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Observers can quickly and accurately compute ensemble sta-
tistics about a display, such as the mean size (Ariely, 2001; 
Chong & Treisman, 2003), orientation (Parkes, Lund, Angelucci, 
Solomon, & Morgan, 2001), and location (Alvarez & Oliva, 
2008) of the items; the mean expression of a set of faces 
(Haberman & Whitney, 2007); and even higher-level spatial 
layout statistics (Alvarez & Oliva, 2009). However, little work 
has explored why observers compute these statistics and, in 
particular, whether the encoding of these higher-order statis-
tics might play a role in how observers represent the individual 
items from such displays in memory.

Nearly all studies of visual working memory use displays 
consisting of simple stimuli and items that have been chosen 
randomly.1 These displays are, as best as possible, prevented 
from having any overarching structure or gist. Thus, influen-
tial models of visual working memory tend to treat each item 
as an independent unit and assume that items do not influence 
each others’ representations (Alvarez & Cavanagh, 2004; 
Bays, Catalao, & Husain, 2009; Luck & Vogel, 1997; Rouder 
et al., 2008; Wilken & Ma, 2004; Zhang & Luck, 2008; 
although see Lin & Luck, 2008, and Johnson, Spencer, Luck, 
& Schöner, 2009).

We propose that, contrary to the assumptions of previous 
models of visual working memory, ensemble statistics allow 
observers to encode such working memory displays more 

efficiently: In a process paralleling how people encode real 
scenes (Lampinen, Copeland, & Neuschatz, 2001; Oliva, 
2005), observers might encode the “gist” of simple working 
memory displays (ensemble statistics such as mean size) in 
addition to information about specific items (their individual 
information). Such hierarchical encoding would allow observ-
ers to represent information about every item in the display 
simultaneously, significantly improving the fidelity of their 
memory representations compared with encoding only three 
or four individual items.

To test this hypothesis, we used the ensemble statistic of 
mean size and the grouping principle of common color, both 
of which are known to be automatically and effortlessly com-
puted and could act as a form of higher-order structure in 
visual displays (Chong & Treisman, 2005b). Our results dem-
onstrate a form of hierarchical encoding in visual working 
memory: The remembered size of individual items was biased 
toward the mean size of items of the same color and the mean 
size of all items in the display. This suggests that, contrary to 
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existing models of visual working memory, items are not 
recalled as independent units; instead, an item’s reported size 
is constructed by combining information about that specific 
item with information about the set of items at multiple levels 
of abstraction.

Experiment 1: Ensemble Statistics 
Bias Size Memory
We examined whether the ensemble statistics of a display 
would bias memory for individual items when observers 
attempted to remember the size of multiple colored circles. We 
hypothesized that in the case of displays with both small red 
circles and large blue circles, observers would tend to report 
the size of a particular circle as larger if it was blue than if it 
was red. Such a size bias would suggest that observers had 
taken into account the size of the items in each color set.

Method
Observers. Twenty-one observers were recruited and run 
using Amazon Mechanical Turk (https://www.mturk.com). All 
were from the United States, gave informed consent, and were 
paid $0.40 for approximately 3 min of their time.

Procedure. All observers were presented with the same 30 
displays consisting of three red, three blue, and three green 
circles of varying size (see Fig. 1) and were told to remember 
the size of all of the red and blue circles, but to ignore the green 
circles. We included the green distractor items in the displays 
because we believed they would encourage observers to 
encode the items by color, rather than to select all of the items 
into memory at once (Halberda, Sires, & Feigenson, 2006; 
Huang, Treisman, & Pashler, 2007). The order of the 30 dis-
plays was randomized across observers. Each display appeared 
for 1.5 s and was followed by a 1-s blank, after which a single 

randomly sized circle reappeared in black at the location that a 
red or blue circle had occupied. Observers had to slide the 
computer mouse up or down to resize this new black circle to 
the size of the red or blue circle they had previously seen at 
that location; they then clicked to lock in their answer and start 
the next trial.

Stimuli. The nine circles appeared on a gray background that 
measured 600 × 400 pixels. Each circle was positioned at a 
random location within an invisible 6 × 4 grid; jitter of ±10 
pixels was added to the circles’ locations to prevent collineari-
ties. The size and resolution of observers’ computer monitors 
were not controlled. However, all observers attested to the fact 
that the displays were visible in their entirety. Moreover, the 
critical comparisons are within subjects, and individual differ-
ences in absolute size of the displays are factored out by focus-
ing on within-subjects comparisons between conditions.

Circle sizes were drawn from a separate normal distribution 
for each color. The mean diameter for the circles of a given 
color was chosen uniformly on each trial from the interval (15 
pixels, 95 pixels), and the diameter of each individual circle 
was then chosen from a normal distribution with this mean and 
a standard deviation equal to one eighth of this mean. Thus, on 
a given trial, the three red circles could be sampled from 
around 35 pixels, the blue circles from around 80 pixels, and 
the green circles from around 20 pixels. However, which color 
set was largest and which was smallest was chosen randomly 
on each trial; thus, on the next trial, it could be the green cir-
cles that were largest and the blue circles that were smallest.

