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Abstract 

Chunks allow us to use long-term knowledge to efficiently 
represent the world in working memory. Most views of 
chunking assume that when we use chunks, this results in the 
loss of specific perceptual details, since it is presumed the 
contents of chunks are decoded from long-term memory rather 
than reflecting the exact details of the item that was presented. 
However, in two experiments, we find that in situations where 
participants make use of chunks to improve visual working 
memory, access to instance-specific perceptual detail (that 
cannot be retrieved from long-term memory) increased, rather 
than decreased. This supports an alternative view: that chunks 
facilitate the encoding and retention into memory of perceptual 
details as part of structured, hierarchical memories, rather than 
serving as mere “content-free” pointers. It also provides a 
strong contrast to accounts in which working memory capacity 
is assumed to be exhaustively described by the number of 
chunks remembered.  
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Introduction 

A core principle of learning and memory is that we compress 

frequently encountered information into “chunks”, and these 

chunks allow us to efficiently represent the world (e.g., 

Feigenbaum & Simon, 1984). Chunking has long been 

known to enhance our otherwise extremely limited working 

memory capacity by allowing us to use learned knowledge to 

structure working memory (Miller, 1956; Cowan, 2005). For 

example, if remembering the set of letters “C”, “G”, “Q”, 

there exists no long-term associations that will help facilitate 

performance; whereas when remembering the letters “F”, 

“B”, “I”, existing associations will help connect these items 

together and thus they can be remembered as a single 

“chunk”, improving working memory performance.  

Despite a long history of work on chunking, key questions 

about the very nature of chunk storage and representation in      

working memory remain unaddressed. One particularly 

critical question is whether access to perceptual details of the 

particular instantiation is lost when you use a learned chunk 

to remember something in working memory. Consider the 

yellow circle inside of a white circle in Figure 1. If these were 

two arbitrary colors, you would need to store them as two 

separate representations to remember the inner and outer 

color (Wheeler & Treisman, 2002). However, in trying to 

remember this particular set of two colors, you might notice 

that this color pair corresponds to an existing chunk in your 

mind – “egg” – and use this to efficiently represent the colors. 

When you do this, does your working memory representation 

consist solely of this abstraction (“egg”), with all item-

specific information accessed only by decoding the chunk 

using long-term memories (Fig. 1, left)? If so, this would 

suggest specific ways the perceptual instantiation of this 

chunk in this situation would be largely lost (e.g., you would 

know it was white and yellow, but not which exact white and 

yellow) – a ‘content-free’ view of what is stored in working 

memory. Alternatively, it could be that the ‘egg’ chunk 

benefits memory by serving as an additional retrieval cue to 

structure memory – a distributed model of memory where 

you use the chunk pointer, like “egg”, to help you encode and 

maintain the specific colors present in this instance, rather 

than store it solely as an abstraction (Fig. 1, right). Such a 

view sees memory as distributed and hierarchical, with 

chunks and perceptual details maintained in parallel in 

working memory. 

The extent to which chunks serve as content-free labels vs 

serve as retrieval cues to distributed memory representations 

is a critical question. The most common view within the study 

of working memory, is to see chunks in working memory as 

‘content-free’ – single-level representations which rely on 

decoding from long-term memory to access their content. 

This is sometimes explicitly claimed (e.g., Huang & Awh, 

2018), or sometimes implicit in the manner that chunks are 

understood. For example, chunks are often used to measure 

working memory capacity, and this is only a useful measure 

of capacity if the chunk “pointers” (Ngiam et al, 2019) alone 

make up the “capacity” of the system (e.g., Cowan, 2001).  

Although less commonly considered, the distributed and 

hierarchical view of chunks is also plausible and broadly 

consistent with literature from visual working memory, 

where, for example, visual objects seem to serve as ‘chunks’ 

(Cowan, 2001) but do not result in all-or-none abstractions  
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Figure 1. The nature of chunking. When remembering a 

familiar chunk, do people remember solely the chunk ‘label’ 

or do they use this label to access the perceptual details? 

