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Disentangling Scene Content from Spatial Boundary:
Complementary Roles for the Parahippocampal Place Area
and Lateral Occipital Complex in Representing Real-World
Scenes
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Behavioral and computational studies suggest that visual scene analysis rapidly produces a rich description of both the objects and the
spatial layout of surfaces in a scene. However, there is still a large gap in our understanding of how the human brain accomplishes these
diverse functions of scene understanding. Here we probe the nature of real-world scene representations using multivoxel functional
magnetic resonance imaging pattern analysis. We show that natural scenes are analyzed in a distributed and complementary manner by
the parahippocampal place area (PPA) and the lateral occipital complex (LOC) in particular, as well as other regions in the ventral stream.
Specifically, we study the classification performance of different scene-selective regions using images that vary in spatial boundary and
naturalness content. We discover that, whereas both the PPA and LOC can accurately classify scenes, they make different errors: the PPA
more often confuses scenes that have the same spatial boundaries, whereas the LOC more often confuses scenes that have the same
content. By demonstrating that visual scene analysis recruits distinct and complementary high-level representations, our results testify
to distinct neural pathways for representing the spatial boundaries and content of a visual scene.

Introduction
Behavioral studies have shown that, in a brief glance at a scene, a
rich representation is built comprising spatial layout, the degree
of human manufacture, and a few prominent objects (Oliva and
Torralba, 2001; Renninger and Malik, 2004; Fei-Fei et al., 2007;
Greene and Oliva, 2009a,b). In parallel, neuroimaging investiga-
tions have identified specific brain regions involved in scene per-
ception. Among these regions is the parahippocampal place area
(PPA), which responds preferentially to pictures of scenes and
landmarks and shows selectivity to the geometric layout of the
scene but not the quantity of objects (Aguirre et al., 1998; Epstein
and Kanwisher, 1998; Epstein et al., 1999; Janzen and van Turen-
nout, 2004) and the retrosplenial complex (RSC), which also
responds to scenes and navigationally relevant tasks (Epstein,
2008; Park and Chun, 2009) in addition to processing context
(Bar and Aminoff, 2003). In contrast, the lateral occipital com-
plex (LOC) has been found to represent object shapes and cate-
gories (Malach et al., 1995; Grill-Spector et al., 1998; Kourtzi and
Kanwisher, 2000; Eger et al., 2008; Vinberg and Grill-Spector,

2008). Recent studies have found that activity in early visual
areas PPA and LOC is discriminative enough to allow scene
classification into a handful of semantic categories (Naselaris
et al., 2009; Walther et al., 2009). However, we do not yet know
how the brain accomplishes the diverse functions involved in
scene understanding.

Here, we examined scene representation using functional
magnetic resonance imaging (fMRI) pattern analysis, demon-
strating the existence of high-level neural representations of
visual environments that uncouple processing of the spatial
boundaries of a scene from its content. Just as external shape and
internal features are separable dimensions of face encoding, an
environmental space can be represented by two separable and
complementary descriptors (Oliva and Torralba, 2001): its spa-
tial boundary (i.e., the shape and size of the scene’s space) and its
content (textures, surfaces, materials and objects). As illustrated
in Figure 1, the shape of a scene may be expansive and open to the
horizon, as in a field or highway, or closed and bounded by fron-
tal and lateral surfaces, as in forests or streets. For a given spatial
boundary, a scene may comprise natural or urban (manufac-
tured) objects. Analyzing the types of errors produced by the PPA
and LOC in this two-dimensional space allows us distinguish
whether the PPA and LOC represent a scene in an overlapping
manner (e.g., both produce similar errors when classifying
scenes) or in a complementary manner (e.g., specialization in
representing boundaries and content).

We show that, although both the PPA and the LOC classify
scenes with the same level of accuracy, these regions show oppo-
site patterns of classification errors. Therefore, our work provides
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the first evidence that multiple brain regions perform distinct and
complementary analysis of a visual scene, similar in spirit to that
proposed by computational models of scene understanding
(Oliva and Torralba, 2001; Vogel and Schiele, 2007; Greene and
Oliva, 2009a) and visual search (Torralba, 2003; Torralba et al.,
2006).

