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When remembering a real-world scene, people encode both detailed information about specific objects
and higher order information like the overall gist of the scene. However, formal models of change
detection, like those used to estimate visual working memory capacity, assume observers encode only a
simple memory representation that includes no higher order structure and treats items independently from
one another. We present a probabilistic model of change detection that attempts to bridge this gap by
formalizing the role of perceptual organization and allowing for richer, more structured memory
representations. Using either standard visual working memory displays or displays in which the items are
purposefully arranged in patterns, we find that models that take into account perceptual grouping between
items and the encoding of higher order summary information are necessary to account for human change
detection performance. Considering the higher order structure of items in visual working memory will be
critical for models to make useful predictions about observers’ memory capacity and change detection
abilities in simple displays as well as in more natural scenes.
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Working memory capacity constrains cognitive abilities in a
wide variety of domains (Baddeley, 2000), and individual differ-
ences in this capacity predict differences in fluid intelligence,
reading comprehension, and academic achievement (Alloway &
Alloway, 2010; Daneman & Carpenter, 1980; Fukuda, Vogel,
Mayr, & Awh, 2010). The architecture and limits of the working
memory system have therefore been extensively studied, and many
models have been developed to help explain the limits on our
capacity to hold information actively in mind (e.g., Cowan, 2001;
Miyake & Shah, 1999). In the domain of visual working memory,
these models have grown particularly sophisticated and have been
formalized in an attempt to derive measures of the capacity of the
working memory system (Alvarez & Cavanagh, 2004; Bays, Cata-
lao, & Husain, 2009; Cowan, 2001; Luck & Vogel, 1997; Wilken
& Ma, 2004; Zhang & Luck, 2008). However, these models tend
to focus on how observers encode independent objects from ex-
tremely simple displays of segmented geometric shapes.

By contrast to these simple displays, memory for real-world
stimuli depends greatly on the background knowledge and princi-
ples of perceptual organization our visual system brings to bear on
a particular stimulus. For example, when trying to remember

real-world scenes, people encode a visual and semantic gist, plus
detailed information about some specific objects (Hollingworth &
Henderson, 2003; Oliva, 2005). Moreover, they use this gist to
guide their choice of which specific objects to remember (Fried-
man, 1979; Hollingworth & Henderson, 2000), and when later
trying to recall the details of the scene, they are influenced by this
gist, tending to remember objects that are consistent with the scene
but were not in fact present (Brewer & Treyens, 1981; Lampinen,
Copeland, & Neuschatz, 2001; M. B. Miller & Gazzaniga, 1998).

In fact, even in simple displays, perceptual organization and
background knowledge play a significant role in visual working
memory. For example, what counts as a single object may not be
straightforward, since even the segmentation of the display de-
pends on our background knowledge about how often the items
co-occur. For instance, after learning that pairs of colors often
appear together, observers can encode nearly twice as many colors
from the same displays (Brady, Konkle, & Alvarez, 2009). Dis-
plays where objects group together into perceptual units also result
in better visual working memory performance, as though each unit
in the group was encoded more easily (Woodman, Vecera, &
Luck, 2003; Xu, 2006; Xu & Chun, 2007). Furthermore, observers
are better able to recognize changes to displays if those changes
alter some statistical summary of the display; for example, if a
display is changed from mostly black squares to mostly white
squares, observers notice this change more easily than a matched
change that does not alter the global statistics (Victor & Conte,
2004; see also Alvarez & Oliva, 2009).

There is thus significant behavioral evidence that even in simple
visual working memory displays, items are not treated indepen-
dently (for a review, see Brady, Konkle, & Alvarez, 2011). How-
ever, existing formal models of the architecture and capacity of
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visual working memory do not take into account the presence of
such higher order structure and prior knowledge. Instead, they
most often depend on calculating how many individual items
observers remember if the items were treated independently.

Existing Models of Visual Working Memory Capacity

The most common paradigm for examining visual working
memory capacity is a change detection task (e.g., Luck & Vogel,
1997; Pashler, 1988). In a typical change detection task, observers
are presented with a study display consisting of some number N of
colored squares (see Figure 1). The display then disappears, and a
short time later another display reappears either that is identical to
the study display or in which a single square has changed color.
Observers must decide whether this test display is identical to the
study display or whether there has been a change. Observers are
told that at most a single item will change color.

The standard way of reporting performance in such a visual
working memory task is to report the “number of colors remem-
bered,” often marked by the letter K. These values are calculated
with a particular model of change detection (a “slot model”),
which supposes that the decline in observers’ performance when
more squares must be remembered is caused solely by a hard limit
in the number of items that can be remembered (Cowan, 2001;
Pashler, 1988). Such estimates thus assume complete indepen-
dence between the items.

For example, imagine that an observer is shown a display of N
colored squares and afterward shown a single square, and asked
whether it is the same as or different from the item that appeared
at the same spatial location in the original display (Cowan, 2001).
According to the slot model of change detection, if the observer
encoded the item in memory, then the observer will get the
question correct; and this will happen on K/N trials. For example,
if the observer can encode three items and there are six on the
display, on 50% of the trials the observer will have encoded the
item that is tested and will get those 50% of trials correct. Such

models suppose no noise in the memory representation: If the item
is encoded, it is remembered perfectly. On the other hand, if the
observer does not encode the item in memory, then the model
supposes that observers guess randomly (correctly choose same or
different 50% of the time). Thus, the chance of getting a trial
correct is

PC �
K

N
* 100% �

(N � K)

N
* 50%. (1)

By solving for K, we can take the percent correct at change
detection for a given observer and determine how many items the
observer remembered out of the N present on each trial (Cowan,
2001). Such modeling predicts reasonable values for a variety of
simple displays (e.g., Cowan, 2001, 2005; Vogel, Woodman, &
Luck, 2001), suggesting that observers have a roughly fixed ca-
pacity of three to four items, independent of a number of factors
that affect percent correct (like set size, N).

However, nearly all visual working memory articles report
such values, often without considering whether the model that
underlies them is an accurate description of observers’ working
memory representation for their particular experimental stimuli.
Thus, even in displays where observers perform grouping or
encode summary statistics in addition to specific items, many
researchers continue to report how many items observers can
remember (K values) using the standard formula in which each
item is treated as an independent unit (e.g., Brady, Konkle, &
Alvarez, 2009; Xu & Chun, 2007). This results in K values that
vary by condition, which would indicate a working memory
capacity that is not fixed. In these cases, the model being used
to compute capacity is almost certainly incorrect— observers
are not encoding items independently.

In addition to the model underlying K values, other models have
been used to quantify working memory capacity (e.g., Bays et al.,
2009; Wilken & Ma, 2004; Zhang & Luck, 2008). However, these
models also operate without taking into account the presence of
higher order structure and prior knowledge, as they model displays
that are sampled uniformly, limiting any overarching structure or
gist. It is thus difficult to make claims about observers’ capacities
with such models. Due to the nature of the models, it is also
difficult to expand existing models to account for summary rep-
resentations, or representations of items that are not independent of
one another.

Change Detection as Bayesian Inference

In this article we reformulate change detection as probabilistic
inference in a generative model. We first formalize how observers
encode an initial study display, and then we model the change
detection task as an inference from the information about the test
display and the information in memory to a decision about whether
a change occurred. Modeling change detection in this Bayesian
framework allows us to use more complex and structured knowl-
edge in our memory encoding model (e.g., Hemmer & Steyvers,
2009; Tenenbaum, Griffiths, & Kemp, 2006), allowing us to make
predictions about memory capacity under circumstances where
items are nonindependent or where summary statistics are encoded
in addition to specific items.

To understand the Bayesian model of change detection, it is
useful to think of how it might apply to the simplest displays (like

Figure 1. Methods of a change detection task (as used in Experiments
1 and 2). Observers are first briefly presented with a display (the study
display) and then, after a blank, are presented with another display
where either the items are the same or one item has changed color (the
test display). They must say whether the two displays were the same or
different.
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those in Figure 1) with a standard, slot model representation (as in
Cowan, 2001). To model this, we can assume that memory takes
the form of a discrete number of slots, K, each of which stores
which color was present on the display in a particular location.
Also in line with standard slot models, we can initially assume that
observers choose which K of the N items to encode at random. To
model the change detection task in the Bayesian framework, we
then consider how observers make a decision about whether there
was a change when the test display is presented.

When observers must decide if there has been a change, they
have access to all the items in the test display and to the items they
encoded in memory from the study display. Using the information
that at most a single item can change color between the two
displays, the observer can perform an optimal inference to arrive at
a judgment for whether the display has changed. In particular, the
observer can place probabilities on how likely each possible dis-
play is to have been the study display, and then effectively rule out
all possible displays that (a) are inconsistent with the items in
memory or (b) have more than a single change from the test
display. The observer can then arrive at a probability that indicates
how likely it is that the study display was the same as the test
display. Interestingly, this Bayesian model of change detection
reconstructs the standard K slot model (Cowan, 2001; Pashler,
1988).

Importantly, however, by framing the model in terms of prob-
abilistic inference, we make explicit the assumptions about the
architecture of working memory the model entails. First, in such a
model we are assuming that observers remember information
about a specific subset K of the N items. Second, we are assuming
that memory for these items is without noise. Both of these
assumptions are simply properties of the probability distributions
we choose and can be relaxed or generalized without changing the
model architecture. Thus, the Bayesian framework we adapt al-
lows a much greater range of memory architectures to be tested
and made explicit.

The Current Experiments

In the current article we use such a Bayesian model of change
detection to examine the use of higher order information in visual
working memory. Although higher order information can take
many forms, we begin with two possible representations: (a) a
model that encodes both specific items and a summary, texture-
like representation of the display (how likely neighboring items are
to be the same color), and (b) a model in which observers first use
basic principles of perceptual organization to “chunk” the display
into perceptual units before encoding a fixed number of items.
Furthermore, we consider whether observers might be using both
of these representations on different trials or within a single trial.
To examine whether such representations can account for human
memory performance, we not only look at the overall level of
performance achieved by using a particular memory representation
in the model, but also examine how human performance varies
from display to display.

In Experiments 1A and 1B, we test our proposed memory
representations on displays where the items are purposefully ar-
ranged in patterns. In Experiment 2, we generalize these results to
displays of randomly chosen colored squares (as in Luck & Vogel,
1997). We show for the first time that observers are highly con-

sistent in which changes they find easy or difficult to detect, even
in standard colored square displays. In addition, we show that
models that have richer representations than simple slot or re-
source models provide good fits to the difficulty of individual
displays, because these more structured models’ representations
capture which particular changes people are likely to detect. In
fact, a model in which observers sometimes chunk a display using
perceptual grouping and sometimes encode summary statistics
(e.g., the texture of a display) seems to accurately account for a
large part of the variance in observers’ change detection perfor-
mance. By contrast, the simpler models of change detection typi-
cally used in calculations of visual working memory capacity (e.g.,
the model underlying K values) do not predict any reliable differ-
ences in difficulty between displays. We conclude that even in
simple visual working memory displays, items are not represented
independently, and that models of working memory with richer
representations are needed to understand observers’ working mem-
ory capacity.

Experiments 1A and 1B: Patterned Dot Displays

Rather than being forced to treat each item as independent, our
Bayesian model of change detection can be modified to take into
account the influences of perceptual organization, summary statis-
tics, and long-term knowledge. We thus had observers perform a
memory task with displays where the items were arranged in
spatial patterns. Observers are known to perform better on such
displays than on displays without patterns (e.g., Garner, 1974; see
also Hollingworth, Hyun, & Zhang, 2005; Phillips, 1974; Se-
brechts & Garner, 1981). Because observers’ memory representa-
tions in these displays are likely to be more complex than simple
independent representations of items, such displays provide a test
case for modeling higher order structure in visual working mem-
ory. To examine the generality of observers’ memory representa-
tions, we used two similar sets of stimuli (Experiment 1A, red and
blue circles; Experiment 1B, black and white squares), which vary
basic visual properties of the stimuli but keep the same high-level
grouping and object structure.

Method

Observers. One hundred thirty observers were recruited and
run with Amazon Mechanical Turk (see Brady & Alvarez, 2011,
for a validation of using Mechanical Turk for visual working
memory studies). All were from the United States, gave informed
consent, and were paid 30 cents for approximately 4 min of their
time. Of the total observers, 65 participated in Experiment 1A and
65 in Experiment 1B.