 

 (e.g., Brady et al. 2011). In fact, visual features ‘within’ an 

object tend to be loosely structured, and forgotten 

independently (Fougnie & Alvarez, 2011), more consistent 

with a distributed, hierarchical account of how objects 

structure memory. Chunks could function in a similar 

manner, providing structure but not serving as solely 

pointers. This view is aligned with “template theory” from 

studies of chess expertise. In this theory, templates are seen 

as structures that develop via chunk learning. Their “core” 

information consists of details that are regular across 

exposures and that are crucial for recognition and activation 

of the template. However, rather than being “content-free”, 

they also contain “slots” which, in the case of chess, are 

positions that may be filled in variable, instance-specific 

ways. Crucially, experts using such a template have a greater 

memory for the instance-specific pieces, as well as the 

regular, core properties of the learned template (Gobet & 

Simon, 1996).  

With few exceptions (e.g., Brady et al., 2009, Huang & 

Awh, 2018), the existence of templates or chunks that can 

facilitate the encoding and retrieval of instance-specific, 

perceptual details has almost never been directly tested 

within the study of working memory, however. In part this is 

because chunking has traditionally been studied with discrete 

stimuli (e.g., Gobet & Charness, 2018;  Cowan, Chen & 

Rouder, 2004). Where chess positions allow for some 

variability between pre-learned positions and current 

instantiations, verbal stimuli generally do not raise the issue 

of whether perceptual details remain accessible within 

chunks, because the chunk ‘pointer’ alone is sufficient to 

capture all of the verbal information (De Groot, Gobet and 

Jongman, 1996): if you chunk F, B and I into FBI, there are 

no remaining details not captured by the chunk. Simply 

knowing ‘FBI’ was the relevant chunk allows you to 

“decode” all the verbal information that was present.  

The study of visual working memory necessitates a 

revision of theories of chunking to allow for continuous 

stimuli typical in real-life vision. Without understanding 

what chunks in visual working memory consist of, we cannot 

interpret studies in which chunking improves apparent 

working memory capacity. For example, Brady et al. (2009) 

showed subjects 8 colors in a memory display arranged into 

4 concentric colored pairs (as in the ‘egg’ in Figure 1). In a 

‘patterned’ condition, the same color pairings were highly 

likely to recur throughout the experiments, whereas in a 

matched ‘uniform condition’, the configurations of colors 

were random on each trial. After learning occurred in the 

patterned condition, participants were able to remember 

twice as many colors as those in the uniform condition. The 

impact of this kind of result on fixed-capacity accounts of 

working memory rests on whether the chunks used to 

remember more colors retained instance-specific perceptual 

information of each display, or were abstractions which 

required decoding from long-term memory in order to 

respond at test. If chunking arises from pointers to long-term 

memory, this data is consistent with a single fixed capacity in 

terms of chunks (Cowan, 2001). However, if chunks are 

richer and more distributed, such learning reflects a clear 

increase in capacity, as participants would be holding more 

perceptual information in the chunked case.  

Huang and Awh (2018) provided the most relevant test of 

this issue. Following up on Brady et al. (2009), they argued 

that chunk learning in this paradigm was in fact content-free; 

and thus suggested that fixed capacity models of working 

memory were accurate. They presented two experiments, one 

involving color-pairs as in Brady et al. (2009), and one with 

letter pairs, either forming well-known words or not. They 

found that reaction times for choosing targets at test were 

consistently longer for chunked displays as compared with 

displays with no opportunities for chunking, an effect which 

increased as learning increased in the color-pairs study. They 

suggested that this provided evidence for a content-free 

account, based on the indirect inference that ‘decoding’ from 

long-term memory might be slower than accessing items 

actively stored in working memory. However, this approach 

is quite indirect and does not address the core issue of what 

is stored (e.g., Figure 1). In order to pull apart the content-

free position and the distributed, hierarchical view, it is 

necessary to test chunks in which long-term representations 

diverge somewhat from the particular instantiations on a 

given trial. While this is difficult for verbal stimuli, in the 

visual domain stimuli often vary continuously. In a case 

where you have formed a chunk of the concept “egg”, these 

views can be teased apart by asking whether you still know 

the exact yellow/orange of the yolk on a particular trial. If 

chunks are indeed content-free, then such instance-specific 

information should be lost when performance reflects the use 

of learned-chunks – i.e., there should be a trade-off between 

memory for information that is captured by regularities and 

memory for information that varies from trial to trial. If, 

however, chunks act as hooks onto instance information, with 

both activated as a hierarchical memory representation, then 

the varying instance information should still be available at 

test. In fact, if chunks actually facilitate the encoding and 

retrieval of the lower-level information, there would be no 

trade-off between instance specific information and chunk 

learning, and memory should actually improve for low-level 

details as chunks are formed. 