Materials and Methods
Subjects. Eight participants (two females; one left-handed; ages, 19 –28
years) for the main experiment, six participants (three females; ages,
18 –29 years) for the first control experiment (using phase-scrambled
images), and seven participants (three females; ages, 20 –35 years) for the
second control experiment (using added vertical and horizontal bars)
were recruited from the Massachusetts Institute of Technology commu-
nity for financial compensation. All had normal or corrected-to-normal
vision. Informed consent was obtained, and the study protocol was ap-
proved by the Institutional Review Board of the Massachusetts Institute
of Technology. One participant for the main experiment was excluded
from the analyses because of excessive head movement (over 8 mm
across runs).

Visual stimuli. Scenes were carefully chosen to represent each of the
following four scene groups: “open natural” images, “closed natural”
images, “open urban” images, and “closed urban” images (Oliva and
Torralba, 2001; Greene and Oliva, 2009a). Images were visually matched
for spatial boundary and content across these groups (see examples in
Figs. 1, 3a). Importantly, each scene group included multiple basic-level
scene categories. For example, open and closed natural images included
different views of fields, oceans, forests, creeks, mountains, and deserts,
whereas open and closed urban images included views of highways, park-
ing lots, streets, city canals, buildings, and airports. There were 140 test
images per scene group. In the main experiment, photographs were
256 � 256 pixels resolution (4.5° � 4.5° of visual angle) and were pre-
sented in grayscale with a mean luminance averaging 127 (on a 0 –255
luminance scale). In the first control experiment, the same images were
phase scrambled, so as to keep second-order image statistics but remove
high-level scene information. The grayscale images from experiment 1
were first Fourier transformed to decompose them into their amplitude
spectrum and phase. Next, the phase at each frequency was replaced with
a random phase. Finally, the image was reconstructed from this modified
Fourier space and then rescaled so the luminance of each pixel ranged

from 0 to 255, and the overall image had mean luminance of 127. In the
second control experiment, horizontal or vertical lines were superposed
on top of the images and were presented 500 � 500 pixels resolution to
maximize the visibility of lines (for control experiment stimuli, see Fig.
6). The same orientation lines were added on top of either all of the
natural scenes or all of the urban scenes to increase the within-content
low-level image similarity across these two sets of conditions. Images
were presented in the scanner using a Hitachi (CP-X1200 series) rear-
projection screen.

Experimental design. Twenty images from an image group were pre-
sented in blocks of 20 s each. The order of block conditions was random-
ized within each run. Each block was followed by a 10 s fixation period.
Within a block, each scene was displayed for 800 ms, followed by 200 ms
blank. The entire image set (560 images) was presented across two runs
with a break between: the first run was composed of 16 blocks with four
blocks per condition, acquiring 245 image volumes; the second run was
composed of 12 blocks with three blocks per condition, acquiring 185
image volumes. This set of two runs was repeated four times within a
session, totaling eight runs, to increase the number of samples and
power. Accordingly, participants saw the same image four times across
runs at different time points per each run. Twenty-eight blocks per each
condition were acquired and used as training samples throughout the
experiment. Participants performed a one-back repetition detection task
to maintain attention.

The experimental design for the first and second control experiments
were identical to the main experiment except that participants in the first
control experiment performed a red-frame detection task rather than a
one-back repetition task to maintain attention on the phase scrambled
images.

MRI acquisition and preprocessing. Imaging data were acquired with a 3
T Siemens fMRI scanner with 32-channel phased-array head coil (Sie-
mens) at the Martinos Center at the McGovern Institute for Brain Re-
search at Massachusetts Institute of Technology. Anatomical images
were acquired using a high-resolution (1 � 1 � 1 mm voxel)
magnetization-prepared rapid-acquisition gradient echo structural scan.
Functional images were acquired with a gradient echo-planar T2* se-
quence [repetition time (TR), 2 s; echo time, 30 ms; field of view, 200
mm; 64 � 64 matrix; flip angle, 90°; in-plane resolution, 3.1 � 3.1 � 3.1
mm; 33 axial 3.1 mm slices with no gap; acquired parallel to the anterior
commissure–posterior commissure line].

Figure 1. A schematic illustration of how pictures of real-world scenes can be uniquely defined by their spatial boundary information and content. Note that the configuration, size, and locations
of components were corresponding between natural and urban environments. a, Keeping the enclosed spatial boundary, if we strip off the natural content of a forest and fill the space with urban
contents, then the scene becomes an urban street scene. b, Keeping the open spatial boundary, if we strip off the natural content of a field and fill the space with urban contents, then the scene
becomes an urban parking lot.
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Functional data were preprocessed using Brain Voyager QX software
(Brain Innovation). Preprocessing included slice scan-time correction,
linear trend removal, and three-dimensional motion correction. No ad-
ditional spatial or temporal smoothing was performed. For retinotopic
analysis, we mapped data from a functional retinotopic localizer (see
below) onto a surface-rendered brain of each individual.