So that we could directly test the hypothesized bias in 
reported size, we generated 15 matched pairs of displays. First, 
15 displays were generated as described; then, another 15 
were created by switching the color of the to-be-tested item to 
the other nondistractor color (and making the reverse switch 
for another circle, so that there would still be three red circles 
and three blue circles in the display). Thus, the displays in 

Fig. 1. Example pair of matched displays from Experiment 1. Observers had to remember the size of the red and blue 
circles and ignore the green circles. After each trial, they were tested on the size of a single circle using a recall procedure. 
The two displays in a matched pair had the same items, but the colors of the tested item (here, the circle second from the 
left on the bottom) and another item (the circle at the bottom left) were swapped between the displays. Note that the size 
of the circles is not to scale in order to more clearly show the properties of the displays.
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each of the pairs were matched in the size of all of the circles 
present and differed only in the color of two circles, including 
the circle that would later be tested. The 30 displays were ran-
domly interleaved, with the constraint that paired displays 
could not appear one after the other. By comparing reported 
size when the tested item was one color with reported size 
when it was another color, we were able to directly test the 
hypothesis that observers’ memory for size is biased toward 
the mean size of all items in the tested item’s color set.

Results
Overall accuracy. We first assessed whether observers were 
able to accurately perform the size memory task by comparing 
their performance with an empirical measure of chance perfor-
mance obtained by randomly pairing a given observer’s 
responses with the correct answers from different trials (mean 
difference by chance = 30.5 pixels, SEM = 0.78 pixels). 
Observers’ average error was 16.4 pixels (SEM = 1.7 pixels), a 
level of performance that was significantly better than our 
measure of chance, p < 10−9.

Bias from same-colored circles. To test our main hypothesis, 
we examined whether observers’ size estimates tended to be 
biased toward the size of the circles with the same color as the 
tested circle. We divided each matched pair on the basis of 
which of the pair contained a tested item the same color as the 
circles that were smaller on average and which contained a 
tested item the same color as the circles that were larger on 

average. We then divided reported sizes on the latter trials by 
reported sizes on the former trials. A ratio of 1.0 would indi-
cate that observers were not biased. However, if observers’ 
size estimates were biased toward the mean size of the circles 
in the same color as the tested item, this ratio would be greater 
than 1.0 (see Fig. 2a).

On average, the reported size of the tested circle was 1.11 
times greater (SEM = 0.03) on trials with the larger same-
colored circles than on trials with the smaller same-colored 
circles (see Fig. 2b). This ratio was significantly greater than 1.0, 
t(20) = 4.17, p = .0004. In addition, the direction of the effect 
was highly consistent across observers, with 19 of the 21 
observers having a ratio above 1.0. The maximum possible 
bias was 1.6, because the larger same-colored circles were on 
average 1.6 times larger than their matched counterparts. 
Thus, the observers reported a size 18% of the way between 
the correct size and the mean size of the same-colored circles. 
This effect was a result of memory and not a perceptual bias, 
because in a version of the experiment with a precue indicat-
ing which item would be tested, observers (N = 22) reported 
the size accurately (mean error = 6.4 pixels, SEM = 0.5 pixels) 
and with no bias toward the mean size of the same-colored 
circles (bias = 1.00, SEM = 0.01; for details, see Perceptual 
Effects in the Supplemental Material available online).

Model: optimal integration across different levels of 
abstraction. One interpretation of the data is that observers 
represented the displays at multiple levels of abstraction and 
integrated across these levels when retrieving the size of the 
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Fig. 2. Bias in size estimates in the three experiments. The illustration in (a) shows how bias was calculated from a pair of matched displays. We 
measured whether observers reported different sizes for the tested circle when it was red versus when it was blue (the circle was in fact the same 
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calculated by dividing the size reported for tested items presented in the color of the larger circles by the size reported for tested items presented 
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tested circle or when initially encoding its size. To more 
directly test this idea, we formalized how observers might rep-
resent a display hierarchically using a probabilistic model (for 
similar models, see Hemmer & Steyvers, 2009; Huttenlocher, 
Hedges, & Vevea, 2000). The model had three levels of 
abstraction, representing particular circles, all circles of a 
given color, and all circles in the entire display. In the model, 
observers encoded a noisy sample of the size of each individ-
ual circle, and the size of each circle was itself considered a 
noisy sample from the expected size of the circles of that color, 
which was itself considered a sample of the expected size of 
the circles in a given display. We asked what observers ought 
to report as their best guess about the size of the tested circle 
(assuming normal distributions at each level).