In the current work, we provide the first direct test of this 

critical question about chunking. Experiment 1 tests memory 

for colored objects, and Experiment 2 tests memory for letters 

arranged in pairs. We manipulate chunking by introducing 
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regularities in the displays in Experiment 1 (objects 

frequently appear in the same color) and by using pre-learned 

chunks in Experiment 2 (letter pairs that form words). In 

order to tease apart content-free vs. distributed accounts, both 

experiments include instance-specific information that varies 

from trial to trial: In Experiment 1, the luminance of the color 

varies, and in Experiment 2, letters appear in different fonts 

unrelated to the long-term chunks. Thus, memory 

performance on instance-specific information will uniquely 

tell apart content-free accounts and the distributed accounts 

of chunking.  

Experiment 1: Learning chunks 

Participants had to remember 3 colored objects on each trial. 

Items varied in color, and their hues were predictable but not 

deterministic across trials (e.g., the backpack was red 80% of 

the time), allowing participants to learn chunks (e.g., ‘red 

backpack’). Items also varied in luminance in an 

unpredictable way across trials. Most trials probed for what 

object and hue was in a given location (“regular tests”). 

However, on a subset of trials we probed this luminance value 

rather than the color hue of the object (“detailed tests”), 

allowing us to examine how detailed trial-specific 

information is affected by chunking.  

Methods 

Participants. Our sample consisted of 75 US-based Prolific 

users between the ages of 18-45 who reported normal or 

corrected-to-normal vision. 15 additional participants were 

excluded based on a priori exclusion criteria. In particular, we 

excluded individual trials with RTs less than 200ms or greater 

than 5000ms, and excluded participants if they had more than 

10% of trials excluded. We also excluded participants with 

poor accuracy. Since the test trials that focus on trial-specific 

information (luminance; “detailed tests”) would be expected 

to result in poor performance according to the content-free 

theory, we excluded participants based on accuracy only in 

the regular, hue tests, not detailed tests (<60%, chosen based 

on pilot data). 

 

Stimuli and Procedure. We had 6 real-world objects, picked 

such that they had no single representative color (backpack; 

stapler; pot; dresser; garbage can; chair). They could each 

appear in 6 possible colors, spaced equally along a color 

wheel in CIELAB color space, and corresponding to roughly 

red; yellow; green; teal; blue; purple. For each participant, 

each of the objects was assigned a ‘high probability color’ 

which it appeared in 80% of the time. The other 20% of the 

time the object would appear in a different, randomly chosen 

color (see Fig. 2). To allow probing of trial-specific 

information, our main question of interest, the items varied in 

luminance as well as color: thus, even if the backpack was 

generally red and was red on the current trial, it could range 

from dark red to light red. Luminance values were sampled 

from a normal distribution in L of LAB space with a standard 

deviation of 10 units, with the exception of the fact that on  

 
 

Figure 2. Participants had to remember the color and 

object at each of 3 locations. Colors and objects were paired 

reliably (80%) but not deterministically for each participant.  

 

detailed probe trials, L was always set to exactly -10 or +10 

from the mean, so that the shown luminance and foil 

luminance were always 20 units apart (2 stan. dev.)  in L. 

On each trial, participants saw 3 colored objects appear in 

separate spatial locations for 1500ms and then after a 700ms 

delay were probed on one of the items via a 4-alternative 

forced-choice (4-AFC). Most (75%) 4-AFC trials consisted 

of a 2x2 with the target object and another object that had not 

been present on the display, both presented in the color the 

target object had been vs. another unique color. However, 

25% of trials instead consisted of a detailed color test: rather 

than a unique color, the alternative color was a different 

luminance of the same color (e.g., a dark vs. light yellow; see 

Figure 3). Participants did 5 blocks of 60 trials each, and we 

analyzed data separately by block to understand how learning 

over the course of the experiment affected memory for the 

objects and their colors, in both regular and detailed tests. 