Pattern analysis. For multivariate pattern analysis, we extracted MRI
signal intensity from each voxel within the region of interest (ROI) across
all time points and transformed the MRI signal intensity within each
voxel into z-scores so that the mean activity is set to 0 and the SD is set to
1. This helps mitigate overall differences in fMRI signal across different
regions of interests and across runs and sessions (Kamitani and Tong,
2005). Activity level for each block of each individual voxel was labeled
with condition, which spanned 20 s (10 TR) in all experiments. In label-
ing the condition, we added 4 s (2 TR) to each time points, to account for
the hemodynamic delay of the blood oxygenation level-dependent
(BOLD) response (4 – 6 s) so that we are targeting the correct period
corresponding to each block of samples. We did not do a voxel selection,
and the entire cluster that passed the threshold of an ROI localizer was
used. This eliminates problems with “double-dipping” as a result of non-
independence in feature selection (Kriegeskorte et al., 2009; Vul et al.,
2009). The average number of voxels for each of the ROIs in the main
experiment were as follows (after mapping into the structural 1 � 1 � 1
voxel space; for voxel counts in the original functional space, divide by
3.1 3, or 29.8): left (L) PPA, 2702 voxels; right (R) PPA, 2455 voxels;
LLOC, 3010 voxels; RLOC, 2291 voxels; fusiform face area (FFA), 1292
voxels; LRSC, 699 voxels; RRSC, 1242 voxels; L primary visual area (V1),
4357 voxels; and RV1, 3827 voxels. The average number of voxels for the
PPA and V1 in control experiments 1 and 2 were as follows: LPPA, 2719
voxels; RPPA, 2656 voxels; LV1, 5102 voxels; RV1, 4011 voxels for exper-
iment 1; LPPA, 2024 voxels; RPPA, 2207 voxels; LV1, 5150 voxels; and
RV1, 4420 voxels for experiment 2. Although the bigger stimuli size in the
second control experiment led to more V1 voxels, we found that the
support vector machine (SVM) performance was not influenced by
the number of voxels included in the analysis beyond a plateau point of
�500 voxels.

For each region in each participant, we used a separate linear SVM
classifier based on LIBSVM (http://sourceforge.net/projects/svm/). For
each block, we computed the average pattern of activity across the voxels.
An SVM classifier was trained to classify the four conditions using all
blocks but one and then was tested on the remaining block. Percentage
correct classification for each subject and each ROI was calculated as the
average performance over all leave-one-block-out classifications.

Regions of interest. Regions of interest were defined for each participant
using independent localizers (Fig. 2). Scene localizer runs presented
blocks of scene pictures (representing outdoor natural and urban scenes)
and faces (half female and half male), whereas object localizer runs pre-
sented blocks of real-world objects and scrambled versions of these pic-
tures. Scrambled images were created by dividing intact object images
into a 16 � 16 square grid and by scrambling the positions of squares

based on eccentricity (Kourtzi and Kanwisher, 2000). Scene localizer
runs presented six blocks of scenes and six blocks of faces that alternated
with each other with 10 s blank periods between. Object localizer runs
presented four blocks of objects and four blocks of scrambled objects that
alternated with each other with 10 s blank periods between. Each block
presented 12 images, and participants performed a repetition detection
task on consecutive repetitions (main and control experiment 2) or per-
formed a red-frame detection task that appeared around the stimuli
(control experiment 1). A retinotopic localizer presented vertical and
horizontal visual field meridians to delineate borders of retinotopic areas
(Sereno et al., 1995; Spiridon and Kanwisher, 2002). Triangular wedges
of black and white checkerboards were presented either vertically (upper
or lower vertical meridians) or horizontally (left or right horizontal me-
ridians) in 16 s blocks, alternated with 16 s blanks. Participants were
instructed to fixate on a small central fixation dot.