Procedure. To examine human memory performance for
patterned displays, we had observers perform a change detec-
tion task. We showed each of our observers the exact same set
of 24 displays. Each display was presented to each observer in
both a “same” and “different” trial, so observers completed 48
trials each. On each trial, the study display was presented for
750 ms, followed by a 1,000-ms blank period; then either an
identical or a changed version of this original display was
presented for 750 ms in a different screen location (the test
display). Timing was controlled by JavaScript. Observers’ task
was simply to indicate, using a set of buttons labeled same and
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different, whether the two displays were identical or whether
there had been a change. The order of the 48 trials was ran-
domly shuffled for each subject. Observers started each trial
manually by clicking on a button labeled Start this trial, after
which the trial began with a 500-ms delay.

Stimuli. Unlike traditional displays used to assess visual
working memory capacity, we used displays where the items to be
remembered were not simply colored squares in random locations
but also exhibited some higher order structure (as in Phillips,
1974). For stimuli we created 24 displays that consisted of 5 � 5
patterns in which each space was filled in by a red or blue circle
(Experiment 1A) or the same patterns were filled with black or
white squares (Experiment 1B). The patterns could be anything
from completely random to vertical or horizontal lines (see Figure
2). Our displays were thus simple relative to real scenes but were
complex enough that we expected existing models, which encode
independent items, would fail to predict what observers remember
about these displays. Eight of the 24 displays were generated by
randomly choosing the color of each dot. The other 16 were
generated to explicitly contain patterns (for details of how we
generated the patterned displays, see Appendix A). The changed
versions of each display were created by taking the initial display
and randomly flipping the color of a single item.

The displays each subtended 150 � 150 pixels inside a 400 �
180-pixel black (Experiment 1A) or gray (Experiment 1B) box.
On each trial, the prechange display appeared on the left of the
box, followed by the (potentially) changed version of the dis-
play on the right side of the box. Observers’ monitor size and
resolution was not controlled. However, all observers attested
to the fact that the entire stimulus presentation box was visible
on their monitor.

Results

For each display we computed a d=, measuring how difficult it
was to detect the change in that particular display (averaged across
observers). We focus on d= because we are concerned in our
modeling effort primarily with what representations might underlie
performance, rather than what decision-making process observers
use. Decision criteria should primarily affect response bias, and
thus not impact the d=.

The stimuli in Experiments 1A were the same as those in
Experiment 1B, except that the patterns were constructed out of
red and blue dots in Experiment 1A and black and white squares
in Experiment 1B. As expected, performance in Experiments 1A
and 1B was highly similar: The correlation in the display-by-
display d= was .91 between the two experiments. This suggests that
observers’ representations of these displays are invariant to the
low-level properties of the stimuli (e.g., color, spatial frequency)
as is typical of visual working memory (Luck, 2008). As a result,
we collapsed performance across both experiments for the remain-
ing analyses of d=, though the results remain qualitatively the same
when considering either experiment alone.

On average, human observers’ d= was 2.18 (SEM �0.06), sug-
gesting that observers were quite good at detecting changes on
these displays. The false-alarm rate (“same” trials to which ob-
servers said “different”) was 10%, and the hit rate (“different”
trials to which observers said “different”) was 74%, suggesting
that observers had a tendency to respond “same” more than “dif-
ferent.” Since the displays each contain 25 dots, this d= corre-
sponds to a K value of 17.8 dots if the items are assumed to be
represented independently and with no summary information en-
coded (Pashler, 1988).

Figure 2. (A) Example study displays from Experiment 1A. (B) Example study displays from Experiment 1B.
In both Experiments 1A and 1B, some displays were generated by randomly choosing each item’s color, and
some were generated to explicitly contain patterns.
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In addition, observers were highly consistent in which displays
they found most difficult to detect changes in (see Figure 3). We
performed split-half analyses, computing the average d= for each
display using the data from a randomly-selected half of our ob-
servers, and then comparing this to data from the other half of the
observers. The same displays were difficult for both groups (r �
.89, averaged over 500 random splits of the observers in both
Experiments 1A and 1B; p � .001). Adjusting for the lower
sample size of a split-half correlation using the Spearman-Brown
formula gives a reliability estimate of the full sample of r � .94
(Kaplan & Saccuzzo, 2008).

Computing d= separately for each display and each observer is
impossible, as each observer saw each display only once. Thus, to
compute standard errors on d= on a display-by-display basis, we
used bootstrapping; by resampling from the observers’ reports on
a particular display, we can get an estimate of the variance in our
estimate of the d= for that display. This provides a visualization of
the display-by-display consistency (see Figure 3). Some displays,
like those on the left of Figure 3, are consistently hard for observ-
ers. Others, like those on the right of Figure 3, are consistently easy
for observers to detect changes in.

Discussion

In Experiments 1A and 1B, we assessed observers’ visual work-
ing memory capacity for structured displays of red and blue dots or
black and white squares. We found multiple aspects of human
performance in this task that conflict with the predictions of
standard formal models of visual working memory.

First, we find that observers perform much better in detecting
changes to these displays than existing working memory models

would predict. Under existing formal models, in which items are
assumed to be represented independently with no texture/summary
information or perceptual grouping, observers’ d= in this task
would correspond to memory for nearly 18 dots (Pashler, 1988).
This is nearly 5 times the number usually found in simpler displays
(Cowan, 2001), and thus presents a direct challenge to existing
methods of formalizing change detection and visual working mem-
ory capacity.

Furthermore, observers are reliable in which changes they find
hard or easy to detect. This consistent difference between displays
cannot be explained under any model in which observers treat the
items independently. Previous formal models of change detection
would treat all our displays as equivalent, since all displays change
only a single item’s color and all contain an equal number of items.
They thus make no predictions regarding differences in difficulty
across displays, or regarding which particular changes will be hard
or easy to detect.

To account for the high level of performance overall and the
consistent differences in performance between displays, it is neces-
sary to posit a more complex memory representation or encoding
strategy. We next consider two models for what information observ-
ers might be encoding in these patterned displays: a model in which
observers encode both an overall summary of the texture of the
display (e.g., “vertical lines”) in addition to information about partic-
ular items, and a model in which observers chunk information by
perceptually grouping dots of the same color into single units in
working memory. In addition, we consider the hypothesis that ob-
servers may use both kinds of representations and combine them,
either across trials or because different observers use different strat-
egies. These models formalize particular hypotheses about what rep-

Figure 3. Consistency in which displays are most difficult in Experiment 1A. The x-axis contains each of the
24 display pairs, rank ordered by difficulty (lowest d= on the left, highest on the right; for visualization purposes,
only a subset of display pairs is shown on the x-axis). The top display in each pair is the study display; the bottom
is the test display with a single item changed. The dashed gray line corresponds to the mean d= across all displays.
The error bars correspond to the standard error of the mean calculated by bootstrapping. The consistent
differences in d= between displays indicate that some displays are more difficult than other displays.
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resentations observers encode from these displays. They thus allow us
to examine whether observers’ performance is compatible with a
fixed working memory capacity in terms of some format of represen-
tation other than a fixed number of independent items.

Summary-Based Encoding Model

In real-world scenes, observers encode not only information
about specific objects but also information about the semantic gist
of the scene (e.g., Lampinen et al., 2001; Oliva, 2005). In addition
to this semantic information, observers encode diffuse visual sum-
mary information in the form of low-level ensemble statistics (or
global texture) that they make use of even in simple displays of
gabors or circles (Alvarez & Oliva, 2009; Brady & Alvarez, 2011).
For example, in a landmark series of studies on summary statistics
of sets, Ariely (2001) demonstrated that observers extract the mean
size of items from a display and store it in memory even when they
have little to no information about the size of the individual items
on the display (Ariely, 2001; for reviews, see Alvarez, 2011;
Haberman & Whitney, 2012). Observers seem to store not only
summary information like mean size but also spatial summary
information, like the amount of horizontal and vertical information
on the top and bottom of the display (Alvarez & Oliva, 2009) and
even high-level summary information like the mean gender and
emotion of faces (Haberman & Whitney, 2007).

In other words, observers seem to store summary information,
giving them a sense of the global texture of the entire display in
addition to specific information about individual items (Haberman
& Whitney, 2012). Furthermore, observers integrate this texture
information with their representation of particular items. For ex-
ample, Brady and Alvarez (2011) have shown that observers use
the distribution of sizes of items on a display to modulate their
representation of particular items from that display (e.g., if all
items were small, they report items as smaller than they were).
There is thus strong evidence that global texture representations
are being stored and used in working memory tasks, even when
observers are told to remember only individual items. This is
contrary to the existing formal models of working memory, which
assume independent representation of items.

To examine whether such summary representations could underlie
the reliable differences in performance on our patterned displays, we
built a model that formalized such a summary-based encoding strat-
egy. We posited that observers might encode both a global summary
of the display and particular “outlier” items that did not match this
summary. Our modeling proceeded in two stages, mirroring the two
stages of the change detection task: a model of how observers encode
the study display and a model of how they decide if a change occurred
once they have access to the test display.

More specifically, in the summary-based encoding model, we
propose that observers use the information in the study display to do
two things: First, they infer what global summary best describes the
texture of the display; then, using this summary, they select the subset
of the items that are the biggest outliers (e.g., least well captured by
the summary) and encode these items specifically into an item-based
memory. For a simplifying assumption, we use a summary represen-
tation based on a global texture representation (Markov random fields
[MRFs]) that consists of just two parameters: one representing how
likely a dot in this display is to be the same as or different from its
horizontal neighbors and one representing how likely a dot is to be the

same as or different from its vertical neighbors. This summary rep-
resentation allows the model to encode how spatially smooth a display
is both horizontally and vertically, thus allowing it to represent sum-
maries or textures that are approximately equivalent to “vertical
lines,” “checkerboard,” “large smooth regions,” etc.

After a short viewing, the study display disappears and the observer
is left with only what he or she encoded about it in memory. Then a
test display appears and the observer must decide, based on what the
observer has encoded in memory, whether this display is the same as
the first display. Thus, at the time of the test display (the change
detection stage), the observer has access to the test display and both
the item-level and summary information from the study display that
the observer encoded in memory. Under the constraint that at most
one item will have changed, it is then possible to use Bayesian
inference to put a probability on how likely it is that a given test
display is the same as the study display and, with these probabilities,
to calculate the likelihood that the display changed.

For example, an observer might encode that a particular display
is relatively smooth (horizontal neighbors are similar to each other,
and vertical neighbors are also similar to each other) but that the
two items in the top right corner violate this assumption, and are
red and blue, respectively. Then, when this observer sees the test
display, the observer might recognize that although both items that
he or she specifically encoded into an item memory are the same
color they used to be, the display does not seem as smooth as it
initially was: There are a number of dots that are not like their
horizontal or vertical neighbors. This would lead the observer to
believe there was a change, despite not having specifically noticed
what items changed.

Importantly, when this model encodes no higher order structure, it
recaptures the standard slot-based model of change detection. How-
ever, when the displays do have higher order regularities that can be
captured by the models’ summary representation, the model can use
this information both to select appropriate individual items to remem-
ber and to infer properties of the display that are not specifically
encoded.

Formal Specification of the Encoding Model

The graphical model representation of the encoding model
(shown in Figure 4) specifies how the stimuli are initially encoded
into memory. We observe the study display (D1), and we use this
both to infer the higher order structure that may have generated
this display (G) and to choose the specific set of K items to
remember from this display (S).

In the model, any given summary representation must specify
which displays are probable and which are improbable under that
summary. Unfortunately, even in simple displays like ours with only
two color choices and 25 dots, there are 225 possible displays. This
makes creating a set of possible summary representations by hand and
specifying the likelihood each summary gives to each of the 225

displays infeasible. Thus, as a simplifying assumption, we chose to
define the summary representation using MRFs, which allow us to
specify a probability distribution over all images by simply defining a
small number of parameters about how items tend to differ from their
immediate neighbors. Such models have been used extensively in
computer vision as models of images and textures (Geman & Geman,
1984; Li, 1995). We use only two summary parameters, which spec-
ify how often items are the same or different color than their hori-
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zontal neighbors (Gh) and how often items are the same or different
color than their vertical neighbors (Gv). Thus, one particular summary
representation (Gh � 1, Gv � �1) might specify that horizontal
neighbors tend to be alike but vertical neighbors tend to differ (e.g.,
the display looks like it has horizontal stripes in it). This summary
representation would give high likelihood to displays that have many
similar horizontal neighbors and few similar vertical neighbors.