Results and Discussion 

We found the expected performance improvement with block 

in the regular tests (F(4,296)=7.81, p< 0.0001; Fig. 3). This 

is consistent with participants forming and using chunks.  

Note that in theory this increase could also arise due to a 

reliance solely on ‘guessing’, rather than either content-free 

or distributed chunking, to respond about the color: 

participants could simply remember which object was in each 

location while ignoring color, and then guess the probed 

objects’ color based solely on long-term memory (what 

Brady et al. 2009 called ‘post-perceptual inference’ in a 

similar paradigm). To examine this, we looked at the trials 

where items appeared in low probability colors. A solely 

guessing-based account predicts that performance should 

drop reliably on such trials as participants learn the chunks, 

even to below chance levels, as they treat all trials like high-

probability pair trials. Because there were relatively few such 

trials, we compared the first and second half of the 

experiment. We found performance on low probability trials 

was similar in the halves (72.1% vs. 73.3%; t(74)=0.54, 

p=0.590, dz=0.06), inconsistent with this guessing strategy. 

This suggests participants are generally aware of not only 

which object was in each location but also whether or not it 
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Figure 3. Participants improved at both regular and 

detailed memory as they learned the chunks. 

 

is in its usual color, consistent with both chunking-based 

accounts.  

Our major question was whether the improvement with 

learning — as people learn to encode the objects as ‘chunks’, 

like ‘red backpack’ or ‘yellow stapler’ — resulted in a cost to 

their detailed memory (for what yellow was present), as 

predicted by the content-free pointer account (e.g., Huang & 

Awh, 2018); or whether performance stayed stable or even 

increased in the detailed tests, as predicted by a distributed 

memory account. We found evidence favoring the distributed 

account. Performance in the detailed tests significantly 

increased over block, (F(4,296)=4.78, p=0.0009). 

Furthermore, detailed performance on only trials where 

chunking was most likely to have taken place, those (1) from 

the second half of the experiment, (2) where the item had 

appeared in its most frequent color, and (2) where the correct 

object was chosen (regardless of the color chosen), we found 

that selection of the correct luminance was far above chance 

(72.3% vs. 50% chance; t(74)=15.56, p<0.001, dz=1.80). 

Within individual subjects, a strong correlation was also 

found between performance on the regular tests and 

performance on the detailed tests, across all blocks 

(r(74)=0.68, p<.001), further demonstrating that chunks 

benefit performance on both types of tests, rather than 

inducing a trade-off.   

Considering only the regular tests, we also found, in 

contrast to Huang and Awh (2018), no difference in RT 

between tests in which the target was a high-probability 

pairing and tests in which the target was a novel pairing of 

object and color, even in the second half of the study 

(t(74)=0.02, p=0.98, dz=0.00).  

Experiment 2: Pre-learned chunks 

Although learning was present in Experiment 1, performance 

did not increase dramatically from block 1 to block 5. It is 

therefore possible that the presence of instance-specific 

information in Experiment 1 was a result of the chunks of 

object-color pairings not being fully learned. To test this idea, 

Experiment 2 relied on well-known words as chunks, probing 

memory for letters as well as the fonts the letters appeared in 

and manipulating whether words could be used as chunks to 

store the letters. The structure of the experiment was similar 

to Experiment 1, examining whether trial-specific 

information is lost when chunking via a 4-AFC task that 

combines trial-specific information with chunkable 

information. The prediction of the content-free account is that 

when participants use words to bolster memory performance 

(e.g., “TO”, “WE”), they store them simply as pointers to a 

long-term memory, losing instance-specific information (font 

type, which varies across trials). By contrast, the distributed 

memory account predicts that while chunking should 

improve memory for the object, it should come at no cost — 

and possibly a benefit — to memory for trial-specific details.  