The left and right PPA were defined by contrasting brain activity of
scene blocks � face blocks and finding clusters between the posterior
parahippocampal gyrus and anterior lingual gyrus. This contrast also
defined the RSC near the posterior cingulated cortex, which was present
in five of seven participants. The left and right LOC were defined by
contrasting brain activity of objects � scrambled objects blocks in the
lateral occipital lobe. The FFA was defined by contrasting brain activity of
face blocks � scene blocks and finding clusters in the right fusiform gyrus
of the occipitotemporal cortex. Only the right FFA was included in the
analyses because it was consistently found across all participants (Kan-
wisher et al., 1997). The retinotopic borders of left and right V1 were
defined with a contrast between vertical and horizontal meridians. For
each region in each participant, a separate classifier was used. Classifica-
tion performance for bilateral regions did not differ from each other, so
the classification performance was averaged across left and right in the
PPA, LOC, V1, and RSC for all analyses presented here.

Results
We extracted multivoxel fMRI activity from our ROIs (PPA,
LOC, V1, RSC, and FFA). For each region in each participant, we
used a separate linear SVM to classify each block of scenes as
closed natural images, closed urban images, open natural images,
or open urban images (Fig. 3a). As shown in Figure 3b, classifi-
cation accuracy in all of the ROIs was significantly above chance
(25%): PPA, LOC, V1, RSC, and FFA had respective classification
accuracies of 51% (t(6) � 7.1, p � 0.001), 45% (t(6) � 4.0, p �
0.01), 50% (t(6) � 6.1, p � 0.001), 37% (t(4) � 4.4, p � 0.05), and
43% (t(6) � 4.1, p � 0.01). These results show that these regions
can distinguish between scenes varying in spatial and content
properties. Furthermore, these results suggest that the analysis of
scene information is not processed by a single scene-specific re-
gion but is organized in a distributed manner across multiple
visual areas.

Figure 2. Five regions of interests are shown on a representative participant’s brain. Talairach coordinates for peak voxels of each ROI shown are as follows: LPPA, �21, �43, �5; RPPA, 21,
�43, �5; LLOC, �45, �79, 1; RLOC, 39, �73, 7; RFFA, 36, �52, �5; LRSC, �15, �52, 13; RRSC, 12, �52, 13; LV1, �14, �94, 1; RV1, 14, �92, 4. Note that our SVM analysis was conducted
on spatially nontransformed individual brain. However, for comparison purposes, we are reporting Talairach coordinates of a representative subject’s ROIs.
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Classification errors
Classification accuracy does not inform
about the nature of the scene representa-
tion in each region. For example, the spa-
tial boundary (open or closed) and the
content (natural or urban) may have
contributed equally to the classification
performance across different regions.
Conversely, the spatial boundary and the
content may have contributed differently
to the classification performance across
different areas. We examined this contri-
bution by studying the types of errors
made by the classifier. If the classifier
shows systematic confusions between two
conditions in a particular brain region,
this suggests that the region has similar
representations of the scenes from these
two conditions.

Figure 4a illustrates two possible orthog-
onal patterns of errors. First, if a particular
brain region is sensitive to the spatial
boundaries of a scene, it should confuse im-
ages with the same global structure, regard-
less of the content or objects in the scene.
For instance, scenes representing closed ur-
ban environments (e.g., street, buildings, or
city canal) might be confused with closed
natural scenes that have similar spatial
boundaries (e.g., forest, mountain, or can-
yon) but not with open urban scenes that
have similar content (e.g., highways, park-
ing lot, or airport). In Figure 4a, we refer to
these errors as confusions within the same
spatial boundary. Conversely, if a given
brain region is more sensitive to the
content of a scene than its structure, it
should confuse images with the same
content, regardless of their spatial
boundaries (e.g., fields, deserts, or
ocean would be confused with forest,
mountain, or canyons but not with
highways, parking lots, or airports that
have urban contents). We refer to these
errors as confusion within the same
content.