The intuition this model represents is fairly straightfor-
ward: If the red circles in a particular display are all quite 
large, but the observer encodes a fairly small size for one of 
them, it is more likely that this circle is a large circle the 
observer accidentally encoded as too small than that it is a 
small circle the observer accidentally encoded as too large. 
Thus, in general, the model suggests that the optimal way to 
minimize errors in responses is to be biased slightly (either 
when encoding the circles or when retrieving their size) toward 
the mean of both the set of circles of the same color as the 
tested circle and the overall mean of the display. Figure 3 
presents predictions of this model, along with a corresponding 

representation of the behavioral data from Experiment 1 (for 
information on model implementation, see Optimal Observer 
Model in the Supplemental Material available online). Note 
that in both the observers’ data and the model predictions, the 
slopes of the lines indicate a bias toward reporting all circles 
as less extreme in size then they really were, and also note that 
the plotted points indicate a bias toward reporting a size simi-
lar to the size of the same-colored circles.

The model had a single free parameter, which indicated 
how noisy the encoding of a given circle was (the standard 
deviation of the normal distribution from which the encoded 
size was sampled) and thus how biased toward the means 
observers’ size estimates ought to be. We set this parameter to 
25 pixels (the estimated standard deviation of errors collaps-
ing across all observers and displays), rather than maximizing 
the fit to the data. Although not strictly independent of the data 
being fit, this method of choosing the value for the parameter 
is not based on the measures we used to assess the model.

In general, the model provided a strong fit to the data as 
assessed by two different metrics: First, the model predicted 
the difference between the correct answer and reported answer 
for each display, ignoring the paired structure of the displays (r = 
.89, p < .0001). Second, the model predicted the difference in 
reported size between matched displays (r = .82, p < .001), 
even though the tested circle was actually the same size within 
each such pair. Any model of working memory that treats items 
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Fig. 3. Comparison of the behavioral data from Experiment 1 and predictions of the optimal integration model described in the text. The 
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as independent (e.g., most slot and resource models, including 
the mathematical model presented by Zhang & Luck, 2008) 
cannot predict a systematic difference between these trials.

Discussion
We found that observers are biased by the ensemble statistics 
of a display when representing display items in visual working 
memory. In the case of displays with circles of several differ-
ent colors, observers’ reports of the size of a given circle are 
biased by the size of the other circles of the same color. This 
effect is not accounted for by perceptual biases or location 
noise or by incorrectly reporting the wrong item from the dis-
play (see Potential Reports of the Incorrect Item in the Supple-
mental Material), is not a result of guessing on the basis of the 
mean size of the circles of that color (see Comparison to an 
Across-Trial Guessing Model in the Supplemental Material), 
and is compatible with a simple Bayesian model in which 
observers integrate information at multiple levels of abstrac-
tion to form a final hypothesis about the size of the tested item.

Experiments 2a and 2b: Attention 
to Color Is Required
In Experiment 1, the color of the items was task relevant. In 
fact, because observers have difficulty attending to more than 
a single color at a time (Huang et al., 2007), observers in 
Experiment 1 likely had to separately encode the sizes of the 
red circles and the sizes of the blue circles, and this might have 
increased the salience of color grouping. Salience of color as a 
grouping dimension may have been a crucial part of why 
observers used the mean size of the circles that were the same 
color as the tested circle in guiding their memory retrieval. 
Thus, in Experiments 2a and 2b, we removed the green circles 
from the displays and asked observers to simply remember the 
sizes of all of the circles. This allowed us to evaluate the auto-
maticity of the biases we observed in Experiment 1—for 
example, the extent to which they depend on attentional selec-
tion and strategy. In addition, Experiments 2a and 2b provided 
a control for low-level factors that could have influenced the 
results of Experiment 1.

Method
Twenty-five new observers completed Experiment 2a, and 20 
different observers completed Experiment 2b.

The methods and 30 displays used in Experiment 2a were 
the same as in Experiment 1 except that the green circles used 
as distractor items were not present in the displays. Experiment 
2b was identical to Experiment 2a except that the circles were 
shown for only 350 ms rather than 1.5 s in order to decrease 
observers’ performance to the same level as in Experiment 1.

Results

Experiment 2a. Observers’ performance in Experiment 2a 
was very good. The average error was 10.2 pixels (SEM = 0.60 
pixels), which was significantly less than our empirical mea-
sure of chance (29 pixels, SEM = 0.28 pixels) p < 10−19, and 
significantly less than the error of subjects in Experiment 1, 
t(44) = 3.73, p < .001.

Observers in Experiment 2a displayed no bias as a function 
of color. The mean bias of 0.99 (SEM = 0.01) was not signifi-
cantly different from 1.0, t(24) = –0.86, p = 0.39 (see Fig. 2b). 
This result is compatible with the idea that the size of the 
same-colored circles does not bias observers’ estimates of the 
tested circle’s size when color is not task relevant.

However, the observers in Experiment 2a had significantly 
lower error rates than the observers in Experiment 1. Thus, it 
is possible that the observers in Experiment 2a did not display 
a bias because they were able to encode all of the circles accu-
rately as individuals. To initially examine this possibility, we 
compared the least accurate 50% of observers in Experiment 2a 
with the most accurate 50% of observers in Experiment 1. The 
error rates reversed (Experiment 1: mean error = 10 pixels; 
Experiment 2a: mean error = 13 pixels), yet the bias remained 
present only in Experiment 1 (Experiment 1: 1.07; Experiment 2a: 
1.00). This provided preliminary evidence that the difference 
in accuracy between the two experiments did not drive the dif-
ference in bias.

