is at a minimum, estimates of
individual item capacity are nearly 50% less than
estimated by slot and resource models. Note, however,
that this estimate is not a meaningful measure of the
total amount of information participants can store, but
only their capacity for individuated objects; partici-
pants are able to remember significantly more on
average because their representations appear to be
much richer than just individuated objects (for exam-
ple, they appear to independently store the variability
of the items in color space, as a kind of ensemble
representation).

Implications for working memory architecture

Recent theories of working memory have hinged on
accurately estimating how many items can be remem-
bered, and the precision with which they are stored (for
a review, see Brady et al., 2011). In particular, much
work has focused on how the precision of item
representations changes with set size. In addition to
showing that capacity is overestimated by the standard
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analysis method, our data also provide evidence that
fitting the aggregate data across displays, as is typically
done, systematically misrepresents the parameters of
participants’ memory representations in a way that
undermines current claims about cognitive architecture.

For example, many recent papers have debated
whether the precision of memory plateaus at Set Size 3
(i.e., whether an identical SD is present at Set Size 3
and Set Size 6), because such a plateau is taken to
support a slot model of memory (Bays et al., 2009; Van
den Berg & Ma, 2014; Zhang & Luck, 2008, 2011).
However, we find that fitting separate models for each
item significantly changes the conclusions about how
fidelity changes with set size. In particular, such an
analysis shows that the standard deviation of partici-
pants’ reports is significantly overestimated by the
standard analysis technique at Set Size 1 and Set Size 3,
but not Set Size 6. Thus, at least part of the reason that
recent papers have found similar or equivalent standard
deviations at Set Size 3 and Set Size 6—a fundamental
claim of the slot model (van den Berg & Ma, 2014;
Zhang & Luck, 2008)—is that variability across
displays leads to a greater overestimation of the
standard deviation at lower set sizes than Set Size 6.
Thus, our data cast serious doubt on claims that
participants’ representations do not continue to get
noisier after Set Size 3 (Zhang & Luck, 2008), and
strongly undermine this particular piece of evidence for
a simple slot-like architecture for working memory,
even if we continued to (incorrectly) assume that all of
participants’ performance results from individual item
representations.

Beyond individual items, and towards
structured representations

Most research on visual working memory attempts
to minimize the role of individual-display variability so
that it can be ignored when modeling performance.
However, this approach can only be successful if it is
possible to control for factors that might vary across
displays, and if the controlled factors are actually
irrelevant to models of working memory capacity. We
argue that both of these requirements are untenable.
For instance, we have shown that the standard practice
of generating random displays of simple items results in
substantial individual-display variability, and that
parameters derived from models of aggregate data can
be misleading. Furthermore, it is either difficult or
impossible to manipulate key variables, such as the
number of items to remember, while holding interitem
factors completely constant. That is, it would be nearly
impossible to generate displays such that a six-item
display has the same amount of perceptual organiza-
tion and the same utility of ensemble representations as

a one- or two-item display. Thus, if these interitem
factors are not taken into account, it is impossible to
isolate changes in performance that are due to changes
in set size alone.

Even if contextual factors could be controlled to
minimize their contribution to performance, doing so
presupposes that their role is irrelevant in the encoding
and storage of information in working memory. The
results shown here, and in previous studies (Brady &
Alvarez, 2011, 2015; Brady & Tenenbaum, 2013),
support the proposal that visual working memory
representations are in fact richly structured, composed
of both texture/ensemble features and individual item
features, in addition to the utility of all-or-none
perceptual grouping (Xu & Chun, 2007). Therefore, to
fully understand our ability to hold information in
mind, it is more important to understand how memory
maintains structured information than to estimate the
number of individual objects that can be remembered.

Based on our findings that interitems factors play an
important role in working memory storage, we propose
a new framework for studying visual working memory
in particular, and visual cognition more broadly, which
employs modeling individual-display variation to con-
strain models of cognitive function (as in item response
theories and similar attempts to estimate item effects:
e.g., Baayen, Davidson, & Bates, 2008; Lord, 1980).
This approach is analogous to the use of individual-
person variation to constrain cognitive theory (Peterzell
& Teller, 1996; Vogel & Awh, 2008; Wilmer &
Nakayama, 2007; Yovel & Kanwisher, 2005), and
many of the same techniques and inferences can be
drawn using an individual-display approach.