Methods 

The participant number, exclusion rules and analyses were 

preregistered: https://aspredicted.org/blind.php?x=cp4k8d 

 

Participants. Consistent with our preregistration, our final 

sample consisted of N=75 participants. They were US-based 

Prolific users between the ages of 18-45 who reported normal 

or corrected-to-normal vision. Eleven additional participants 

were excluded according to the preregistered criteria, which 

were similar to Experiment 1 (performance below chance 

overall; or more than 10% of trials with an RT>5s or 

<200ms).  

 

Stimuli and Procedure. Participants performed 160 trials of 

a working memory experiment. On each trial, participants 

saw an encoding display for 2000ms, with 4 spatially-

separated sets of 2 letters and each letter randomly assigned 

one of two fonts (bold or italic). This was followed by a 

700ms delay, and then they were probed on a single randomly 

chosen letter. The test was always a 4-AFC test where they 

had to indicate which letter and font was present by clicking 

the appropriate options (see Figure 4). The foil letter was 

always a letter not presented on the display at all, and both 

the target letter and foil letter were presented as options in 

both of the possible fonts. Participants clicked to choose what 

letter they had seen. The critical manipulation was that on 

50% of trials, the letters were arranged so that each pair made 

 
 

Figure 4. Participants were probed on the letters and their 

font in a 4-AFC task; the letters sometimes formed word 

chunks and sometimes were randomly paired. 

https://aspredicted.org/blind.php?x=cp4k8d
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up a two-letter word (WE; TO; AS; IF; UP; MY), allowing 

chunking to facilitate memory for letter identity. On the other 

trials, the 8 letters were chosen randomly from the same set 

of 12 letters.   

Results and Discussion 

When the items formed 2 letter words participants were more 

accurate at knowing which letter was in the cued location 

(regardless of font): t(74)=12.16, p<0.001, dz=1.40; see Fig. 

5. This suggests participants did indeed form higher-level 

‘chunks’ of the letters to facilitate memory. 

Our critical question was what happens to memory for the 

font when the items are chunked. The content-free account 

predicts that font memory is worse for chunked items; 

whereas the distributed memory account suggests memory is 

better. The data were consistent with the distributed memory 

account: considering font memory alone, independent of 

letter, participants were more, not less accurate in reporting 

the font of letters that were part of words (t(74)=5.21, 

p<0.001, dz=0.60) even though the word chunks provided no 

information about the font the letter had appeared in. This 

benefit for font memory was also true only on trials where the 

letter they choose was correct: when reporting the correct 

letter, participants were more likely to report the correct font 

on chunkable trials than randomly-paired letter trials 

(t(74)=4.28, p<0.001, dz=0.49).  

Finally, we asked about ‘boundness’ — how dependent 

knowing the style was on knowing the letter. The content-

free account predicts that chunking letter identity decouples 

letter identity from font, reducing boundness. Consistent with 

our preregistration, we operationalized boundedness as 

described by Brady et al. (2013). In short, the boundedness 

score captures how much more likely you are to know the 

font given you know the letter (vs. not), adjusting for overall 

percent correct at both tasks. This adjustment is critical 

because the difficulty of the two tasks is in many ways 

arbitrary: by making the letters or fonts more vs. less distinct, 

the forced-choice task could be made more or less difficult 

for either. Thus, to assess their dependence on each other, 

performance in both must be taken into account. 

We found that the boundedness scores for chunked vs. 

random displays were statistically indistinguishable (23.5% 

vs. 22.7%; t(74)=-0.20, p=0.840, dz=0.02), and both were 

greater than 0 (t74)=7.08, p<0.001, dz=0.82; t(74)=7.67, 

p<0.001, dz=0.89). Thus, participants were more likely to 

know the font of letters they knew than ones they didn’t 

know, and this did not decrease with chunking.  

Finally, contrary to the result found in a similar 

experiment in Huang and Awh (2018), we did not find a 

difference in reaction time between word and nonword 

displays (t(74)=0.74, p=0.462, dz=0.09).  

Overall, we find a benefit, rather than a cost, to trial-

specific font memory when participants could encode letters 

as part of chunks (but see Zimmer and Fischer, 2020), in 

which chunking displays did not result in better memory for 

character type). This was true even though there were four 

 
 

Figure 5. Chunking improves both letter knowledge and 

trial-specific font knowledge. 