Figure 4b shows the types of errors made by different regions
of interest. First, as we hypothesized, we observed a striking dis-
sociation between the main regions under investigation, the PPA
and the LOC: whereas the PPA made the most errors between
scenes that shared the same spatial boundaries, regardless of con-
tent (e.g., confusing open natural and open urban scenes), the
LOC made the most errors between scenes that shared the same
content, regardless of the spatial boundary (e.g., confusing open
natural and closed natural scenes). Most importantly, there was a
significant interaction across area (PPA or LOC) and types of
errors (confusion within the same boundary vs confusion within
the same content, F(1,6) � 69.8, p � 0.001). We conducted
planned t tests between the two types of errors (confusion within
the same boundary vs confusion within the same content), which
were significant in both the PPA (t(6) � 4.6, p � 0.005) and in the
opposite direction in the LOC (t(6) � �6.6, p � 0.001). Addition-
ally, other regions of interest also show a specific pattern of errors:

the FFA made more confusion errors within the same scene con-
tent, similar to the LOC (t(6) � �3.3, p � 0.05). RSC showed a
numerical pattern of greater confusion within the same spatial
layout, like the PPA pattern, but not as dominant as found in
the PPA, and this pattern was not significant (t(4) � 1.2, p �
0.2). On average, more than 72% of errors were confusions
within the same spatial boundary or within the same content.
Double errors, in which both content and layout were incor-
rect, were the least frequent (21, 27, 16, 25, and 23% in the
PPA, LOC, V1, RSC, and FFA, respectively) and did not show
any interaction across areas.

The overall performance was the same when we have normal-
ized the number of voxels across the different regions of interest
(Fig. 5). We randomly sampled different numbers of voxels
(from 10 to 1000) from each ROI, and this process was repeated
200 times for each number of voxels within each ROI in each
observer. The classification accuracy plateaued at 500 voxels and
was equal to the classification performance when all the voxels

Figure 3. a, Examples scenes for the four conditions. Scenes were defined by their spatial boundary and content properties:
closed natural images, closed urban images, open natural images, and open urban images. b, The average classification accuracy
(percentage) in the PPA, LOC, V1, RSC, and FFA. All areas showed classification accuracy that was significantly above chance (25%).
Error bars represent �1 SEM.
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within ROIs were accounted (PPA, LOC, V1, RSC, and FFA clas-
sification accuracies were, respectively, 50.4, 45, 49, 37, and 42%).

Moreover, we observed significantly higher classification ac-
curacy for a combined region of interest merging PPA and LOC
voxels (an average of 56%, after randomly sampling 500 voxels
from the combined ROI and repeating this process 200 times)
compared with when only 500 PPA voxels were included in the
original analysis (50.4%, t(6) � 2.5, p � 0.05) or when only 500
LOC voxels were included (45%, t(6) � 3.4, p � 0.05). The fact
that the addition of LOC voxels to PPA voxels increases classifi-
cation accuracy suggests that the neural representation of scenes
within these regions is complementary. Altogether, the results
provide the first evidence that the PPA and LOC represent com-
plementary properties of real-world scenes, with PPA holding a
representation of spatial boundaries and LOC simultaneously
holding a representation of scene content.

Correlation analysis
In addition to looking at the confusions
made by a classifier, we can also examine
the similarity in the patterns across vox-
els in the different conditions using a
correlation-based analysis (Haxby et al.,
2001). When we conducted the split-half
correlation analysis, results showed simi-
lar conclusions to the classifier-based
analysis. Within-condition correlation for
the PPA, RSC, LOC, FFA, and V1, respec-
tively, were 0.74, 0.64, 0.64, 0.44, and 0.83.
Most importantly, the across-condition
correlation patterns showed the same pat-
tern as in the SVM confusion error anal-
ysis. There was a significant crossover
interaction between the PPA and LOC,
such that the correlation of images that
shared the spatial boundary is higher in
PPA and the correlation of images with
shared content is higher in LOC (F(1,6) �
12.8, p � 0.05). Thus, the two results pro-
vide similar conclusions. They differ in
that the classifier confusions weigh infor-
mative voxels only, do not discard differ-
ences between the mean activity level of
the two conditions, and, in addition, pro-
vide interpretable effect sizes (in terms of
percentage correct) rather than differ-
ences in correlation r values (which do
not indicate how separable the sets ac-
tually are).