In the current work, we have examined primarily
variance across displays, and, in doing so, we averaged
across participants. However, we ultimately wish to
understand not only variance in particular displays, but
also how this variance is effected by the variance across
participants (as in Vogel & Awh, 2008). Doing so will
require hierarchical models (e.g., Morey, 2011) and
mixed-effects models, which are popular when exam-
ining item effects in other areas of research (e.g.,
Baayen et al., 2008; see also item-response theory:
Lord, 1980, and attempts to examine both items and
participants: Clark, 1973).

The main advantage of this approach—whether
averaging across subjects or fitting mixed-effects
models—is that collecting large amounts of data on
particular displays, and using simple modeling tech-
niques to account for individual-display variability,
allows more stringent tests of model predictions. The
current study demonstrates the importance and utility
of this method: We use it to show that there is
substantial individual-display variation that has a
major impact on the representations participants’ form
of simple working memory displays, and that working
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memory capacity cannot be accurately modeled with-
out taking into account the structure and use of
ensembles in working memory representations. This
provides strong evidence against all existing item-based
models of working memory and opens many new
questions about the nature of working memory
representations.

Keywords: visual short-term memory, working mem-
ory capacity, ensemble statistics
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Appendix

Extended swap model fits

One simple model that could account for display-by-
display variance is one in which participants sometimes
report incorrect items from the same display. It is
visually apparent in our data (e.g., Figure 2) that this
does not account for the majority of the difference in
individual items and displays in the current dataset.
However, it is also possible to analyze such swaps
quantitatively by using a model that takes into account
that participants might sometimes report an incorrect
item (Bays et al., 2009; see Methods for a description of
this model).

The quantitative fit confirms swaps are, at best, a
very small component of the difference between items
and displays. Fitting to the aggregate data across all
displays gave us an estimate of 1.6% for pdistractor, the
likelihood of incorrectly reporting a distractor item.

This is a very small rate, and thus not likely of
significant relevance to our conclusions (when taking
into account swaps, pmem was estimated at 78%). In
addition, fitting a swap model to individual displays
reveals that only three items in the entire set of 144
items have an estimated swap rate of more than 15%,
and they all come from the same display—a display in
which all three items are nearly the same color (all are a
shade of pink). On this display swaps cannot be
distinguished from correct responses or slightly shifted
correct responses, and thus all three items have a large
degree of uncertainty in their parameter estimates
between pmem and pdistractor. Taken in the context of the
results from other displays, these responses almost
certainly reflect correct memories rather than swaps.
Thus, there is little evidence for reporting of incorrect
items in our data, or that it could explain the
differences we observe between different displays.

According to Bays et al. (2009), participants commit
many more swaps at larger set sizes (e.g., they find a
nearly 30% swap rate at Set Size 6). In our control
experiment at Set Size 6, we did find a higher estimate
of swaps when fitting the Bays et al. (2009) model.
However, we still find an average swap rate of only
12%, well below Bays et al.’s (2009) estimate of nearly
30% at Set Size 6.

In addition, in our data, these swap estimates are
driven by a small number of items and displays. Using
model comparison, we find that the swap model is
preferred to a model without swaps for only 18.4% of
our 288 items (six items each in 48 displays). As at Set
Size 3, these displays tend to be one with many similar
colored items (e.g., five orange/pink colors and one blue
color). On these displays, participants often misreport-
ed the pinks as more orange and vice versa; and this is
interpreted as evidence of swaps in the model compar-
ison between a standard mixture model and a swapping
model. However, participants almost never reported an
orange/pink color as blue or vice versa (as predicted by
a pure swap account). Thus, this data is not consistent
with swaps between all items or swaps based on
location. Instead, it may be the case that there are very
few true swaps: The error distributions may simply be
complex, involving clusters and hierarchical encoding,
which the swap model can mimic in some circum-
stances. In particular, at higher set sizes, people may be
considerably more likely to take a clustering approach,
and remember a broad color category, particularly on
where the items fall into only a few clusters.

Other experiments may find more true swap errors
than we do here. In particular, the locations the items
appear in this experiment are stable and predictable
locations across trials and these locations are widely
spaced. Furthermore, sufficient encoding time is given
(1000 ms). All of these factors likely result in few swap
errors (e.g., Bays et al. 2009; Emrich & Ferber, 2012).
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Structured representations/hierarchical
Bayesian model

The hierarchical Bayesian model we use to concep-
tualize structured representations was similar to the
Bayesian Finite Mixture Model of Orhan and Jacobs
(2013), with two sets of modifications: First, the
distribution for sampling the data and the cluster
centers were modified to be von Mises distributions
rather than normal distributions, to account for the
circular nature of color data; second, we added a new
component to account for guessing, which allowed for
participants’ representations to sometimes become
corrupted prior to being reported.