 

 ‘chunks’ of letters on the display, leaving — under many 

models (Cowan, 2001) — no extra storage capacity for 

independently storing additional font information in separate 

chunks. This suggests that the use of chunks enhanced, rather 

than removed, access to perceptual details.  

General Discussion 

Across two experiments, we tested the nature of memory 

representations that are present when chunking is used to 

scaffold performance in a working memory task. In 

Experiment 1, performance improved with increasing 

exposure to the high-probability object-color pairings. In 

Experiment 2, when letters formed words (pre-existing 

chunks), more individual letters were remembered from the 

display. Our key question for these studies was whether 

chunking in these tasks reflects the use of “content-free” 

chunks with no retention of instance-specific details, or 

whether the use of chunking does not imply losing such 

instance-specific detail, as in the proposed distributed 

memory account. We find support for the distributed memory 

account. In Experiment 1, the luminance of the objects’ 

colors varied throughout the trials. On 25% of tests, the foil 

color at test was the same as the target color but with a 

different luminance. On such tests, decoding from long-term 

memory would not help decide between the foil and target, 

since items were consistent only in their hue, not their 

luminance. Thus, the content-free view would predict a trade-

off between regular and detailed tests as chunking increases. 

However, Experiment 1 showed the opposite result. Using 

chunks to scaffold performance on the regular tests actually 

improved performance on the detailed tests too, supporting 

the hypothesis that chunking facilitates the encoding and 

retrieval of instance-specific information, and rejecting the 

content-free view. The strong correlation between 

performance on regular and detailed tests within individual 
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participants also provided support against the trade-off 

predicted by the content-free view.  

It is possible that the presence of instance-specific 

information in Experiment 1 was as a result of the chunks of 

object-color pairings not being fully learned. To account for 

this possibility, Experiment 2 relied on words as pre-existing, 

well learned chunks. The letter font varied trial to trial, and 

in cases where subjects could use words as chunks to improve 

memory, the content-free view would predict that they would 

consequently lose the instance-specific information of font 

type, which could not be decoded from long-term memory. 

Again, the opposite result was observed: participants were 

more accurate in reporting fonts when the letters were 

chunked into words. An analysis of the extent to which font 

was ‘bound’ with letter identity revealed that storage of the 

font detail was integrated with letter identity. These results 

support a view of working memory representations in which 

information is distributed across hierarchical levels; with 

learned chunks at one level facilitating efficient encoding of 

the memory display whilst maintaining access to instance-

specific information at lower levels. 

Chunk decoding and reaction times 

Previous evidence for the content-free view came from 

differences in reaction times across two experiments of 

Huang and Awh (2018). They found that subjects took longer 

to respond on trials in which performance was boosted by 

chunking, inferring that this reflected the “extra step” of 

decoding the chunk from long-term memory. However, the 

experiments reported here failed to replicate this result. No 

reaction time difference was found in Experiment 2 between 

the words and non-words conditions. Similarly, no difference 

was found in Experiment 1 between high and low probability 

test targets. It is unclear what to make of these reaction time 

data. Reaction time results are likely influenced by multiple 

factors other than any potential ‘decoding’ time that may or 

may not be present. For example, both the strength of 

participants’ memory as well as the complexity of the 

memory probe that must be processed influence reaction time 

(e.g., Baddeley & Ecob, 1973), so Huang and Awh’s previous 

results may have simply reflected a confound of one of these 

factors. Generally speaking, as an indirect measure, reaction 

time does not provide strong evidence of chunks being 

content-free. By contrast, the data from Experiment 1 and 2 

test the nature of the chunked representations directly and 

find them to contain rich instance-specific content.  

Relation to other theories of chunking 

The view of chunks as operating within levels of a 

hierarchical, distributed memory representation proposed 

here is supported by the “template theory” of chunking within 

chess expertise (Gobet & Simon, 1996). A template’s “core” 

information consists of details necessary for activation of the 

template, i.e., details which are consistent across different 

instantiations and which discriminate the template from other 

templates. The template’s “slots”, on the other hand, are 

capable of incorporating new information by virtue of the 

variability in information that can occupy those aspects of the 

template’s structure across instantiations. These slots can 

thus accommodate, and improve memory for, instance-

specific information, while simultaneously using learned 

representations (templates and chunks) to efficiently 

compress perceptual input. The difference between these 

views is that in the distributed, hierarchical view, the core and 

variable information may occupy the same aspect of the 

overall structure. The static and variable aspects of a chess 

template are separate pieces which can be simultaneously 

incorporated into a template and both encoded into memory. 