We treat each item in these change detection displays as a
random variable Di

1, where the set of possible values of each Di
1

is �1 (Color 1) or 1 (Color 2). To define the distribution over
possible displays given the summary representation, P(D | G),
we assume that the color of each item is independent of the
color of all other items when conditioned on its immediate
horizontal and vertical neighbors.

We thus have two kinds of neighborhood relations (clique
potentials) in our model. Our two parameters (Gh and Gv) apply
only to cliques of horizontal and vertical neighbors in the lattice
(Nh and Nv), respectively. Thus, P(D1|G) is defined as

P�D1�G� �
exp ��En�D1�G��

Z�G�
(2)

En �D1�G� � Gv �
(i,j)�Nv

��Di
1, Dj

1� � Gh �
(i,j)�Nh

��Di
1, Dj

1�,

(3)

where the partition function

Z�G� � �
D1

exp ��En�D1�G�� (4)

normalizes the distribution. ��Di
1, Dj

1� is 1 if Di
1 � Dj

1 and �1
otherwise. If G � 0 the distribution will favor displays where
neighbors tend to be similar colors, and if G � 0 the distribution
will favor displays where neighbors tend to be different colors.

The summary representation of the display is therefore represented
by the parameters G of an MRF defined over the display. Our
definition of p(D1|G) thus defines the probability distribution p(dis-
play | summary). To complete the encoding model, we also need to
define p(items | display, summary), p(S | D1, G). To do so, we define
a probability distribution that preferentially encodes outlier objects
(objects that do not fit well with the summary representation).

We choose whether to remember each object from the display
by looking at the conditional probability of that object under the
summary, assuming all its neighbors are fixed: p�Di

1�G, D~i
1 �,

where ~i means all items except i. S denotes the set of K specific
objects encoded: S � {s1, . . . , sk}. To choose S, we rank the K
most unlikely objects and choose either 0, 1, 2, . . . or K of these
objects based on how unlikely they are under the encoded sum-
mary representation. The probability of encoding a set of objects
(S) from the set of the K most unlikely objects is

P�S�G, D1� � �
j:sj�S

�1 � p�Dj
1�G, D~j

1 �� �
j:sj�S

p�Dj
1�G, D~j

1 �.

(5)

This defines p(S|D1, G), which provides the probability of encod-
ing a particular set of specific items in a given display, p(items |
display, summary), in our model. The model can encode the K
outlier objects or, if there are fewer objects that are outliers (e.g.,
the display is perfectly predicted by a particular gist, as when it is
perfectly smooth), can encode as few as zero specific objects.

To compute the model predictions, we use exact inference.
However, due to the computational difficulty of inferring the
entire posterior distribution on MRF parameters for a given
display (e.g., the difficulty of computing Z(G)), and because we
do not wish to reduce our summary representation to a single
point estimate, we do not compute either the maximum poste-
rior MRF parameters for a given display or the full posterior on
G. Instead, we store the posterior in a grid of values for G in
both horizontal and vertical directions (Gh � �1.5, �1, �0.5,
0, 0.5, 1, 1.5, Gv � �1.5, �1, �0.5, 0, 0.5, 1, 1.5). We compute
the likelihood of the display under each of these combinations
of Gh and Gv and then choose the items to store (S) by
integrating over the different choices of G. We store the full
posterior over S for each value of G. We choose a uniform prior
on the summary representation (e.g., a uniform prior on MRF
parameters G). For computational reasons we consider only the
K objects that are least likely for a given display for inclusion
in S, rather than examine all possible sets of objects.

In summary, to encode a display we first treat the display as an
MRF. We then calculate the posterior on possible summary rep-
resentations by calculating a posterior on G at various (prespeci-
fied) values of G. We then use this G and the study display to
compute a posterior on which set of �K items to encode into item
memory (S). At the completion of encoding we have both a
distribution on summary representations (G) and a distribution on

Figure 4. Graphical model notation for the summary-based encoding model
at encoding (A) and detection (B). Shaded nodes are observed. The red arrows
correspond to observers’ memory encoding strategy; the black arrows corre-
spond to constraints of the task (e.g., at most one dot will change between the
study display (D1) and test display (D2)). The blue arrows correspond to our
model of how a display is generated; in this case, how the summary or gist of
a display relates to the particular items in that display. At encoding, we observe
the study display (D1), and we use this both to infer the higher order structure
that may have generated this display (G) and to choose the specific set of K
items to remember from this display (S). At detection, we have access to the
summary we encoded in memory (G), the specific items we encoded (S), and
the test display (D2), and must infer what the study display looked like and thus
whether the display changed (C) between D1 and D2.
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items to remember (S), and these are the values we maintain in
memory for the detection stage.

Formal Specification of the Detection Stage of the
Model

At the detection stage, we need to infer the probability of a
change to the display. To do so, we attempt to recover the study
display using only the information we have in memory and the
information available in the test display. Thus, using the probabi-
listic model, we work backward through the encoding process, so
that, for example, all the possible study displays that do not match
the specific items we remembered are ruled out because we would
not have encoded a dot as red if it were in fact blue.

More generally, to do this inference we must specify P(D1|S),
P(D1|D2), P(D1|G), P(S|G, D1). Almost all of these probabilities
are calculated by simply inverting the model we use for encoding
the display into memory initially with a uniform prior on possible
study displays. Thus, P(D1|G) and P(S|G, D1) are given by the
same equations described in the Encoding section.

Those probabilities not specified in the forward model represent
aspects of the change detection task. Thus, P(D1|S) is a uniform
distribution over study displays that are consistent with the items
in memory and 0 for displays where one of the items in S differs
from the corresponding item in D1. This represents our simplifying
assumption (common to formal versions of the standard slot model
of visual working memory) that items in memory are stored
without noise and are never forgotten (it is possible to add noise to
these memory representations by making P(D1|S) a multinomial
distribution over possible values of each item, or a normal distri-
bution over some perceptual color space as in Zhang & Luck,
2008, but for simplicity we do not model such noise here).
P(D1|D2) is uniform distribution over all displays D1 such that
either D1 � D2 or at most one dot differs between D1 and D2.
This represents the fact that the task instructions indicate at
most one dot will change color.

Together these distributions specify the probability of a partic-
ular study display given the information we have about the test
display and information we have in memory, P(D1|G, D2, S).
Given the one-to-one correspondence between first displays and
possible changes, we can convert this distribution over first dis-
plays to a distribution over possible changes. Our prior on whether
or not there is a change is 1/2, such that 50% of the mass is
assigned to the “no change” display and the other 50% is split
among all possible single changes. This allows us to calculate the
posterior probability that there was a change in the display, which
is also how often we expect observers to respond “change.”

Modeling Results and Fit to Human Performance

In Experiment 1, we obtained data from a large number of
human observers detecting particular changes in a set of 24 dis-
plays. For each display observers saw, we can use the summary-
based encoding model to estimate how hard or easy it is for the
model to detect the change in that display. The model provides an
estimate, for a given change detection trial, of how likely it is that
there was a change on that particular trial. By computing this
probability for both a same trial and a change trial, we can derive
a d= measure for each display in the model.

The model achieves the same overall performance as observers
with a K value of only 4, thus encoding only four specific dots in
addition to the display’s summary (observers’ d= � 2.18; model’s
d= � 1.2, 1.8, 2.05, 2.25 at K � 1, 2, 3, 4). This is because the
model does not represent each dot independently: Instead, it rep-
resents both texture/summary information and information about
specific dots.

Furthermore, this model correctly predicts which display ob-
servers will find easy and which displays observers will find
difficult. Thus, the correlation between the model’s d= for detect-
ing changes in individual displays and the human performance on
these displays is quite high (r � .72 with K � 4; averaging
observers’ results across Experiment 1A and 1B; see Figure 5).
Importantly, this model has no free parameters other than how
many specific items to remember, K, which we set to K � 4 based
on the model’s overall performance, not its ability to predict
display-by-display difficulty. Thus, the model’s simple summary
representation captures which changes people are likely to detect
and which they are likely to miss without any free parameters set
to maximize this correlation.

Comparing the Model to Hit and False-Alarm Rates

We have focused on the d= values of the observers’ and the
model because we are primarily interested in whether our proposed
representation can support observers’ performance, rather than
being interested in the decision-making process of observers.
However, it is also worthwhile to investigate the decision
process itself and ask whether our model provides a good fit to
the raw hit and false-alarm rates of subjects, in addition to their
sensitivity (d=).

Interestingly, although d= values are highly correlated between
Experiments 1A and 1B (r � .91), the response bias (c) is not as
well correlated (r � .46). In part this reflects the lower reliability

Figure 5. The fit of the summary-based encoding model with K � 4 to
the observers’ data for Experiments 1A (blue Xs) and 1B (red circles). Each
point is the d= for a particular display. All the dots appearing on the
diagonal would be a perfect fit. Example of both a hard and easy pair of
displays is shown.
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of the measure of response bias; it is considerably more variable
across observers how conservative they are in reporting a change
and on which particular displays they are more or less conservative
even within an experiment (e.g., the average of 200 split-half
correlations for Experiment 1A is r � .43, which, adjusted for
having half the sample size, gives a within-experiment reliability
estimate of only r � .60). However, in part this lower correlation
between experiments in response bias is likely caused by the
different propensity for false alarms and hits in the two experi-
ments, both overall and on particular displays. On average, ob-
servers were significantly more likely to report “same” in Exper-
iment 1A than Experiment 1B (c � 0.41 vs. c � 0.15, p � .01).
This may be because the connected squares in Experiment 1B
cause a larger transient with the appearance of the test display, as
more pixels change relative to the background color. As a result of
the different response biases in the two experiments, however, we
report fits to hit and false-alarm rates separately for Experiments
1A and 1B.

In the model we set the prior probability of a change to 1/2,
reflecting the design of the experiment, in which 1/2 of the
displays observers see are changed between study and test. How-
ever, in the model, not only does this prior serve the role of
specifying how likely observers are to believe the display changed
a priori; it also effectively serves as a utility parameter, specifying
how likely observers are to say “same” or “different” in general.
This is because a greater prior on displays being “same” results in
observers saying “same” more often in the posterior as well as the
prior.

In the particular displays we tested, the default prior of 1/2
results in the model saying “change” slightly more than “same,”
with a response bias of c � �0.12 (hit rate: 88%; false-alarm rate:
18%). This is not in line with human performance, since in change
detection tasks in general and our task in particular, observers have
a propensity to say “same” unless they actually notice a change.
Thus, to fit hits and false alarms separately, it is necessary to
modify the prior in the model so that the model says “change” only
when the display has a relatively high likelihood of having
changed. To do so, we varied the prior as a free parameter in the
model and fit this to the data by minimizing the sum of squared
differences between the percent correct of the model and of ob-
servers (simultaneously for both the same and different displays).

In the case of Experiment 1A, the best fit parameter was a prior
of saying “same” 82% of the time. This prior resulted in a hit rate
of 80% and a false-alarm rate of 6%, with a correlation between
the hit rate of the model and the observers of .50 and between
the false alarms of the model and the observers of .59. This model
did not perfec tly capture the data: The model significantly deviated
from the number of correct responses of observers on same and
different displays, �2(47) � 84.5, p � .01. In Experiment 1B, the best
fit parameter was a prior of saying “same” 71% of the time. This prior
resulted in a hit rate of 83% and a false-alarm rate of 10%, with a
correlation between the hit rate of the model and the observers
of .40 and between the false alarms of the model and the observers of
.56. Once again this model did not perfectly capture the data: The
model significantly deviated from observers’ reports, �2(47) � 82.0,
p � .01.