In particular, we fit a mixture model made up of K¼
5 components. All parameters of the model were
determined by the colors present on the displays
themselves, as opposed to the data (e.g., participants’
responses), except for three parameters, which we fit
based on participants’ error distributions: jsample,
which controls the sampling error of individual items,
and which we set equal to seven (equivalent to an SD of
22.58); C, which is the concentration parameter which
indicates how likely items are to cluster, which we set
equal to 15; and g, which is the guess rate (the inverse
of pmem), which we set equal to 0.30. The role of these
parameters is explained below.

The model is specified as follows, where i ranges
from 1 . . . N, for the N ¼ 3 items; and j ranges from
1 . . . K, for the K¼ 5 clusters. First, the propensity for
items to be in certain clusters:

p ; DirichletKðapÞ

zi ; MultinomialðpÞ
where p represents the mixing proportions of the
clusters (e.g., how many items are likely to be drawn
from each cluster). This is distributed as a Dirichlet,
with ap as the concentration parameter, saying how
likely we believe items are to come from the same
clusters as each other; we put a Gamma (C, 1) prior on
ap and treat C as a free parameter. zi designates the
current cluster assignment of item i.

We gave the cluster locations, lj, an empirical prior
based on how often participants tend to report
particular colors in another dataset (participants have
slight preferences for some colors over others: Im &
Halberda, 2012; Bae et al., 2014). Inferences were not
significantly affected by this choice compared to using a
Uniform(0, 360) prior on lj.

jj ; Gammaðaj;bjÞ
To model the expected width of the ensemble

distributions, we used a gamma distribution for
concentration parameter jj with scale parameter aj and
shape parameter bj. We set aj¼ 10 and put a Gamma

(1, 1) prior on bj. These priors resulted in reasonable
ensemble distributions. However, inference was not
strongly affected by these priors (e.g., setting aj¼ 5 or
aj ¼ 15 results in nearly identical inferences). Next we
specified the distribution for the item colors, hi:

hi ; vonMisesðlzi ;jziÞ
These item centers are drawn from von Mises

distributions, based on the cluster they are assigned to
(zi). Finally, the actual samples participants store in
memory are noisy samples from these item colors:

xi ; vonMisesðhi; jsampleÞ:
There is some noise inherent in sampling the colors

and storing them in an internal representation; jsample

captures the effects of both the sensory and memory
noise involved in generating these internal observa-
tions, and was treated as a free parameter along with
the concentration parameter C.

To model guessing, we assume that participants do
not always report the inferred value of hi for each color.
Instead, their response might be based on a corrupted
or lost representation instead, in which case they will
instead report a random color sampled from their prior
over colors (e.g., a guess). Thus, participants’ actual
reported values depend on an additional variable
indicating whether or not the item is corrupted:

xi ; BernoulliðniÞ
Based on pilot data, we assumed that such corruption
will happen more often to items that do not fit into an
ensemble with other items than those that do fit in with
the other colors. Thus, ni takes on the value g if the item
is alone in its own cluster; g2 if it is in a cluster with one
other item; and g3 if it is in a cluster with all three items.
This guessing parameter g is treated as a free parameter.
If xi is true, then the item is corrupted and participants
reported a sample from their prior over colors; if xi is
false, they reported the value of hi they have inferred.

We fit this model using default Markov chain Monte
Carlo (MCMC) function of PyMC (Patil, Huard, &
Fonnesbeck, 2010). The Python code for this model is
included in the next section of the Appendix.

We based our choice of priors and model structure
on those used by Orhan and Jacobs (2013); however,
because designing this clustering model inherently
involves degrees of freedom above and beyond the free
parameters (including the exact form of the guessing
distribution, which we fit based on pilot data), we
collected a totally independent dataset that was never
used to test this model except for the single time we
evaluated its performance. The model generalized
extremely well, still providing a significantly better fit
than models based on assuming all items are ex-
changeable. The results of this analysis are presented in
the main text.
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Python code for Hierarchical Bayesian model
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