Experiment 2b: overall accuracy and bias. Experiment 2b 
experimentally addressed the concern that the lack of bias 
among observers in Experiment 2a was driven by their high 
performance level. In Experiment 2b, display time was 
reduced from 1.5 s to 350 ms to increase the error rate while 
maintaining the task irrelevance of color. Observers in Experi-
ment 2b had an error rate of 15.9 pixels on average (SEM = 
2.25 pixels). This was significantly less than our empirical 
measure of chance (31.3 pixels, SEM = 1.13 pixels), p < 10−9, 
but not significantly less than the error rate of subjects in 
Experiment 1, t(39) = –0.17, p = .86. Thus, Experiment 1 and 
Experiment 2b were equated on error rate. However, observ-
er’s reports of the size of the tested circles in Experiment 2b 
were still not biased toward the size of the same-colored cir-
cles (M = 1.00, SEM = 0.01).

Optimal integration model. We applied the same model 
used in Experiment 1 to the data from Experiment 2b, but with 
only two levels (no grouping by color): information about the 
particular circle and information about all the circles in the dis-
play. This model once again provided a strong fit to the experi-
mental data (Fig. 4). Because the model did not use color 
information, it predicted exactly the same performance for both 
trials within each matched pair. This prediction is in line with 
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the observed bias of 1.00 in the experimental data. Further-
more, the model predicted the overall bias toward the mean 
size of the circles in the display, and its predictions correlated 
with the errors people made across all trials, r = .53, p = .002.

Discussion
In Experiments 2a and 2b, in which color was not task rele-
vant, observers did not display a bias toward the mean size of 
the same-colored circles, even when the experiment was 
equated with Experiment 1 on difficulty. However, in both 
Experiment 2a and Experiment 2b, observers’ estimates were 
still biased toward the mean size of the circles in the display 
overall. The data are compatible with a Bayesian model in 
which observers treat all items as coming from a single group, 
rather than breaking the items into separate groups by color. 
Furthermore, the results of these experiments help rule out 
possible confounds in Experiment 1, such as the possibility 
that location noise caused swapping of items in memory, as the 
displays used in Experiments 2a and 2b were exactly the same 
as those used in Experiment 1 except for the absence of irrel-
evant green circles. We have also run Experiments 1 and 2a as 
separate conditions in a single within-subjects experiment and 
replicated the finding of a bias only when displays included 
the green circles (see Replication and a Within-Subject Exper-
iment in the Supplemental Material).

General Discussion

We found that observers are biased by the ensemble statistics of 
a display when representing items in visual working memory. 
When asked to report the size of an individual circle, observers 
tended to report it as larger if the other items in the same color 
were large and smaller if the other items in the same color were 
small. This bias was reliable across observers and was pre-
dicted by a simple Bayesian model that encodes a display at 
multiple levels of abstraction. Taken together, our findings sug-
gest that items in visual working memory are not represented 
independently and, more broadly, that visual working memory 
is susceptible to the very same hallmarks of constructive mem-
ory that are typical of long-term memory (Bartlett, 1932).

Representation of ensemble statistics
It is well established that the visual system can efficiently 
compute ensemble statistics (e.g., Alvarez & Oliva, 2009; Ariely, 
2001; Chong & Treisman, 2003) and does so even when this is 
not required by the task, causing, for example, a false belief 
that an item with a set’s mean value of an attribute was present 
(de Fockert & Wolfenstein, 2009; Haberman & Whitney, 
2009). However, less work has explored why the visual system 
represents ensemble statistics. One benefit of ensemble repre-
sentations is that they can be highly accurate, even when the 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Correct Size (pixels)

R
ep

or
te

d 
Si

ze
 (p

ix
el

s)

0

20

40

60

80

100

120

R
ep

or
te

d 
Si

ze
 (p

ix
el

s)
0 20 40 60 80 100 120

Correct Size (pixels)

a b
Larger Same-Colored Circles Smaller Same-Colored Circles

Fig. 4. Comparison of the behavioral data from Experiment 2b and predictions of the optimal integration model described in the text. The 
graph in (a) shows the data from Experiment 2b, averaged across observers so that each display is represented by a single point. The graph in 
(b) shows the predictions from the model, which integrates information from multiple levels of abstraction (with SD = 25 pixels). Data and 
predictions are shown separately for displays in which the tested circle was the same color as the circles that were smaller on average and 
displays in which the tested circle was the same color as the circles that were larger on average.



390  Brady, Alvarez 

local measurements constituting them are very noisy (Alvarez 
& Oliva, 2008, 2009). Another possible benefit of ensemble 
representations is that they can be used to identify outliers in a 
display (Rosenholtz & Alvarez, 2007), and thus potentially 
guide attention to items that cannot be incorporated in the 
summary for the rest of the group (Brady & Tenenbaum, 2010; 
Haberman & Whitney, 2009). The current work suggests a 
new use of ensemble statistics: Such statistics can increase the 
accuracy with which items are stored in visual working mem-
ory, reducing uncertainty about the size of individual items by 
optimally combining item-level information with ensemble 
statistics at multiple levels of abstraction.