In chunks within the context of visual working memory, the 

regular, “core” information of learned abstractions such as 

“egg” will likely consist of generic shades of colors that the 

chunk is normally associated with, perhaps representing an 

integration across instances of chunk activation in perceptual 

contexts. The variable, instance-specific information in this 

case will also be a color shade of the egg-yolk – the specific 

shade of the current instantiation. Thus, the visual working 

memory case uniquely requires a hierarchical approach, with 

the pre-learned generic information at one level of the 

hierarchy and the instance-specific color information at a 

lower-level. Understanding how single pieces of information 

such as ‘egg-yolk color’ can be represented differently at 

multiple levels of the memory representation, and relatedly 

how chunks can form over continuous information, represent 

novel and potentially important areas of future research.  

Working memory capacity 

The proposed distributed view extends the historical view of 

chunking (Miller, 1956; Cowan, 2001) in ways which allow 

for a better understanding of the role of chunks in working 

memory and suggest a major rethinking of the nature of 

working memory capacity. Standard views of chunking 

generally suggest that while the number of items that can be 

remembered is increased by chunking, there is no genuine 

increase in working memory ‘capacity’ per se when chunks 

are used. For example, Cowan, Chen and Rouder (2004) 

argued that although teaching word-pairs to participants 

improved their recall of lists that included such pairs, they 

none-the-less had ‘constant capacity’. This is because 

according to their model of working memory, the pairs were 

stored as content-free chunk pointers. Thus, both unpaired 

individual words and learned word pairs each took a single 

‘slot’ in memory, and the same number of slots were used in 

all conditions. 

By contrast, the data presented here suggest that when a 

chunk is employed in order to encode a portion of a memory 

display, this allows more of the lower-level information to be 

captured as well. The chunk, as an encoding “hook”, 

facilitates the encoding and retrieval of this lower-level 

information into working memory, giving rise to a 

hierarchical memory representation (e.g., Brady et al. 2011). 

In this way, a single chunk allows for the encoding of a 

conjunction of features within the display, and the working 

memory representation consists of both the higher-level 

chunked “hook” and the lower-level information it is 
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encoding. Thus, our work suggests that working memory 

capacity is not exhaustively described at the level of how 

many chunks are encoded. Rather, capacity should be 

considered in the context of the full hierarchy. Under such a 

view, Cowan, Chen and Rouder (2004) — as well as many 

others — critically understate the improvement brought about 

by chunks: even if participants store the same number of 

‘pointers’ in both learned and unlearned conditions, 

participants do not, in fact, store the same amount of 

information actively in working memory in both conditions, 

as chunks function to facilitate perceptual encoding as well 

as being stored as pointers themselves. 

The question of whether chunks within visual working 

memory will always encode current-instance perceptual 

details is not answerable with the data presented here. It is 

possible that such details are available only because they are 

tested in the task and so known to be relevant. The ratio of 

regular to detailed tests in Experiment 1 (3:1) was designed 

to prioritize attention to and thus learning of the generic 

color-object pairings, but of course having so many detailed 

tests will quickly orient subjects to luminance information as 

well. Thus, the current work shows only that it is not a 

requirement for chunks to be content-free: in at least some 

cases, chunking can result in an increase in access to instance-

specific information. Investigating when this does or does not 

occur will be a question for future research. 

Conclusion 

We showed that chunks allow for a more efficient 

representation of perceptual details in working memory. 

Access to perceptual details is not lost when items are 

chunked, as is commonly assumed, but is improved by 

chunking. This is consistent with an account of chunks as 

distributed and hierarchical representations, with perceptual 

information at a lower level of the hierarchy accessed via the 

chunks; and inconsistent with views that see working 

memory capacity as described largely by how many chunks 

can be encoded (Cowan, 2001).  
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