Contribution of low-level visual
properties
As shown in Figures 3b and 4b, V1 had the
same overall pattern of classification and
confusion errors as the PPA, confusing
scenes with similar boundaries more often
than scenes with similar content. The high
level of accuracy of V1 is not surprising
given that previous studies observed high
classification for natural images using pat-
terns of activity of retinotopic areas (Kay
et al., 2008; Naselaris et al., 2009) and the
fact that the poles of the two spatial
boundary properties contain distinctive

and diagnostic low-level features (Oliva and Torralba, 2001; Tor-
ralba and Oliva, 2003). Given the dissociation in the types of
confusion between the PPA and LOC (and other ROIs), it is
unlikely that the patterns of activity of PPA result only from the
PPA mirroring a straightforward influence of V1. Previous stud-
ies have demonstrated the high-level nature of the responses of
PPA, including its sensitivity to spatial layout (Epstein, 2005) and
its responses during binocular rivalry of scenes and faces, which
reflects the perceived representation rather than direct physical
input (Tong et al., 1998). Nevertheless, to empirically address the
possibility that the greater confusion of PPA within spatial layout
was a byproduct of the low-level properties of the stimuli, we
conducted two control experiments. These experiments manip-
ulated the low-level properties of the images to decipher the na-
ture of the representations in the PPA and V1. Specifically, in the
first control experiment, we expect the removal of high-level im-

Figure 4. a, Hypothetical patterns of errors that could be made by the classifier. The rows represent the scene image conditions
as presented to the participants, and the columns represent the scene condition that the classifier predicted from the fMRI patterns
of activity. If spatial boundary properties of scenes are represented in a particular brain area, we expect high confusions within
scenes that share the same spatial boundary (marked in yellow). If content properties of scenes are important for classification, we
expect high confusions within scenes that share the same content (blue cells). b, Confusion errors (percentage) are shown for main
ROIs (the PPA, LOC, and V1) on the left and for additional regions (RSC and FFA) on the right. Yellow bars represent the average
percentage of confusions within the same spatial boundary; blue bars represent the average percentage of confusions within the
same content. Error bars represent SEM.
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age information to disrupt the classification within the PPA but
not within V1, whereas in the second control experiment, we
expect the addition of accidental low-level features to the images
to improve V1 performance but not the PPA (Fig. 6).

The first control experiment was designed to remove higher-
order image information while preserving a class of low-level
visual features: the power spectrum, or energy, at all spatial fre-
quencies and orientations. To do so, the phase of each image was
randomized. If V1, but not the PPA, is sensitive to these low-level
image statistics alone, we expect V1 accuracy to remain signifi-
cantly above chance, whereas PPA classification performance
should drop to chance level. Indeed, this is exactly what we found:
although both the PPA and V1 dropped in performance with
phase-scrambled images compared with original intact images
(main effect of experiment, F(1,11) � 22.5, p � 0.05), the drop was
much greater in the PPA (significant interaction between PPA
and V1 classification performance, F(1,11) � 5.7, p � 0.05), sug-
gesting that the higher-order information removed with phase-
scrambled images were more important for the classification of
PPA than V1. Although V1 performance was lower than in the
main experiment, conceivably because phase scrambling re-
moves even some low-level statistics of the scenes about which V1
cares, V1 still classified the four scene groups above chance with
phase-scrambled images (accuracy: 36%, t(5) � 5.3, p � 0.01),
whereas the PPA classification accuracy was at chance (accuracy:
28%, t(5) � 1.7, p � 0.1) and significantly lower than V1 (t(5) �
3.2, p � 0.05). Because there was no object or scene information
in the phase-scrambled images and the classification perfor-
mance was at chance, no areas showed interpretable patterns of
confusion errors (t test between types of errors: PPA, t(5) � 1.3,
p � 0.28; LOC, t(5) � 1.45, p � 0.2). As expected, V1 showed
higher confusion errors between the phase-scrambled versions of
open and closed scenes, which was the information most avail-
able in the amplitude spectrum (t(5) � 5.1, p � 0.01). This is
consistent with the idea that PPA relies on higher-order scene
information, whereas low-level statistics are sufficient for scene
classification in V1.

In the second control experiment, we tested the opposite dis-
sociation. We artificially added horizontal or vertical lines onto
the images to add accidental low-level features, so that the low-
level visual discriminability across the natural and urban images
(that have different orientation of lines on top) will be as large as
the already large low-level visual discriminability across open and
closed images. If both the PPA and V1 classification relied on the