Thus, although this summary-based model captures the data
fairly well, it does not capture the data perfectly; there are signif-
icant deviations between the model and observers’ data. It is

therefore useful to examine the specific successes and failures of
the model. Thus, we plot the displays with the largest discrepan-
cies between the model and the observers in Figure 6. In general,
the summary-based model seems to overestimate how well observ-
ers perform on displays with many alternations between colors
(Figure 6A) and underestimate performance on displays with large
but abnormally shaped blocks of continuous color (Figure 6B).
This suggests that although providing a reasonable model of ob-
servers’ representations, the summary-based model also has sys-
tematic differences with the representations used by observers.

We will next consider what aspects of the summary-based
model account for its successful fit to the data, and then will
propose a different model, based on chunking or perceptual group-
ing, that might account for the failures of the summary-based
model.

Necessity of the Summary Representation

The summary-based encoding model posits that observers en-
code a summary representation of the display and use this sum-
mary to choose outlier items to encode into a specific item mem-
ory. This model provides a surprisingly good fit to observers’ data.
However, it is possible that a single one of the processes used by
the model might account for the fit to the data. For example, it is
possible that simply choosing outlier items with a summary rep-

Figure 6. Largest discrepancies between the summary-based model and
the observers. In general, the summary-based model seems to overestimate
how well observers perform on displays with many alternations between
colors (A) and underestimate performance on displays with large but
abnormally shaped blocks of continuous color (B).
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resentation but not encoding the actual summary representation
into memory is sufficient to capture human performance. Alterna-
tively, it is possible that simply encoding a summary representa-
tion but not using this representation to encode outlier items is
sufficient to explain human performance. To address this and
examine the necessity of each component of the model’s repre-
sentation, we “lesioned” the model by looking at model predictions
without one or the other of these components.

Choosing outlier items but not remembering the summary
representation. Is remembering the summary representation
helping us to accurately model human performance, or can we
predict human performance equally well by using the summary to
choose outliers to encode into memory but then discarding the
summary representation itself? Such a model might be appealing
because it retains all the elements of the standard slot model
(independent representations of K items), while modifying only the
process by which these items are chosen by observers.

To examine whether such a model could fit the data, we looked
at the fit of a summary-based model that did not have access to the
summary representation at the time of change detection, and de-
tected changes solely based on the specific objects encoded. For-
mally, this model was identical to the model described above, but
without conditioning on G when doing change detection. Thus,
detection was based only on the probabilities P(D1|S) and
P(D1|D2), which are again calculated by using the same equations
as used in the encoding model.

We find that such a model does not fit human performance
nearly as well as the full summary-based encoding model (see
Figure 7A). First, to achieve human levels of performance, such a
model must encode as many objects as a model that encodes
objects completely at random (human levels of performance at
K � 18; model d= � 0.47, 0.92, 1.30, 1.69, 2.27 at K � 4, 8, 12,
16, 20). Furthermore, this model does not accurately predict which
specific changes will be noticed, either at K � 4 (correlation with
d=: r � .30) or at K � 18 (r � .39), accounting for at most 28%
of the amount of the variance that is accounted for by the full

model. In fact, directly comparing the correlation at K � 4 in the
original model to K � 4 in this simplified model reveals that this
model fits the data significantly less well than the full model (z �
1.94, p � .05).

One reason this model does not fit human performance as well
as the full model is that it fails to recognize changes that introduce
irregular items. For example, if the initial display is quite smooth
and/or fits another summary representation very well and thus has
no outliers, this model simply encodes items at random. Then, if
the “change” display has an obvious outlier item, the model cannot
detect it. To recognize this kind of change requires knowing what
the summary of the initial display was.

Thus, it is not possible to fit the data with a standard slot-model-
like representation, even allowing for the possibility that items are
chosen based on a summary representation. This is in line with
data that have more directly examined the summary/texture rep-
resentations of observers and found that such representations are
both encoded and used in working memory displays (Ariely, 2001;
Brady & Alvarez, 2011; Haberman & Whitney, 2012).

Remembering a summary representation but choosing items
at random. In addition to examining whether a model that does
not encode a summary representation can fit the data, it is possible
to examine a model that encodes both a summary of the display
and specific items but does not choose which items to specifically
encode by selecting outliers from the summary. Rather than pref-
erentially encoding unlikely items, such a model chooses the items
to encode at random. Examining this model is useful because such
a representation would result if computing a summary/texture
representation is a slow process (e.g., if it was computed by
sampling individual items; Myczek & Simons, 2008). In particular,
if observers did not have time to choose which items to attend to
and selectively encode after computing the summary representa-
tion, they would likely end up encoding items nearly at random.

We use S to denote the set of K specific objects encoded: S �
{s1, . . . , sk}. In the full model, it is calculated by choosing objects
that are outliers with respect to G. To lesion the model and encode

Figure 7. The fit of the model after being “lesioned.” Black dots are the predictions of the complete model;
red dots are the models’ predictions after lesioning. If the red dots move away from the diagonal, this implies
the model fits worse after being lesioned. (A) The fit of a model that did not have access to the summary
representation at the time of change detection, and detected changes solely based on the specific objects encoded
(K � 4). (B) The fit of a model that encodes both a summary of the display and specific items, but does not
choose which items to specifically encode by selecting outliers from the summary, instead choosing specific
items at random (K � 4). Removing either component from the model makes the fit considerably worse,
suggesting that both are needed to fit human data.
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objects at random, we instead choose S by simply sampling K of
the N objects in the display at random.

We find that such a model does not fit human performance as
well as the full summary-based encoding model (see Figure 7B).
To achieve human levels of performance, such a model must
encode as many objects as a model that encodes objects com-
pletely at random (human levels of performance at K � 20; d= �
0.26, 0.54, 0.91, 1.39, 2.06 at K � 4, 8, 12, 16, 20). Furthermore,
it does not do a good job predicting which specific changes will be
noticed, either at K � 4 (correlation with d=: r � .09) or at K � 20
(r � .40), accounting for at most 31% of the variance that is
accounted for by the full model. Furthermore, comparing the
correlation at K � 4 in the original model to K � 4 in this
simplified model reveals that this model fits the data significantly
less well than the full model (z � 2.6, p � .01).

One reason this model fails to fit human performance is that it
fails to recognize changes that remove irregular items. For exam-
ple, if the initial display is quite smooth but has a single outlier, it
will be encoded as a relatively smooth display. Then, if the
“change” display removes the outlier item, the model cannot detect
it. To recognize this kind of change requires maximizing your
information about the first display by encoding specific items that
are not well captured by the summary.

Thus, it is not possible to fit the data with a model that encodes
the global texture of the display but chooses specific items to
encode at random. Instead, a model that uses the summary of the
display to guide which specific items to encode provides a signif-
icantly better fit. This is in line with data suggesting that summary
representations are computed quickly and obligatorily (for re-
views, see Alvarez, 2011; Haberman & Whitney, 2012).

Conclusion

Typically, we are forced to assume that observers are represent-
ing independent objects from a display in order to calculate ob-
servers’ capacity. By using a Bayesian model that allows for more
structured memory representations, we can calculate observers’
memory capacity under the assumption that observers remember
not just independent items but also a summary of the display. This
model provides a reasonable estimate of the number of items
observers are remembering, suggesting that only four specific
items in addition to the summary representation must be main-
tained to match human performance. The model thus aligns with
both previous work from visual working memory suggesting a
capacity of three to four simple items (Cowan, 2001; Luck &
Vogel, 1997) and data from the literature on real-world scenes and
simple dot displays suggesting a hierarchical representation with
both gist/summary information and item information (Brady &
Alvarez, 2011; Lampinen et al., 2001).

Furthermore, because the summary-based model does not treat
each item independently, and chooses which items to encode by
making strategic decisions based on the display’s summary, this
model correctly predicts the difficulty of detecting particular
changes in individual displays. By contrast, a model that assumes
we encode each item in these displays as a separate unit and
choose which to encode at random can predict none of the display-
by-display variance. This model thus represents a significant step
forward for formal models of change detection and visual working
memory capacity.

Chunk-Based Encoding Model

Rather than encode both a summary of the display and specific
items, it is possible that observers might use a chunk-based rep-
resentation. For example, a large number of working memory
models assume a fixed number of items can be encoded into
working memory (Cowan, 2001; Luck & Vogel, 1997). To account
for apparently disparate capacities for different kinds of informa-
tion, such models generally appeal to the idea of chunking, first
explicated by George Miller (1956). For example, Miller reported
on work that found that observers could remember right decimal
digits and approximately nine binary digits. By teaching observers
to recode the binary digits into decimal (e.g., taking subsequent
binary digits like 0011 and recoding them as 3), he was able to
increase capacities up to nearly 40 binary digits. However, observ-
ers remembered these 40 digits using a strategy that required them
to remember only seven to eight items (recoded decimal digits).
Ericsson, Chase, and Faloon (1980) famously reported a similar
case where a particular observer was able to increase his digit span
from seven to 79 digits by recoding information about the digits
into running times from various races he was familiar with, effec-
tively converting the 79 digits into a small number of already
existing codes in long-term memory. More recently, Cowan, Chen,
and Rouder (2004) have found that by teaching observers associ-
ations between randomly chosen words in a cued-recall task,
observers can be made to effectively treat a group of two formerly
unrelated words as a single chunk in working memory, and that
such chunking seems to maintain a fixed capacity in number of
chunks even after learning.

In the domain of visual working memory, little work has ex-
plicitly examined chunking or what rules apply to grouping of
items in visual working memory. In part, this is because visual
working memory representations seem to be based particularly on
objects and features, and so it may not be possible to recode them
into alternative formats to increase capacity without using verbal
working memory. However, some work has focused on how
learning associations impacts which items are encoded into mem-
ory (Olson & Jiang, 2004; Olson, Jiang, & Moore, 2005) and
which items are represented as a single chunk (Orbán, Fiser, Aslin,
& Lengyel, 2008). Furthermore, it has been shown that learned
associations can even result in greater numbers of individual items
being encoded into memory (Brady, Konkle, & Alvarez, 2009).
However, almost no work has formalized the rules behind which
items are perceptually grouped and count as a single unit in a
slot model of visual working memory (but see Woodman et al.,
2003; Xu, 2006; and Xu & Chun, 2007, for examples of
perceptual grouping influencing capacity estimates in visual
working memory).

A simple hypothesis is that the basic Gestalt rules of perceptual
grouping, in this case grouping by similarity (Koffka, 1935;
Wertheimer, 1938), will determine the perceptual units that are
treated as single units in visual working memory. Indeed, some
work has attempted to examine how observers might group adja-
cent items of similar luminance together in order to remember
more dots in displays much like the displays we use in the current
task (Halberda, Simons, & Whetherhold, 2012; see also Holling-
worth et al., 2005). However, little formal work has been done
examining how well such a model accounts for human change
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detection, or whether such a model predicts which displays will be
easy or difficult to detect changes in.

To model such a chunking process, we added two components
to our basic change detection model. First, rather than encoding K
single objects, we encode up to K regions of a display. Second, to
select these regions, we use two factors, corresponding to the
Gestalt principles of proximity and similarity: (a) a spatial smooth-
ness term that encourages the model to put only adjacent items into
the same chunk and (b) a likelihood term that forces the model to
put only items of the same color into the same chunk. We thus
probabilistically segment the display into M regions and then
select which K of these M regions to encode by preferentially
encoding larger regions (where chance of encoding is proportional
to region size; e.g., we are twice as likely to encode a region of
four dots as a region of two dots). This allows us to examine how
likely an observer who encoded a display in this way would be to
detect particular changes for different values of K (see Figure 8 for
a sample of possible region segmentations for a particular display).

In this model, we examine the possibility that observers use the
information in the first display to form K regions of the display
following the principles of proximity and similarity, and then
encode the shape and color of these K regions into memory. Then
the second display appears and the observer must decide, based on
what he or she has encoded in memory, whether this display is the
same as the first display. The observer does so by independently
judging the likelihood of each dot in the second display, given the
chunks the observer has encoded in memory.

Formal Model Specification

Our formalization of the chunk-based model has three stages. First,
we compute a distribution over all possible ways of segmenting the
study display into chunks, R. Then, for each value of R, we compute
a distribution over all possible ways of choosing K chunks from R to
encode into our chunk memory, S. Finally, we calculate how likely
the display is to be the same for each possible value of R and each
possible value of S given this R. Due to the huge number of possible
values of R, we use Gibbs sampling to sample possible segmentations
rather than doing a full enumeration. For any given segmentation R,
however, we do a full enumeration of assignments of S and thus
likelihoods of the display being the same or different.