It is interesting that observers in our experiments used the 
mean size of the circles of specific colors to reconstruct the dis-
plays only when color was task relevant, despite the fact that 
using this statistic would improve memory for the individual 
items in all conditions. This could suggest that the units over 
which such ensemble statistics are computed is limited by selec-
tive attention (e.g., Chong & Treisman, 2005a). Turk-Browne, 
Jungé, and Scholl (2005) suggested that statistical learning, a 
form of learning about sequential dependencies, may happen 
automatically, but that the particular sets over which the statis-
tics are computed may be controlled by selective attention. This 
hypothesis is compatible with our current findings: When 
observers did not attend to the colored sets as separate units, 
they may not have computed separate summary statistics for the 
two colored sets (alternatively, separate summary statistics may 
have been encoded, but not used in reconstructing the circle 
sizes). However, when observers attended to color, the ensem-
ble statistics for the two colors seem to have been computed in 
parallel, as found by Chong and Treisman (2005b).

Dependence between items in 
visual working memory
Our results demonstrate a case of nonindependence between 
items in visual working memory: We found that items are repre-
sented not just individually, but also as a group or ensemble. 
Although previous experiments did not directly address such 
hierarchical effects, nonindependence between items in visual 
working memory has been observed previously. For example, 
Huang and Sekuler (2010) found that observers exhibit bias in 
reporting the spatial frequency of Gabor patches, tending to 
report spatial frequencies as though they have been pulled 
toward the spatial frequencies of previously presented Gabor 
patches. In addition, Jiang, Olson, and Chun (2000) have shown 
that changing the spatial context of an item influences memory 
for that item (see also Vidal, Gauchou, Tallon-Baudry, & 
O’Regan, 2005). This suggests that an item is not represented 
independently of its spatial context in working memory.

Similarly, several studies (Brady & Tenenbaum, 2010; 
Sanocki, Sellers, Mittelstadt, & Sulman, 2010; Victor & 
Conte, 2004) have shown that observers can take advantage of 
perceptual regularities in working memory displays to remem-
ber more individual items from those displays. Brady and 

Tenenbaum (2010) investigated checkerboard-like displays 
and conceptualized their findings in terms of hierarchical 
encoding, in which the gist of the display is encoded in addi-
tion to specific information about a small number of items that 
are least consistent with the gist. This hypothesis is compatible 
with the model we presented here for simpler displays, accord-
ing to which observers encode ensemble information as well 
as information about specific items.

This dependence between items in memory is not predicted 
or explained by influential models of visual working memory. 
Current theories model visual working memory as a flexible 
resource that is quantized into slots (Zhang & Luck, 2008) or 
continuously divisible (Alvarez & Cavanagh, 2004; Bays & 
Husain, 2008; Wilken & Ma, 2004). According to these mod-
els, fewer items can be remembered with higher precision 
because they receive more memory resources. However, these 
models assume that items are stored independently, and there-
fore cannot account for the dependence between items in 
memory observed in the current study. Expanding these mod-
els to account for the current results will require specification 
of whether abstract levels of representation compete for the 
same resources as item-level representations (e.g., Feigenson, 
2008), or whether there are essentially separate resources for 
ensemble representations and item-level representations (e.g., 
Brady & Tenenbaum, 2010).

Role of long-term memory in 
visual working memory
In addition to work demonstrating dependencies between 
stored representations of items and hierarchical encoding of a 
particular display, there is a significant amount of previous 
work showing that the representation of items in visual work-
ing memory depends on information in long-term memory 
(e.g., Brady, Konkle, & Alvarez, 2009). For instance, Konkle 
and Oliva (2007) and Hemmer and Steyvers (2009) have shown 
that knowledge of the size of an object in the real world biases 
the remembered size of that object in a display after a short 
delay. Hemmer and Steyvers (2009) provided a model of this 
effect as due to Bayesian inference in a constructive memory 
framework, and their model is similar to the one we proposed 
here for the on-line representation of the displays in our experi-
ments. Convergence between a model for using ensemble 
information from the current display and a model for integrat-
ing information from the current display with information from 
long-term memory suggests a promising future direction for 
understanding the use of higher-order information in memory.

Conclusion
We found that observers are biased by the ensemble statistics of 
a display when representing items from that display in visual 
working memory. Rather than storing items independently, 
observers seem to construct the size of an individual item using 
information from multiple levels of abstraction. Thus, despite 
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the active maintenance processes involved in visual working 
memory, it appears to be susceptible to the very same hallmarks 
of constructive memory that are typical of retrieval from long-
term memory and scene recognition (Bartlett, 1932; Lampinen 
et al., 2001). Cognitive and neural models of visual working 
memory need to be expanded to account for such constructive, 
hierarchical encoding processes.
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SUPPORTING MATERIAL 

Replication and a Within-Subject Experiment 

Running the experiment on the internet allowed for variation in the visual angle of 

the dots and meant that each observer saw only 30 trials1. Thus, we ran a control 

experiment in the lab with 6 observers using the same paradigm. Observers saw 400 trials 

each (200 matched pairs). These observers in the lab showed the same effects as 

observers tested on Mechanical Turk.  They had a mean error of 20.2 pixels and a bias of 

1.04, significantly greater than 1.0 (t(5)=3.47, p=0.02).  The maximum possible bias was 

1.37, since the same-colored dots were on average 1.37 times larger in the larger of the 

matched trials than the smaller. Thus the observers run in the lab reported a size 11% of 

the way between the correct size and the mean of the same colored dots. 