low-level visual differences across conditions, then we would ex-
pect the classification performance in both areas to significantly
improve compared with the original images that had less visual
difference for the four conditions overall. Contrary to this pre-
diction, we observed a significant boost of performance in V1
compared with the original experiment (64 vs 50% in the main
experiment) but not in the PPA (54 vs 51% in the main experi-
ment; interaction of the PPA and V1 across experiments was
significant, F(1,12) � 5.6, p � 0.05). V1 accuracy was also signifi-
cantly higher than the PPA in control experiment 2 (t(6) � 2.7,
p � 0.05). Thus, the fact that adding low-level image features,
such as oriented bars, improved V1 but not PPA performance
strengthens the conclusion that the PPA is sensitive to higher-
level scene information, not simply the low-level statistics of the
images (Epstein, 2005). Moreover, the confusion errors for the
PPA and LOC completely replicated the main experiment, be-
cause these areas are essentially invariant to the addition of the
lines. There was a significant interaction across area (PPA or
LOC) and types of errors (confusion within the same boundary vs
confusion within the same content, F(1,6) � 24.7, p � 0.005). The
t tests between the two types of errors (confusion within the same
boundary vs confusion within the same content) within each ROI
was also significant in the PPA (48% confusion within the same
boundary vs 32% confusion within the same content; t(6) � 3.2,
p � 0.05) and in the opposite direction in the LOC (30% confu-
sion within the same boundary vs 49% confusion within the same
content; t(6) � �2.6, p � 0.05).

Together, these additional experiments show that, although
V1 classification primarily relies on low-level image statistics
independent of the scene spatial layout or content, the PPA is
sensitive to the removal of higher-order information (control
experiment 1) but not the addition of low-level features (con-
trol experiment 2). Therefore, the results support our hypoth-
esis that the PPA represents higher-level scene information,
such as the spatial boundaries, and does not merely reflect V1
representations.

Discussion
Using multivoxel pattern analysis to examine the neural basis of
natural scene representation, we found a differential coding of
scene features throughout the ventral visual cortex, including V1,
PPA, LOC, RSC, and FFA. Interestingly, all these regions accu-
rately classified the spatial boundary and content of a scene,
across different semantic categories, suggesting that these brain
regions are sensitive to both of these high-level scene properties.
Importantly, the degree to which a specific property was used
to classify scenes was different across the regions of interest.
We found that spatial boundary information was primarily
represented in the PPA and RSC and scene content primarily
represented in the LOC and FFA. This suggests a complemen-
tary role for scene-selective areas and object-related areas in
scene representation.

The possibility of a complementary scene representation with
objects and scene content processed in a separate pathway from
the spatial boundary is similar to that proposed by recent models
of scene recognition and visual search (Torralba, 2003; Torralba
et al., 2006; Vogel and Schiele, 2007; Greene and Oliva, 2009a). In
such models, both spatial boundary and object information is
extracted from a scene, often in parallel, and then integrated to
arrive at a decision about the identity of the scene or where to
search for a particular object. This convergence between fMRI
data and scene recognition models suggests a possible computa-

Figure 5. The classification performance as a function of the number of voxels resampled.
The classification performance plateaus at �500 voxels, equaling the classification accuracy
when all of the voxels within the ROI are included.
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tional role for the separate representations observed in many
studies of the LOC and PPA.

Multivoxel pattern analysis and confusion errors
Previous studies using multivoxel pattern classification found
that activity patterns in fMRI data can accurately classify between
oriented lines (Kamitani and Tong, 2005; Kamitani and Tong,
2006), object categories (Haxby et al., 2001), and even object
exemplars within a category (Eger et al., 2008). Recent fMRI stud-
ies with natural images have shown that high-level scene process-
ing areas can classify across basic-level scene categories, such as
mountains, beaches, or buildings (Walther et al., 2009). In addi-
tion, using generative models of the fMRI response in early visual
cortex has allowed the prediction of a viewed image from brain
data (Kay et al., 2008) and even some reconstruction of images
from these data (Naselaris et al., 2009).

In the present study, rather than attempt to classify images
into semantic categories or to recognize their identity exactly, we
focus on global properties of scenes (Oliva and Torralba, 2001;
Greene and Oliva 2009a). We thus provide the first neural evi-
dence of a coding scheme of visual scenes based on structural and
content properties. In other words, we show that scene and object
areas in the brain not only represent the semantic category of a
scene (forest, mountain) but also its spatial boundaries (open,
closed) and degree of naturalness (urban, natural).

Analyzing the errors made by a classifier demonstrates that it
is possible to probe the nature of neural representations in vari-
ous ventral visual areas beyond the level of classification accuracy.
By examining the different pattern of errors for our conditions,
we can dissociate multiple levels of image representation coexist-
ing within a single image and test the extent to which a specific
property is coded in the brain. Reliable patterns of errors between
scenes with a shared visual property (such as similar boundaries
or content) provide evidence for that property being coded.