To compute a distribution over R, we treat the chunk assignment of
each item Di

1 as a random variable Ri. Thus, Ri corresponds to which
region Di

1 is considered a part of, and each Ri can take on any value
from 1 to 25 (the total number of items present in the display, and thus
the maximum number of separate regions).We then compute a dis-
tribution over possible assignments of Ri using a prior that encourages
smoothness (such that items Di

1 that are either horizontal or vertical
neighbors are likely to have the same region assignment), and using a
likelihood function that is all-or-none, simply assigning 0 likelihood
to any value of R where two items assigned the same chunk differ in
color (e.g., likelihood 0 to any R where Ri � Rj, Di

1 � Dj
1) and

uniform likelihood to all other assignments of R.
We sample from R using Gibbs sampling. We thus start with a

random assignment of values for each Ri, and then sample each Ri

repeatedly from the distribution p(Ri | R�i, D1) to generate samples
from the distribution p(R|D1). P(R) is calculated with a smoothness
prior, where we once again make use of an MRF to prefer assign-
ments of values to R where both horizontal and vertical neighbors
are assigned the same value of R. This MRF has a single free
parameter, Sm, corresponding to how strongly we prefer smooth-
ness in the chunk assignments. Thus

P�Ri�R~i� � exp ��En�Ri�Sm�� (6)

En �Ri�Sm� � Sm �
(i,j)�N

	�Ri, Rj�, (7)

where, again, ��Ri, Rj� � 1 if Ri � Rj and �1 otherwise.
For values of Sm �� 0, we prefer larger chunks to smaller

chunks, since we more strongly prefer neighboring items to have
the same chunk label. The smoothness parameter thus affects how
likely adjacent items of the same color are to end up in the same
chunk. The model is relatively insensitive to the value of this
parameter for values 
1.0. For all simulations, we set this value to
4.0 because this provided a model that created different segmen-
tations of the display fairly often, while still making those seg-
mentations consist of relatively large chunks.

The likelihood function, P(R|D1), is simply defined such that all
chunks or regions must have only a single color within them. Thus,
if for any Ri � Rj, Di

1 � Dj
1, then P�R�D1� � 0, otherwise P

�R�D1� � 1. Taken together, this likelihood and the MRF smooth-
ness prior specify the distribution over R.

Figure 8. (A) An example display. (B) Several possible ways of chunking this display. These are 12
independent samples from our probabilistic chunking model with the smoothness parameter set to 4. Each color
represents a particular chunk.
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To compute a distribution over S for a given value of R, we
enumerate how many unique chunk assignments are present in R
(total number of chunks, M), labeling each of these chunks L � 1,
2, . . . M. We then choose K chunks from this set of M possible
chunks for our chunk memory, S, by choosing without replacement
and giving each chunk label a chance of being chosen equal to the
percentage of the items in the display that belong to that chunk.
Thus

P(S�R, D1) � �
i.si�S

�
j�1...25

(Rj�Li)

25 �
i.si�S

�1 �
�

j�1...25
(Rj�Li)

25
�.

(8)

To calculate the chance of the display being the same given a
value of R and S, we use the following logic (similar to Pashler,
1988). The set of items encoded is all the items assigned to any
chunk that is encoded. Thus, if Di

1 � Di
2, and Di is part of a chunk

encoded in S, we notice the change 100% of the time. If no such
change is detected, we expect the display to be the same in
proportion to how many items we have encoded from the total set
of items. Thus, the final probability of the display being the same
(and thus of observers saying “same”) is

P(C � 0�R, S) �
1

2
�

1

2
*

�
j�1...25

(Rj�S)

25
. (9)

Modeling Results and Fit to Human Performance

The chunk-based model provides an estimate, for a given
change detection trial, of how likely it is that there was a change
on that particular trial. By computing this probability for both the
“same” trial and a “change” trial that observers saw in Experiment
1, we can derive a d= for each display in the model.

The model achieves the same performance as people with a K value
of only 4, thus encoding only four chunks of dots (observers’ d= �
2.18; model d= � 0.44, 0.93, 1.49, 2.08, 2.69 at K � 1, 2, 3, 4, 5). This
is because the model does not represent each dot independently;
instead, it represents grouped sets of dots as single chunks.

Furthermore, because the chunk-based model does not treat each
item independently, the model makes predictions about the difficulty
of detecting particular changes. In fact, the correlation between the
model’s difficulty with individual displays and the human perfor-
mance on these displays was relatively high (r � .58; see Figure 9).

At K � 4, we can examine the effect of different values of the
smoothness parameter on this correlation rather than simply setting
this parameter to 4. We find that this correlation is relatively robust
to the smoothness preference, with correlations with d= of r � .35,
r � .45, r � .45, r � .58, r � .58 for values of 1, 2, 3, 4, and 5
(with smoothness � 5, the model nearly always segments the
display into the largest possible chunks). Thus, the model’s simple
summary representation captures which changes people are likely
to detect and which they are likely to miss independently of the
settings of the chunk-size parameter.

In addition to their sensitivity (d=), it is also useful to investigate the
fit to the hit and false-alarm rates of subjects. As in the summary-
based model, fitting these values requires modifying the prior prob-
ability of a change in the model, such that the model reports a change
only when there is relatively high evidence for a change.

In the case of Experiment 1A, the best fit parameter was a prior
of saying “same” 63% of the time. This prior resulted in a hit rate
of 81% and a false-alarm rate of 9%, with a correlation between
the hit rate of the model and the observers of .51 and between the
false alarms of the model and the observers of .60. As in the case
of d=, this model did not perfectly capture the data: The model
significantly deviated from observers’ percent correct on same and
different displays, �2(47) � 84.0, p � .01. In Experiment 1B, the
best fit parameter was a prior of saying “same” 69% of the time.
This prior resulted in a hit rate of 81% and a false-alarm rate of
7%, with a correlation between the hit rate of the model and the
observers of .51 and between the false alarms of the model and the
observers of �.06.1 Once again this model did not perfectly
capture the data: The model significantly deviated from observers’
reports, �2(47) � 80.1, p � .01.

Thus, although the chunk-based model captures the data fairly
well, it does not capture the data perfectly. It is therefore useful to
examine the specific successes and failures of the model to exam-
ine what it is capturing and failing to capture about the data. The
displays with the largest discrepancies between the model and the
observers are shown in Figure 10. The chunk-based model seems
to overestimate how well observers perform on displays with large
but abnormally shaped blocks of continuous color (see Figure
10A) and underestimate performance on displays with clear struc-
ture but where the display is divided into a significant number of
smaller blocks of color (Figure 10B).

Conclusion

The chunk-based model provides a reasonable estimate of the
number of items observers are remembering, suggesting that only
four chunks need be remembered to match human performance.
The model thus provides evidence that fits with previous work

1 Note that because of the small number of false alarms, fitting the hit rate
is given much more weight by the least squares model fitting procedure.

Figure 9. The fit of the chunk-based encoding model with K � 4 (Sm �
4) to the observers’ data for Experiments 1A (blue Xs) and 1B (red circles).
Each point is the d= for a particular display.
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from visual working memory suggesting a capacity of three to four
simple items (Cowan, 2001; Luck & Vogel, 1997), with the
addition of a basic perceptual organization process that creates
chunks before the items are encoded into memory. Furthermore,
because the chunk-based model does not treat each item indepen-
dently, this model makes predictions about the difficulty of de-
tecting particular changes. These predictions coincide well with
observers’ difficulty in detecting particular changes in particular
displays. Together with the summary-based encoding model, this
chunk-based model thus provides a possible representation that
might underlie human change detection performance in more
structured displays.

Combining the Summary-Based and Chunk-Based
Models

Both the chunking model and summary-based encoding model
capture a significant amount of variance, explaining something
about which displays observers find difficult to detect changes in.
Do these models explain the same variance? Or do both models
provide insight into what kinds of representations observers use to
represent these displays? To assess this question, we examined
whether combining these two models resulted in a better fit to the
data than either model alone.

The summary-based encoding model and chunk-based model’s
display-by-display d= predictions are almost totally uncorrelated
with each other (r � .03), despite both doing a reasonable job
predicting which displays people will find difficult. In addition, the
particular failures of the models are distinct and in some sense
complementary (see Figures 6 and 10). It is thus possible that a
combination of the two models might do much better at explaining
observers’ performance than either model alone. A combined
model could be beneficial either because different observers tend
to use different strategies or because different displays tend to be
encoded according to a more chunk-like representation or a more
summary-based representation.

The simplest way to examine whether the two models contribute
separately to predicting human performance is to use a regression
to test how well the display-by-display d= values predicted by the
two models predict performance when used together. To do so, we
did a linear regression, asking what the best weighting of the two
models’ predictions was to fit the human data. We found a best fit
of r � .92, with weights of 0.67 for the summary-based encoding
model and 0.45 for the chunk-based encoding model (intercept:
�0.13). In fact, even a simple equal-weight averaging of the d=
values of the two models resulted in a strong fit (r � .90),
suggesting that the two models together can account for 81% of the
variance in observers’ d= across displays without any free param-
eters set to maximize this correlation (see Figure 11).

An alternative way to examine the contribution of both models
is to make a probabilistic model of what decision process observ-
ers might undergo in encoding a particular display on a particular
trial. To do so, we took the two existing probabilistic models and
assumed that observers might sometimes choose to encode a
display in a summary-based manner and sometimes choose to
encode it in a chunk-based manner. We then probabilistically
determined which model to use to encode the display on each trial

Figure 10. Largest discrepancies between the chunk-based model and the
observers. In general, the chunk-based model seems to overestimate how
well observers perform on displays with large but abnormally shaped
blocks of continuous color (A) and underestimate performance on displays
with clear structure but where the display is divided into a significant
number of smaller blocks of color (B).

Figure 11. The fit of the combined model (a simple averaging of d=
values of the two models) with K � 4 in both models to the observers’ data
for Experiments 1A (blue Xs) and 1B (red circles). Each point is the d= for
a particular display. Combining the predictions of the summary-based and
chunking models results in a much better fit to the human data than either
model alone.
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for each subject. This combined model consisted of a Bernoulli
random variable M with weight m that determined whether a
particular trial was encoded with the summary-based model (M �
1) or with the chunk-based model (M � 0). The best fit value of
m was 0.66, compatible with the idea that 66% of individual trials
within participants were encoded in a summary-based manner and
the remainder in a chunk-based manner. The predictions of this
combined model, converted to d=, fit the human data well (r �
.87).

Using such a model, we can also examine whether the improve-
ment that results from combining the models is better explained by
different observers being more likely to use one encoding strategy
or another, or whether the benefit of combining the models is more
likely to derive from different displays being encoded with differ-
ent strategies. To do so, we computed a separate value of m, the
preference for one model or the other, for each observer. We found
a mean value of m of 0.51 across observers, with a standard
deviation of 0.15 and a range of 0.33–0.67. Though substantial,
this range suggests that every observer used both a summary-based
and chunk-based strategy at least one third of the time. This
suggests that a large part of the benefit of combining the models
comes from variance in strategy within observers.

In addition to d=, it is also useful to investigate the fit to the hit
and false-alarm rates of subjects. To do so, we combined the
models, as above, but using the versions of the summary-based and
chunk-based models with the prior probabilities of a change as free
parameters. In the case of Experiment 1A, the best fit parameter in
the combined model was a prior of saying “same” 83% of the time.
This prior resulted in a hit rate of 72% and a false-alarm rate of
7%, with a correlation between the hit rate of the model and the
observers of .75 and between the false alarms of the model and
the observers of .79. This model did not significantly differ from
the data, �2(47) � 38.9, p � .79. This suggests that the combined
model provides a sufficient explanation of the data: Even with a
large amount of data (65 observers), we cannot reject the hypoth-
esis that the model represents human performance accurately.