In addition to replicating the experiments in the lab, we also replicated our main 

results on Mechanical Turk. In particular, to bolster the evidence for our effect we have 

run both a within-subject experiment (N=17) and replicated both the between-subject 

experiments (N=16 and N=26, respectively; all conducted on Mechanical Turk). In the 

within-subject experiment, we combined Exp. 1 with Exp. 2A within observers (thus 

observers performed 60 trials, 30 with green dots and 30 without green dots present). We 

found a bias of 1.11 (SEM 0.02) in the trials with green dots and a bias of 1.02 (SEM 

                                                 

1 In general we find observers on Mechanical Turk to be slightly better at our tasks, on average, than 

observers in the lab. For example, in a replication of Luck & Vogel (1997) we find capacities of 4.2 colors 

on average in 65 online observers. 
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0.02) for trials without green dots, a significantly larger bias on green dot trials within-

subjects (t(16)=2.90, p=0.01). In addition, the bias was significant in the green-dot 

displays (t(16)=4.40, p=0.0004) but not the displays without green dots (t(16)=0.82, 

p=0.42).  

In the between-subject replication of Experiment 1 with a different set of displays 

and different observers, the average bias was 1.09 (N=16), with SEM 0.03. The 

difference from no bias (1.0) was significant: t(15)=2.29; p=0.037.  In the replication of 

Experiment 2B with a different set of displays and observers, the average bias was 1.00 

(N=26; SEM 0.016), not significantly different than 1.00.  

Perceptual Effects 

Is the bias from same-colored items a result of memory or a perceptual effect 

caused by crowding or grouping principles in our display? To determine this, we ran a 

study that was identical to Experiment 1 except that 500ms before the onset of the dots, a 

single black 'X' appeared at the location of the dot that would later be tested. We 

instructed observers that this cue indicated which item would be tested (it was 100% 

valid). If observers have to encode only a single item from the display and know in 

advance which item will be tested, this should eliminate any bias resulting from memory 

processes. However, if the locus of our effect is perceptual observers should still be 

biased toward the size of the same-colored dots.  Observers (N=22) reported the size 

accurately (error 6.4px, SEM 0.5px) and with no bias toward the mean size of the same-

colored circles (bias: 1.00, S.EM. 0.01). This suggests the bias was a result of memory 

processes, not a perceptual effect from our display. 
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Potential Reports of the Incorrect Item 

Using a similar paradigm but with continuous report of color rather than size, 

Bays, Catalao and Husain (2009) report that observers sometimes accidentally report the 

color of the wrong item, perhaps because of noise in their representation of the items' 

locations. Such location noise would not, in general, affect our conclusion that there is a 

bias toward the mean of the same colored dots. In particular, if swapping was simply a 

result of location noise, then since our matched displays contain the exact same size dots 

in the exact same locations, no difference could arise between them. However, it is 

possible that observers would be more likely to swap with items in the same color as the 

target item, and that this could account for the bias we find.  If this were the case, we 

might expect a mixture of correct reports and reports of the incorrect items in our data, 

resulting in a multimodal distribution.  To address this concern, we examined whether the 

location of the same-colored dots affected the bias we observed, and, additionally, used a 

mixture model similar to that reported by Bays, Catalao and Husain (2009) to directly 

examine the possibility of swapping with same-colored items.  

To examine the effect of the location of the same-colored dots, we divided the 

matched pairs by the mean distance of the same-colored dots to the tested dot's location. 

On those display pairs in which the same-colored dots were much closer in location for 

one of the matched displays than the other, we might expect a larger bias. Instead, the 

correlation between the size of the bias and how differently located they were in the two 

display pairs was not significant, and in fact trended negative (r=-0.27, p=0.33) the 

opposite of the direction predicted from a swapping account.  



ENSEMBLE STATISTICS BIAS VWM  P a g e  |  4 

As a second measure of the potential of swapping, this time ignoring the location 

of the items, we used a mixture model to estimate the percentage of swaps directly from 

the data, effectively examining its bimodality (Bays, Catalao & Husain, 2009). The 

mixture model attempted to parse the observers' responses into those most likely to have 

been noisy reports of the correct item, those most likely to have been random guesses, 

and those most likely to have been swaps2. Excluding all responses except those the 

model considered twice as likely to be noisy reports of the correct item than swaps or 

guesses still resulted in a substantial bias toward the mean size of the same colored items 

(M=1.05, SEM:0.016, difference from 1.0: t(20)=3.20, p=0.004). Note that this is an 

extremely conservative measure, since it effectively counts only responses that are closer 

to the size of the tested dot than the size of any other dot. Taken together, we believe 

these analyses help rule out explanations of our data in terms of location noise and 

reporting the size of the wrong item. 