Naturalness and the role of objects
Throughout the paper, we have focused
on naturalness as expressing the content
of the scene: tree, bush, rock, grass, etc.,
make the scene content natural, whereas
manufactured surfaces and man-made
objects create urban content. However,
we are not suggesting that the naturalness
dimension reflects solely object process-
ing. Naturalness is correlated with visual
features at all levels of processing, from
different distributions of orientations
(Torralba and Oliva, 2003; Kaping et al.,
2007) to different textural and surface
components (Torralba and Oliva, 2002)
in addition to different objects.

Recent behavioral work suggests a
prominent role for global properties in
the rapid analysis of visual scenes (Ren-
ninger and Malik, 2004; Greene and
Oliva, 2009a,b). Indeed, global properties
of scene shape boundary, such as open-
ness, perspective, or mean depth, and
global properties of scene content, such as
the naturalness of an environment can in-
fluence rapid basic-level scene categoriza-
tion. Human observers are more likely to
confuse scenes that share a similar global
scene property (e.g., a field and a coast are

both open environments) than scenes that share same regions
(e.g., trees can be shared by field and forest). In addition, human
observers can classify the naturalness of a scene after a briefer
exposure than is required for individual objects to be recognized
(Joubert et al., 2007; Greene and Oliva, 2009b), and the natural-
ness of a scene is a property that is selectively adaptable (Greene
and Oliva, 2010), suggesting that, at a high level of visual process-
ing, naturalness is a unified construct.

The fact that LOC is both responsive to scenes and can accu-
rately classify scene categories based on either content or spatial
boundary provides some suggestive evidence that this region
might play a more integrative role in scene understanding than
simply representing object form information.

The role of other regions
It is interesting to note that all the visual regions we examined,
including those that were not part of our original hypothesis,
showed above-chance classification for scene properties. Of par-
ticular interest is the RSC, which has been found to be involved in
processing navigationally relevant properties of scenes (Epstein,
2008; Park and Chun, 2009; Vann et al., 2009) and context (Bar
and Aminoff, 2003). Indeed, the patterns of confusion errors in
RSC were similar to the pattern observed in the PPA. However,
the overall classification performance of RSC was significantly
lower than the PPA (t(4) � 6, p � 0.01), and the difference in
confusion errors between spatial boundary confusions and con-
tent confusions were not significant. This suggests that, although
the RSC may be involved in representing spatial boundary or
correlated dimensions, it is less consistent across observers than
the PPA.

The FFA also performed above-chance level for scene classifi-
cation, with more confusion errors among scene content. This
fits with similar results finding above-chance classification per-
formance for object categories in FFA that have been reported by

Figure 6. Control experiment 1: classification for the phase-scrambled images significantly decreased. Whereas the PPA per-
formance dropped to chance, V1 still performed above chance classification. Control experiment 2: when lines were added to create
low-level differences across the images, V1 classification performance significantly increased, whereas PPA performance did not
change, suggesting that the PPA classification uses information beyond the low-level visual similarity. Examples of stimuli for each
condition are shown.
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Haxby et al. (2001) and Reddy and Kanwisher (2007). However,
we should remain cautious about potential involvement of the
FFA in scene processing. For example, the current result could
potentially be triggered by the presence of pedestrians in urban
scenes (indeed, people are a consistent object for outdoor urban
environments). In addition, there is strong evidence in the liter-
ature for the face selectivity of the FFA (for review, Kanwisher,
2010), and it is important to note that the overall BOLD response
in FFA for scenes is well below that for faces (in both our own data
and that of many previous studies, including Kanwisher et al.,
1997). In contrast, regions such as LOC respond nearly as
strongly to scenes as to objects, even in data specifically selected to
show a large response to objects (data from localizer vs main
experiment).

Conclusion
In summary, the current study demonstrates a distributed and
complementary neural coding of scene information, mediated
via global properties of spatial boundary and content. By study-
ing the patterns of errors made by a classifier, we conclude that
the spatial boundary information was primarily used in the PPA
for scene classification, whereas the content was primarily used in
the LOC. Such complementary functions of these regions sup-
port the idea that observers concurrently process the global spa-
tial boundary of a scene, which is important for navigation, as
well as the content properties of a scene, which may be important
for object identification and directed action.
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