In Experiment 1B, the best fit parameter was a prior of saying
“same” 76% of the time. This prior resulted in a hit rate of 81%
and a false-alarm rate of 7%, with a correlation between the hit rate
of the model and the observers of .68 and between the false alarms
of the model and the observers of .35. Once again this model did
not significantly differ from the data, �2(47) � 46.3, p � .50.
Thus, in both Experiments 1A and 1B, the model provides a
thorough account of human performance.

Conclusion

We examined whether a Bayesian change detection model with
more structured memory representations can provide a window
into observers’ memory capacity. We find that both a summary-
based encoding model that encodes the global texture of the
display plus specific items and a chunking-based model in which
observers first use basic principles of perceptual organization to
chunk the display before encoding a fixed number of items provide
possible accounts for how observers encode patterned displays.
These models can match human levels of accuracy while encoding
only three to four items or chunks, and provide a good fit to
display-by-display difficulty, accurately predicting which changes
observers will find most difficult. Furthermore, the two models

seem to capture independent variance, indicating that observers
use both kinds of representations when detecting changes in pat-
terned displays. Taken together, the two models account for 81%
of the variance in observers’ d= across displays and successfully
explain the hit and false-alarm rate of individual displays. With
both models combined, there is no significant difference between
observers’ data and the predictions of the model.

By contrast, the simpler formal models of change detection
typically used in calculations of visual working memory capacity
do not predict any of the reliable differences in difficulty between
displays because they treat each item independently. The chunk
and summary-based models thus represent a significant step for-
ward for formal models of change detection and visual working
memory capacity.

What is the relationship between the perceptual grouping/
chunking model and the summary model we have described?
Perceptual grouping and chunking are processes by which multiple
elements are combined into a single higher order description. For
example, a series of 10 evenly spaced dots could be grouped into
a single line. In this way, perceptual grouping enables the forma-
tion of a compressed representation or chunk of the display (Brady
et al., 2011). Critically, perceptual grouping and chunking models
like the one we model posit that groups or chunks are the units of
representation: If one part of the group or chunk is remembered, all
components of the group or chunk can be retrieved. You can never
forget the location of the third dot in the grouped line, or the
second letter in the verbal chunk “FBI” (Cowan, 2001; Cowan et
al. 2004).

By contrast, a model of summary representations assumes a
hierarchical view of memory representation. Observers remember
information not only about the set as a whole, but also about the
items as individual units. For example, Brady and Alvarez (2011)
showed that in a working memory task observers remember infor-
mation not only about the summary of the set of items, but also
about individual items, and they combine these two pieces of
information when responding. Thus, unlike perceptual grouping
and chunking models, a summary-based encoding model repre-
sents information at the group level but also maintains separate
information about individual items.

In the present experiment, observers’ representations seem to
reflect in part a chunk-based strategy and in part a summary-based
strategy. How can we make sense of this? Both perceptual group-
ing of items into chunks and the formation of summary represen-
tations seem to depend critically on the focus of attention (Brady
et al., 2011). For example, perceptual grouping may result when
we deploy attention to a single item, and “our attention tends to
spread instead across the entire group in which it falls” (Driver &
Baylis, 1998, pp. 301–302; see also Driver, Davis, Russell, Tu-
ratto, & Freeman, 2001; Scholl, 2001). Thus, perceptual grouping
may result from focused attention to an individual item or group
(Scholl, 2001).

By contrast, summary representations like the global texture of
a display result from diffuse attention (Alvarez, 2011; Alvarez &
Oliva, 2008, 2009). When spreading our attentional focus across
an entire display, we treat the individual units of the display as a
texture and extract a summary representation (Alvarez, 2011;
Haberman & Whitney, 2012).

Thus, one possible way of understanding the interaction of
these models is that they may represent different focuses of
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attention. In other words, the extent to which observers’ per-
formance is supported by perceptual grouping versus the extent
to which such performance is supported by the representation of
summary statistics of the display may depend critically on how
diffuse observers’ attention to the display is on a particular trial.
Focused attention may result in the perception of chunks,
whereas a more diffuse attentional strategy may instead lend
observers to treat the entire display like a texture and thus
encode the overall summary of the display plus the areas of the
display that differ from the general texture (Haberman & Whit-
ney, 2012). However, the exact interaction of the models re-
mains to be explored in future work.

Experiments 2A and 2B: Randomly Colored Displays

Using a Bayesian model of change detection together with more
structured memory representations allows us to examine observ-
ers’ working memory capacity in displays with explicit patterns.
Can these models also predict which displays are hard or easy on
displays without explicit patterns, as in most typical visual work-
ing memory experiments (e.g., Luck & Vogel, 1997)? If so, what
are the implications for standard K values and for simple models of
working memory capacity based on these values?

Although most working memory experiments generate displays
by randomly choosing colors and placing those color at random
spatial locations, this does not mean that there are no regularities
present in any given display. In fact, any particular working
memory display tends to have significant structure and regularities
present even though on average the displays are totally random.
Thus, observers may be more likely to get some randomly gener-
ated displays correct than others, and this information can be used
to examine the representations observers have formed of the dis-
plays. This approach is related to the technique of classification
images (Ahumada, 1996). In classification images, observers are
shown a series of stimuli that differ in the noise that has been
added to them, and by averaging together the stimuli that result in
correct and incorrect responses, it is possible to determine the
representations observers’ use to distinguish the stimuli (Eckstein
& Ahumada, 2002). However, rather than examine image proper-
ties that result in correct or incorrect performance in individual
observers, we can instead use our model to examine the full pattern
of performance across individual working memory displays.

Variance in observers’ encoding or storage in particular displays
can have a significant influence on models of memory capacity.
For example, Zhang and Luck (2008) used a continuous report task
(based on Wilken & Ma, 2004) in which observers are briefly
shown a number of colored dots and then asked to report the color
of one of these dots by indicating what color it had been on a color
wheel. They then modeled observers’ responses to partial out
observers’ errors into two kinds (noisy representations and random
guesses), arriving at an estimate of the number of colors observers
remember, on average, across all the displays. They found evi-
dence that supported the idea that observers either remember the
correct answer or completely forget it, and used this to argue for a
model of working memory in which observers can encode at most
three items at a time.

Importantly, however, by fitting their model only to the results
across all displays rather than taking into account display-by-
display variability, they failed to model factors that influence the

overall capacity estimate, but average out when looking at many
different displays. For example, Bays et al. (2009) showed that
many of observers’ “random guesses” in this paradigm are actually
reports of an incorrect item from the tested display. Reports of the
incorrect item tend to average out when looking at all displays, but
for each display make a large difference in how many items we
should assume observers’ were remembering. They used a model
in which observers’ reports can be not just noisy representations of
the correct item or random guesses, but also noisy representations
of any of the other items from the display, and showed that such
misreports are common. Once these incorrect reports were taken
into account, Bays et al. found that the model of Zhang and Luck
(2008) no longer provides a good fit to the data (see also Brady,
2011). Although the results of Bays et al. are controversial (see
Anderson, Vogel, & Awh, 2011), they nevertheless suggest that
display-by-display factors can sometimes significantly influence
the degree to which a particular model of working memory is
supported, despite a good fit to the average across all displays.

In the current experiment, we sought to examine whether
display-by-display variance in encoding particular working mem-
ory displays could be formalized with our Bayesian model of
observers’ memory representations. We applied the same models
used in the patterned displays in Experiment 1—the summary-
based encoding model and chunk-based model—to displays like
those used in typical visual working memory experiments. In
Experiment 2A, we generated these displays completely at ran-
dom, as is typically done in visual working memory experiments.
In Experiment 2B, we generated the displays to purposefully
contain patterns to provide a better test of the models’ represen-
tations. We find evidence that observers use such structured rep-
resentations when encoding these displays, and are able to predict
which particular displays observers will find easy or difficult to
detect changes in, even in randomly generated displays. This
indicates that simple formal models of working memory that
encode a small number of independent objects at random do not
match the representation observers’ use even in relatively simple
working memory displays.

Method

Observer. Two hundred observers were recruited and run
with Amazon Mechanical Turk. Of the total observers, 100 par-
ticipated in Experiment 2A and 100 in Experiment 2B. All were
from the United States, gave informed consent, and were paid 30
cents for approximately 4 min of their time.

Procedure and stimuli. In Experiment 2A, we randomly gen-
erated 24 pairs of displays by selecting eight colors with replace-
ment from a set of seven possible colors (as in Luck & Vogel,
1997) and placing them randomly on a 5 � 4 invisible grid (see
Figure 12). Although it is standard to jitter the items in such
displays to avoid colinearities, to facilitate modeling and compar-
ison with the previous experiments we allowed the items to be
perfectly aligned. To generate the changed displays, we chose one
item at random from each display and changed its color to one of
the other six possible colors.

In Experiment 2B, we generated 24 displays to purposefully
contain patterns. We generated the displays by creating displays at
random and retaining only displays where either the chunk-based
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model or the summary-based predicted the display would have a d=
greater than 2.

The displays each subtended 320 � 240 pixels, with the indi-
vidual colored squares subtending 30 � 30 pixels. On each trial,
the study display appeared on the left, followed by the test display
on the right. Observers’ monitor size and resolution were not
controlled. However, all observers attested to the fact that the
entire stimulus presentation box was visible on their monitor.

The method was otherwise the same as Experiment 1.

Results

Experiment 2A. For each display we computed a d=, measur-
ing how difficult it was to detect the change in that display
(averaged across observers). The mean d= was 1.5 across the
displays, corresponding to a K value of 4.38 if we assume all the
items are represented independently (Pashler, 1988). The mean hit
rate was 60% and the false-alarm rate 11%, reflecting a response
bias of c � 0.48 (a high likelihood of reporting “same”).

However, as in Experiment 1, observers were consistent in
which displays they found easy or difficult (see Figure 13). For
example, if we compute the average d= for each display using the

data from half of our observers and then do the same for the other
half of the observers, we find that to a large degree the same
displays were difficult for both groups (r � .68, averaged over 500
random splits of the observers; reflecting an entire-sample reliabil-
ity of r � .83). By bootstrapping to estimate standard errors on
observers’ d= for each display, we can visualize this consistency
(Figure 13). Some displays, like those on the left of Figure 13, are
consistently hard for observers. Others, like those on the right of
Figure 13, are consistently easy for observers to detect changes in.
Contrary to the assumption of standard working memory models,
observers do not appear to treat items independently even on
randomly generated displays like those typically used in working
memory experiments.

We next fit the summary-based encoding model and the chunk-
based model to these data to examine whether these models capture
information about observers representations in these displays. To
apply the model to the displays from this experiment, we treat the
items that are adjacent in the grid as neighbors. Blank spots on the
display are ignored, such that the MRF is calculated only over pairs of
items (cliques, Nv and Nh) that do not contain a blank location (for
details of the inference process, see Appendix B).

Figure 12. Example displays from Experiment 2. These displays were generated randomly by sampling with
replacement from a set of seven colors, as in Luck and Vogel (1997).

Figure 13. Consistency in which displays are most difficult in Experiment 2. The x-axis contains each of the
24 display pairs, rank ordered by difficulty (lowest d= on the left, highest on the right; for visualization purposes,
only a subset of display pairs is shown on the x-axis). The dashed gray line corresponds to the mean d= across
all displays. The error bars correspond to across-subject standard error bars. The consistent differences in d=
between displays indicate that some displays are more difficult than other displays.
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We find that the summary-based model provides a good fit to
the data, and in addition correlates with observers’ display-by-
display difficulty (see Figure 14). The summary-based encoding
model equals observers’ d= at K � 4 (d= � 1.47 at K � 4,
compared with observers’ d= of 1.5), and at this K value correlates
with display-by-display difficulty well (r � .63, p � .001). Fur-
thermore, this correlation is not driven by outliers: The Spearman
rank-order correlation is also high (r � .53, p � .009), and if we
exclude displays where the model predicts an excessively high d=,
the correlation remains high despite the decreased range (exclud-
ing displays with model d= � 3, r � .61).

When fitting the hits and false alarms separately (best fit prior:
“same” 79% of the time), the model produced a hit rate of 56% and
a false-alarm rate of 17%, with a correlation between the hit rate
of the model and the observers of .61 and between the false alarms
of the model and the observers of .02. As expected, this model did
not perfectly capture the data: The model significantly deviated
from the number of correct responses of observers on same and
different displays, �2(47) � 144.0, p � .01.