Comparison to an Across-Trial Guessing Model 

Rather than performing an integration across different levels of representation on 

each trial, as proposed in our Bayesian integration model, it is possible that our results 

could arise from a model in which on some trials observers remember the dot and on 

other trials the observers' guess based on the dots color. For example, on trials in which 

                                                 

2 See Bays et al. (2009) for details of this modeling. We made two changes to their model. First, we 

separately modeled swaps with item in the same color and swaps with items in a different color (by adding  

another β). Additionally, since size, unlike color, is not circular, guessing cannot be treated as a uniform 

distribution. Instead, we use the empirical distribution of all responses of all observers across all trials as 

our guessing distribution.  
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the participant retains information about the size of the probed dot, it might be 

reproduced without bias.  On other trials, in which the participant retains no size 

information about the probed dot, the participant might tend to guess something around 

the mean of the size of the dots the same color as the probed dot. We will refer to this 

model as the across-trial guessing model.3 

While such a model requires observers encode the display at multiple levels of 

abstraction and integrate across these levels by choosing which kind of information to use 

in generating a particular response, it is significantly different than the within-trial 

Bayesian integration model we propose. We believe the evidence from the current 

experiments heavily supports the within-trial integration model. 

First, the across-trial guessing model requires there to be a large number of trials 

where observers know the color of the tested dot but have no information at all about this 

dot's size. Both the original work of Luck & Vogel (1997) and important work by 

Brockmole and colleagues (Logie et al. 2009; Gajewski & Brockmole, 2006) 

demonstrates that not only is there a benefit to encoding all of the features of a single 

object, but that observers do so on nearly all trials and represent the objects as bound 

units.  A model which requires observers to frequently know only a single feature of an 

object is thus theoretically unlikely and in conflict with existing data on binding in visual 

working memory. 

Second, as reported above in the section on modeling location noise and potential 

item swaps, we can examine trials which are unlikely to have been guess trials by looking 

at only responses that are closer in size to the size of the correct dot than to the size of 
                                                 

3 We thank an anonymous reviewer for this suggestion. 
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any of the other dots (including those of the same color). This still results in a substantial 

bias toward the mean size of the same-colored dots (see results in location noise section). 

This is contrary to what you would expect from the across-trial guessing model, which 

posits a bias arising only from trials where observers do not know the size of the tested 

dot. 

Finally, using model comparison techniques, we can directly compare the 

distributions predicted by the two models. The within-trial Bayesian integration model 

assumes the distribution of sizes observers' report for a particular dot has a peak that is 

shifted toward the mean size of dots of the same color, whereas the across-trial guessing 

model proposes a mixture between correct responses and responses that are drawn from a 

distribution around the mean size of the same-colored dots.   

The Bayesian model has only a single parameter, the standard deviation of 

observers' encoding error (this parameter decides both how noisy the distribution is and 

how much the specific item information is integrated with the ensemble size 

information). The across-trial guessing model has two parameters, the standard deviation 

of observers' encoding error and the percentage of trials in which observers report from a 

distribution around the same-colored mean rather than the correct dot (the guessing rate). 

In addition, we can choose to make the guessing distribution a normal distribution with 

the true standard deviation of the dots within the same color, or increase the variance 

based on the expected sampling error.  

For each subject, we performed a leave-one-trial-out cross-validation to find the 

maximum likelihood parameters for each model. Then we computed the log-likelihood of 

the observer's response on the left out trial using those parameters. Averaging across all 
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possible left out trials gives us the log-likelihood of each of the two models for each 

observer. Finally, we can compare these log-likelihoods using AIC (Akaike Information 

Criterion; Akaike, 1974)4. This gives us an AIC score for each model for each observer 

(lower AIC values indicate a better model fit).  We find that across observers, the AIC for 

the Bayesian model consistently indicates a better fit than the AIC for the across-trial 

guessing model. This is true both if we assume the guessing distribution is simply a 

normal with the mean and standard deviation of the true size of the dots of the same color 

(Bayesian model AIC = 10.8, SEM 0.2, Discrete-guessing model AIC = 13.8, SEM 0.8,  

t(20)= -3.95, p<0.001) or if we increase this standard deviation by adding in the variance 

from sampling each dot's size (Discrete-guessing model AIC = 12.7, SEM 0.18,  t(20)= -

26.8, p<10-16).  In fact, using AIC the within-trial Bayesian integration model is preferred 

in every single observer. Moreover, it is preferred on average even if we do not use AIC 

to adjust for the greater flexibility of the across-trial guessing model (the log-likelihood 

of the within-trial integration model is significantly higher than the version of the across-

trial guessing model adjusted for measurement error, t(20)=2.23, p=0.038). Thus, in spite 

of the greater flexibility of the across-trial guessing model, it does not fit the data as well 

as the within-trial Bayesian integration model.  