The chunk-based model did not provide as good a fit as the
summary model, equaling human performance at K � 4 (d= � 0.88
at K � 3, d= � 1.32 at K � 4, d= � 1.81 at K � 5) but only
marginally correlating with display-by-display difficulty (r � .33
at K � 3, r � .32 at K � 4, r � .41 at K � 5). When fitting the
hits and false alarms separately (prior: “same” 87% of the time),
the model had a hit rate of 72% and a false-alarm rate of 9%, with
a correlation between the hit rate of the model and the observers of
.30 and between the false alarms of the model and the observers
of .41. The model also significantly deviated from the number of
correct responses of observers, �2(47) � 150.7, p � .01.

Combining the chunking model with the summary-based model
does not significantly improve the fit of the summary-based model
to the d= values, with the average of the two models giving a
slightly worse fit than the summary-based model alone (with K �
4 for both models; correlation with d=: r � .60). There was some
benefit to combining the two models in fitting the full decision
process, as fits to the hits and false-alarm rates separately (prior:
87%) resulted in a reduced chi-squared value, �2(47) � 90.0.

However, this combined model still significantly deviated from
observers’ (p � .01).

Experiment 2B. Generating the displays used in Experiment
2A completely at random means that few displays contained
significant enough pattern information to allow for chunking or
summary information to play a large role. This allowed us to
quantify exactly how well our model representations explained
data from truly random displays, as used in most working memory
studies (e.g., Luck & Vogel, 1997). However, although we find
that even with a sample of just 24 displays some displays are easier
than others and this is well explained by our summary-based
model, the limited range in observers’ d= prevents any strong
conclusions about the particular memory representations observers
make use of in displays of colored squares (e.g., do observers’
representations truly resemble the summary-based model more
than the chunk-based model?).

Thus, in Experiment 2B, we generated displays that contain
patterns, so that, collapsing across Experiments 2A and 2B, we
would have a full range of performances on individual displays. In
Experiment 2B, the mean d= was 2.0 across the displays, and
observers were once again consistent in which displays were
harder and easier (split-half, r � .64, suggesting an overall reli-
ability of r � .76). The mean hit rate was 65% and the false-alarm
rate 6%, reflecting a response bias of c � 0.53 (a high likelihood
of reporting “same”).

Within these new displays, we found that the summary-based
model once again provided a strong fit to the d= data (r � .55),
whereas the chunk-based model provided a considerably worse fit
(d=: r � .27). In addition, when combining the displays from
Experiment 2B with the displays from Experiment 2A (see Figure
14), we find that the summary-based model provides a better fit
(r � .64) than the chunk-based model (r � .50).

Experiments 2A and 2B together had a hit rate of 62% and a
false-alarm rate of only 8%. The best fit summary-based model to
the hit rate and false-alarm rate of the combined experiments
required a prior of 84% “same,” and resulted in a hit rate and
false-alarm rate of 62% and 14%, respectively. This model signif-
icantly deviated from the combined data, �2(95) � 271.7, p � .01.

Figure 14. (A) Fit of the summary-based model with K � 4. The blue Xs represent the data from Experiment
2A, with randomly generated displays as in typical visual working memory experiments (fit: r � .63). The black
circles represent data from Experiment 2B, where displays were generated to purposefully contain patterns (fit:
r � .55). (B) Fit of the chunk-based model with K � 4. The blue Xs represent the data from Experiment 2A (fit:
r � .32). The black circles represent data from Experiment 2B (fit: r � .27).
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However, the chunk model again provided a considerably worse fit
than the summary-based model (prior: 89%; hit rate: 83%; false-
alarm rate: 8%), �2(95) � 412.6, p � .01.

Combining the models resulted in a minor improvement relative
to the summary-based model alone in fitting the hits and false
alarms (prior: 93%; hit rate: 66%; false-alarm rate: 6%), �2(95) �
173.8, but still significantly deviated from observers’ data (p �
.01). In the primary measure of interest, d=, combining the two
models did not improve the fit of the summary-based model
(correlation of d= of combined model: r � .66; summary-model
alone: r � .64).

This suggests that the summary-based model’s representation
provides a better fit to how observers encode these working
memory displays than the chunk-based model does. This could be
because the distance between the items prevents low-level percep-
tual grouping from occurring (Kubovy, Holcombe, & Wagemans,
1998).

Conclusion

Even in standard working memory displays, observers are con-
sistent in which displays they detect changes in and which displays
they do not detect changes in. This suggests that the assumption of
independence between items that is used in most formal models of
working memory does not hold even in these relatively simple
displays of segmented shapes. Thus, we need models that take into
account basic perceptual grouping and higher order summary
representations in order to understand the architecture of visual
working memory even when our displays are impoverished rela-
tive to real scenes.

Interestingly, even in displays of colored squares—displays that
are used in visual working memory in order to minimize the
presence of patterns (e.g., Luck & Vogel, 1997)—our summary-
based model’s representation captures which changes people are
likely to detect and which they are likely to miss. By contrast, a
model that assumes we encode each item in these displays as a
separate unit and choose which to encode at random can predict
none of the display-by-display variance. This suggests that observ-
ers’ representations are more structured than standard models
based on independent items would suggest, even in simple work-
ing memory displays.

General Discussion

We presented a formal model of change detection that relies
upon Bayesian inference to make predictions about visual working
memory architecture and capacity. This model allows us to take
into account the presence of higher order regularities, while mak-
ing quantitative predictions about the difficulty of particular work-
ing memory displays. In experiments with explicitly patterned
displays, we found that both a summary-based representation and
a chunk-based representation could successfully explain display-
by-display differences in working memory performance. Further-
more, we showed that a model that combines both forms of
representation explains a large part of the variance in change
detection performance in such patterned displays. In addition, we
found that observers were reliable in which displays they found
hard or easy even in standard working memory displays composed
of colored squares with no explicit spatial patterns, and that our

summary-based encoding model could successfully predict this
variance.

We thus show that it is necessary to model both more structured
memory representations and observers’ encoding strategies to suc-
cessfully understand what information observers represent in vi-
sual working memory. We provide a framework for such model-
ing—Bayesian inference in a model of change detection—and
show that it can allow us to understand the format of observers’
memory representations. Interestingly, our models converge with
the standard visual working memory literature on an estimate of
three to four individual objects remembered, even in the patterned
displays where simpler formal models massively underestimate
observers’ performance.

Predicting Display-by-Display Difficulty

Because each item in a typical working memory display is
randomly colored and located at a random spatial position, formal
models of working memory have tended to treat the displays
themselves as interchangeable. Thus, existing models of visual
working memory have focused on average memory performance
across many different displays. For example, the standard slot
model used to calculate K values takes into account only the
number of items present and the number of items that change
between study and test, ignoring any display-by-display variance
in which items are likely to be encoded and how well the items
group or how well they can be summarized in ensemble represen-
tations. Even modeling efforts that do not focus on slots have
tended to examine only performance across all displays (e.g.,
Wilken & Ma’s, 2004, signal detection model where the perfor-
mance decrement with increasing numbers of items encoded re-
sults only from internal noise and noise in the decision process).

However, even when the items themselves are chosen randomly,
each display may not itself be “random”; instead, any given
display may contain significant structure. Furthermore, by focus-
ing on average performance across displays, existing models have
necessarily assumed that each item is treated independently in
visual working memory. In the current work, we find that this
assumption of independence between items may not hold even in
simple displays, but perhaps more importantly, requiring indepen-
dence between items leaves little room to scale up formal models
of working memory to displays where items are clearly not ran-
dom, as in real-world scenes or even the patterned displays in
Experiment 1.

There are two examples of work that fit a formal model that
takes into account information about each display in working
memory, although neither examines model fits for each particular
display as we do in the current work. In the first, Bays et al. (2009)
showed that taking into account information about particular dis-
plays may be critical to distinguishing between slot models and
resource models in continuous report tasks (Bays et al., 2009;
Zhang & Luck, 2008). In particular, Bays et al. argued that once
trial-by-trial variations are taken into account, the data support a
resource model of working memory rather than a slot model of
working memory (but see Anderson et al., 2011).

The second example of fitting a working memory model to each
display is work done by Brady, Konkle, and Alvarez (2009) on
how statistical learning impacts visual working memory. By cre-
ating displays where the items were not randomly chosen (partic-
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ular colors appear in a pair together more often than chance), they
showed that observers can successfully encode more individual
colors as they learn regularities in working memory displays.
Furthermore, using an information-theoretic model to predict how
“compressible” each display was based on how predictable the
pairings of colors are, Brady, Konkle, and Alvarez were able to
explain how well observers would remember particular displays.
For example, displays that have a large number of highly predict-
able color pairs were remembered better than displays with less
predictable pairs.

In the current work, we formalize the encoding of summary
statistics and perceptual grouping as possible factors in observers’
memory representations. Since the influence of these factors dif-
fers on each display, we are able to separately predict the difficulty
of each visual working memory display. We thus collected data
from large numbers of observers performing the same change
detection task on the same displays. This allowed us to examine
how well our model predicted performance for each display for the
first time. This display-by-display approach could potentially open
up a new avenue of research for understanding the representations
used in visual working memory, because it allows clear visualiza-
tions of what factors influence memory within single displays.

The Use of Ensemble Statistics for Summary-Based
Encoding

In our summary-based encoding model, we formalized the idea
that observers might store two distinct kinds of memory represen-
tations: a set of individual objects plus summary statistics that
encode an overall gist of the display. We found evidence that such
summary-based encoding can explain human change detection in
both patterned displays and simple displays. In addition, we found
evidence that a crucial role of summary-based encoding is to guide
attention to outlier items.

Our model of summary-based encoding links to both a rich
literature on how we encode real-world scenes (e.g., encoding both
scene information and specific objects; Hollingworth, 2006; Oliva,
2005) and an emerging literature on the representation of visual
information with ensemble statistics (e.g., encoding mean size of a
set of items or the distribution of orientations on a display; Alva-
rez, 2011; Haberman & Whitney, 2012).

When representing a scene, observers encode not only specific
objects but also semantic information about a scene’s category as
well as its affordances and other global scene properties (e.g.,
Greene & Oliva, 2009a, 2009b, 2010). There is also existing
evidence that the representation of such scene and ensemble in-
formation influences our encoding of specific objects. For exam-
ple, observers are better at remembering the spatial position of an
object when tested in the context of a scene (Hollingworth, 2007;
Mandler & Johnson, 1976), and this effect is stronger when the
scene information is meaningful and coherent (Mandler & John-
son, 1976; Mandler & Parker, 1976). In addition, gist representa-
tions based on semantic information seem to drive the encoding of
outlier objects. Thus, objects are more likely to be both fixated and
encoded into memory if they are semantically inconsistent with the
background scene (e.g., Friedman, 1979; Hollingworth & Hender-
son, 2000, 2003). Visual information from scenes also influences
our encoding of objects. Thus, observers encoding real-world
scenes preferentially encodes not only semantic outliers but also

visual outliers (“salient” objects; Fine & Minnery, 2009; Wright,
2005; but see Stirk & Underwood, 2007). In addition, when
computing ensemble visual representations in simpler displays,
observers discount outlier objects from these representations (Hab-
erman & Whitney, 2010) and combine their representations of the
ensemble statistics with their representation of individual items
(Brady & Alvarez, 2011). However, it remains unclear whether
ensemble statistics and texture representations take up space in
memory that would otherwise be used to represent more informa-
tion about individual items (as argued, for example, by Feigenson,
2008, and Halberda, Sires, & Feigenson, 2006), or whether en-
semble representations are stored entirely independently of repre-
sentations of individual items perhaps analogous to the separable
representations of real-world objects and real-world scenes (e.g.,
Greene & Oliva, 2009b).

Taken together, this suggests that observers’ representations of
both real-world scenes and simpler displays consist of not only
information about particular objects but also scene-based informa-
tion and ensemble visual information. Furthermore, this summary
information is used to influence the choice of particular objects
to encode and ultimately influences the representation of those
objects.