 

                                                 

4 We choose to compare models using AIC because it penalizes more complex models (e.g., models with 

more parameters, like the across-trial guessing model in this case) less than other model comparison 

metrics. 
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Optimal Observer Model  

To more directly test the idea that observers' represent the display at multiple 

levels of abstraction and integrate across these levels when retrieving the size of the 

tested dot, we formalized this theory in a probabilistic model. In the model, observers are 

assumed to get a single noisy sample from each of the 9 dots on the screen5 (sampled 

from a normal distribution centered around the size of the dot and with a standard 

deviation of 25px). Then, the observer attempts to infer the size of each of the dots on the 

screen using these samples. A naïve, non-hierarchical model simply treats each of the 

dots independently and thus report the size of each dot as the size that was sampled for 

that dot. As an alternative, we present a hierarchical Bayesian model that pools 

information from all of the dots to best estimate the size of any given individual dot. It 

does so by representing the display at two additional levels of abstraction and partially 

pooling information at each of these levels: (1) all dots of the same color; (2) all dots on 

the display. By assuming that dots of the same color and all the dots on a display are 

sampled from some underlying distribution and therefore provide mutual information 

about each other, such a model arrives at a more accurate estimate of the size of each dot. 

Such models are standard in Bayesian statistics (Gelman, Carlin, Stern & Rubin, 2003) 

and have been previously applied to similar problems in cognitive science (Huttenlocher 

et al. 2000; Hemmer & Steyvers, 2009). 

Formally, we assume that observers' treat the dots of a given color as sampled 

from a normal distribution with unknown mean and unknown variance, and additionally 
                                                 

5 If you assume they sample only a random subset of 3-4 dots the model predictions remain qualitatively 

the same. 
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treat these distributions' means as coming from an overall normal distribution that pools 

information across all of the colors.  We put uniform priors over the reasonable range of 

possible sizes (0-200pixels) on the parameters of these normal distributions.  The exact 

model is represented in WINBUGS as follows. Note that the normal distribution in 

WINBUGS is parameterized by a mean and a precision, rather than a mean and standard 

deviation; nevertheless we put a uniform prior on standard deviation, which is a more 

standard model (Gelman, Carlin, Stern & Rubin, 2003). 
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WinBUGS code for the model in Experiment 1: 

model  
% C = number of colors,  
% L = number of dots of each color.  
% We observe 'sample'. 
{ 
 overallMean ~ dunif(0,100) 
 overallMeanStd ~ dunif(0,100) 
 overallMeanPrec <- 1/(overallMeanStd*overallMeanStd) 
  
 overallStd ~ dunif(0,100) 
 overallStdStd ~ dunif(0,100) 
 overallStdPrec <- 1/(overallStdStd*overallStdStd) 
  
 stdev <- 25 
 precision <- 1/(stdev*stdev) 
  
 for (i in 1:C) 
 { 
  groupMean[i] ~ dnorm(overallMean, overallMeanPrec) 
  groupStd[i]  ~ dnorm(overallStd, overallStdPrec) 
  groupPrec[i] <- 1/(groupStd[i]*groupStd[i]) 
 } 
  
 for (i in 1:C) 
 { 
  for (j in 1:L) 
  { 
   dotMean[i,j] ~ dnorm(groupMean[i], groupPrec[i]) 
   sample[i,j]  ~ dnorm(dotMean[i,j], precision) 
  } 
 } 
} 
 

WinBUGS code for the model in Experiment 2: 

model 
{ 
 overallMean ~ dunif(0,200) 
 overallMeanStd ~ dunif(0,100) 
 overallMeanPrec <- 1/(overallMeanStd*overallMeanStd) 
  
 stdev <- 10 

precision <- 1/(stdev*stdev) 
  
 for (i in 1:L) 
 { 
  dotMean[i] ~ dnorm(overallMean, overallMeanPrec) 
  sample[i]   ~ dnorm(dotMean[i], precision) 
 } 
} 
 



ENSEMBLE STATISTICS BIAS VWM  P a g e  |  11 

References 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions 

on Automatic Control, 19 (6), 716–723 

Bays, P.M., Catalao, R.F.G. & Husain, M. (2009). The precision of visual working 

memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1-11. 

Gajewski, D. A., & Brockmole, J. R. (2006). Feature bindings endure without attention: 

Evidence from an explicit recall task. Psychonomic Bulletin & Review, 13, 581-587. 

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis 

(2nd ed.), London: CRC Press. 

Hemmer, P. & Steyvers, M. (2009). Integrating Episodic Memories and Prior Knowledge 

at Multiple Levels of Abstraction. Psychonomic Bulletin & Review, 16, 80-87. 

Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus 

judgment?. Journal of Experimental Psychology: General, 129(2), 220-241. 

Logie, R. H., Brockmole, J. R., & Vandenbroucke, A. R. E. (2009). Bound feature 

combinations are fragile in visual short-term memory but form the basis for long-term 

learning. Visual Cognition, 17, 375-390. 

 

 