In the current work, we formalized a simplified version of such
a summary-based encoding model. Rather than represent semantic
information, we use displays that lack semantic information and
used a summary representation based on MRFs (Geman & Geman,
1984). This summary representation represents only spatial conti-
nuity properties of the display (e.g., the similarity between items
that are horizontal and vertical neighbors), providing a simple
model of visual texture. Interestingly, however, a very similar
representation seems to capture observers’ impression of the sub-
jective randomness of an image patch (Schreiber & Griffiths,
2007), a concept similar to Garner’s (1974) notion of “pattern
goodness.” Pattern goodness is an idea that has been difficult to
formalize but qualitatively seems to capture which images are hard
and easy to remember (Garner, 1974).

Nevertheless, our summary representation is too impoverished
to be a fully accurate model of the summaries encoded in human
memory, even for such simple displays. For example, if semantic
information like letters or shapes appeared in the dot patterns in
our displays, observers would likely recall those patterns well by
summarizing them with a gist-like representation. Our model can-
not capture such representations. Additional visual summary in-
formation is also likely present but not being modeled. For exam-
ple, if we changed the shape of one of the items in Experiment 1
from a red circle to a red square, observers would almost certainly
notice despite the large number of individual items on the display,
as such information is well captured by typical texture/ensemble
representations (see, e.g., Brady et al., 2011). However, despite the
relative simplicity of the formalized summary representation, our
model seems to capture a large amount of variance in how well
observers remember not only patterned displays but also simple
visual working memory displays.

Ultimately, observers’ entire store of knowledge can be brought
to bear on their memory representations, such that observers in the
United States will easily remember the letter string FBICIAIRS,
but citizens of other countries would not. Thus, our model of the
visual structure that observers encode is necessarily too simplified
to capture real-world memory performance. Nevertheless, it pro-

104 BRADY AND TENENBAUM



vides a first step that allows us to capture significantly more
structural complexity than existing models of visual working
memory that treat objects as entirely independent units (e.g., Bays
& Husain, 2008; Zhang & Luck, 2008). In addition, it provides a
framework for examining the role of structure and summary rep-
resentation in visual working memory that can be expanded upon
in future work.

Chunking

In our chunk-based encoding model, we suggested that observ-
ers might make use of the Gestalt principle of similarity to form
perceptual units out of the individual items in our displays and
encode these units into memory as chunks. We found evidence that
such chunk-based encoding can explain part of human change
detection in patterned displays.

This idea that memory might encode chunks rather than indi-
vidual objects relates to two existing literatures. One is the liter-
ature on semantic, knowledge-based chunk formation. For exam-
ple, a large amount of work has been done to understand how
chunks form based on knowledge, both behaviorally (e.g., Brady,
Konkle, & Alvarez, 2009; Chase & Simon, 1973; Cowan et al.
2004; Gobet et al., 2001) and with computational models of what
it means to form such chunks; how all-or-nothing chunk formation
is; and what learning processes observers undergo (e.g., Brady,
Konkle, & Alvarez, 2009; Gobet et al., 2001). The other literature
on chunk formation is based on more low-level visual properties,
as examined under the headings of perceptual grouping and pattern
goodness (e.g., Garner, 1974; Koffka, 1935; Wertheimer, 1938). In
the current work, we use nonsemantic stimuli and do not repeat
stimuli to allow for learning, and thus it is likely we are tapping a
form of chunk formation that is based on grouping properties of
low-level vision rather than based on high-level knowledge.

Some previous work has focused on how to formalize this kind
of perceptual grouping (Kubovy & van den Berg, 2008; Rosen-
holtz, Twarog, Schinkel-Bielefeld, & Wattenberg, 2009). For ex-
ample, Kubovy and van den Berg (2008) have proposed a proba-
bilistic model of perceptual grouping with additive effects of item
similarity and proximity on the likelihood of two objects being
seen as a group. In the current experiments, our items differ only
in color, and thus we make use of a straightforward model of
grouping items into chunks, where items that are adjacent and
same-colored are likely but not guaranteed to be grouped into a
single unit. This grouping model is similar in spirit to that of
Kubovy and van den Berg, and in our displays seems to explain a
significant portion of the variance in observers’ memory perfor-
mance. This provides some evidence that perceptual grouping may
occur before observers encode items into memory, allowing ob-
servers to encode perceptual chunks rather than individual items
per se.

Similar models of perceptual grouping have been proposed to
explain why observers are better than expected at empty-cell
localization tasks using patterned stimuli much like ours (Holling-
worth et al., 2005) and why some displays are remembered more
easily than others in same and different tasks (Halberda et al.,
2012; Howe & Jung, 1986). However, this previous work did not
attempt to formalize of the model of perceptual grouping. This is
important because in the current experiments we find that
summary-based encoding provides another possible explanation

for the benefits observed in patterned displays, and in fact may
provide a more general solution, since it helps explain performance
in simpler displays better than perceptual grouping. Thus, we
believe it is an important open question the extent to which
summary-based encoding (as in texture representations) rather
than perceptual grouping could explain improved performance for
patterned displays in previous experiments (Halberda et al., 2012;
Hollingworth et al., 2005; Howe & Jung, 1986).

Fidelity in Visual Working Memory

In line with the previous literature on working memory, the
current modeling effort largely treats working memory capacity as
a fixed resource in which up to K items may be encoded with little
noise. Although expanding on what counts as an “item” (in the
chunk-based model) or suggesting a hierarchical encoding strategy
(in the summary-based model), nevertheless we do not investigate
in detail the fidelity stored in the representations or the extent to
which encoding is all-or-none (e.g., slot-like) versus a more con-
tinuous resource.

There are several important caveats to the simplistic idea of
all-or-none slots that we use throughout the current modeling
effort. The first is that for complex objects, observers are able to
represent objects with greater detail when they are encoding only
a single object or only a few objects than when they are encoding
many such objects (Alvarez & Cavanagh, 2004; Awh, Barton, &
Vogel, 2007). In fact, the newest evidence suggests this is true
even of memory for color (Zhang & Luck, 2008). For example,
Zhang and Luck (2008) find that observers have more noise in
their color reports when remembering three colors than when
remembering only a single color. It has been proposed that this is
due to either a continuous resource constraint with an upper bound
on the number of objects it may be split between (Alvarez &
Cavanagh, 2004), a continuous resource with no upper bound
(Bays et al., 2009; Bays & Husain, 2008), a continuous resource
that must be divided up between a fixed number of slots (Awh et
al. 2007), or because observers store multiple copies of an object
in each of their slots when there are fewer than the maximum
number of objects (Zhang & Luck, 2008). In any case, our sim-
plistic model in which several items are perfectly encoded would
need to be relaxed to incorporate these data.

Furthermore, in real-world displays that contain many real ob-
jects in a scene, observers continually encode more objects from
the display the more time they are given (Hollingworth, 2004;
Melcher, 2001, 2006). In fact, even on displays with objects that
are not in a coherent scene, if those objects are semantically rich
real-world objects, observers remember more detailed representa-
tions for a larger number of objects as they are given more time to
encode the objects (Brady, Konkle, Oliva, & Alvarez, 2009;
Melcher, 2001).

Despite these complications, in the current modeling we focus
on expanding a basic all-or-none slot model to the case of dealing
with higher order regularities and perceptual organization. We use
such a model as our basic architecture of working memory because
of its inherent simplicity and because it provides a reasonable fit to
the kind of change detection task where the items to be remem-
bered are simple and the changes made in the change detection
task are large, as in the current studies (e.g., categorical changes in
color; Luck & Vogel, 1997). Future work will be required to
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explore how perceptual grouping and summary-based encoding
interact with memory fidelity.

Conclusion

Memory representations of real-world scenes are complex and
structured: Observers encode both scene-based semantic and vi-
sual information as well as specific objects, and the objects they
encode are chosen based on the scene information. By contrast,
formal models of working memory have typically dealt with only
simple memory representations that assume items are treated in-
dependently and no summary information is encoded.

In the current work, we presented a formal model of change
detection that uses Bayesian inference to make predictions about
visual working memory architecture and capacity. This model
allowed us to take into account the presence of summary informa-
tion and perceptual organization, while making quantitative pre-
dictions about the difficulty of particular working memory dis-
plays. We found evidence that observers make use of more
structured memory representations not only in displays that ex-
plicitly contain patterns, but also in randomly generated displays
typically used in working memory experiments. Furthermore, we
provided a framework to model these structured representations—
Bayesian inference in a model of change detection—and showed
that it can allow us to understand how observers make use of both
summary information and perceptual grouping.

By treating change detection as inference in a generative model,
we make contact with the rich literature on a Bayesian view of
low-level vision (Knill & Richards, 1996; Yuille & Kersten, 2006)
and higher level cognition (e.g., Griffiths & Tenenbaum, 2006;
Tenenbaum et al., 2006). Furthermore, by using probabilistic mod-
els, we obtain the ability to use more complex and structured
knowledge in our memory encoding model, rather than treating
each item as an independent unit (e.g., Kemp & Tenenbaum, 2008;
Tenenbaum et al., 2006). Our model is thus extensible in ways that
show promise for building a more complete model of visual
working memory: Within the same Bayesian framework, it is
possible to integrate existing models of low-level visual factors
with existing models of higher level conceptual information (e.g.,
Kemp & Tenenbaum, 2008), both of which will be necessary to
ultimately predict performance in working memory tasks with
real-world scenes.
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Appendix A

Patterned Display Generation

To generate the patterned displays used in Experiments 1A
and 1B, we sampled a set of 16 displays from a Markov random
field (MRF) smoothness model like those used in our summary-
based encoding model and our chunking model. Using an MRF
with separate parameters for horizontal and vertical smooth-
ness, we used Gibbs sampling to generate a set of four displays
from each of four possible parameter settings. These parameters
encompassed a wide range of possible patterns, with horizontal
and vertical smoothness set to all combinations of �1 [(1, 1),

(�1, �1), (1, �1), (�1, 1)]. This gave us 16 displays with
noticeable spatial patterns. In addition, we generated eight
displays by randomly and independently choosing each dot’s
color (50%/50%). In Experiment 1A, these 24 displays con-
sisted of red and blue dots. In Experiment 1B they were the
same displays, but composed of black and white squares in-
stead. For all of the displays, we chose the change to make in
the display by picking a random item and flipping it to the
opposite color.

Appendix B

Models as Applied to Experiment 2

To apply the models to the displays from Experiment 2, we use
the same model and treat the items that are adjacent in the grid as
neighbors. Blank spots on the display are ignored, such that the
Markov random field (MRF) is calculated only over pairs of items
(cliques, Nv and Nh) that do not contain a blank location. In
addition, we expanded the range of parameter values we consid-
ered for G to be �5 to 5, rather than �1.5 to 1.5, since the smaller
numbers of items in these displays result in more extreme values
for the summary parameters.

To do inference in the summary-based encoding model, we can
no longer use exact inference, since calculating the partition func-
tion Z(G) for these displays is computationally implausible. In-
stead, to calculate the likelihood of a given display under a
particular summary representation, we use the pseudolikelihood,
which is the product, for all the items, of the conditional proba-
bility of that item given its neighbors (Besag, 1975, 1977; Li,
1995). Thus, P(D1|G) is calculated as

P�D1� G� � �
i

exp ��En�Di
1�G��

exp ��Eni�0�G�� � exp ��Eni�1�G��
(B1)

Eni(D
1�G) � Gv �

j�Nv(i)
	(Di

1, Dj
1) � Gh �

j�Nh(i)
	(Di

1, Dj
1). (B2)

Such an estimate of the likelihood is computationally straight-
forward, and in MRFs has been shown to be a reasonable approx-
imation to the true underlying likelihood function (Besag, 1977).
We can calculate how good an approximation it is for our partic-
ular change detection model by examining how closely predictions
using the pseudolikelihood approximate the exact likelihood com-
putations in Experiment 1. In that model (with K � 4), the change
detection estimates (how likely each test display is to be the same
as the study display) correlate .98 between the model that uses
exact inference and the model that relies on the pseudolikelihood
to estimate the likelihood. This suggests that the pseudolikeli-
hood provides a close approximation of the true likelihood in
our displays.

In addition, in Experiment 2 there were only eight items present
on the displays. Thus, it was computationally feasible to consider
all sets of K items for inclusion in S, the set of remembered items,
rather than consider only the K most outlier items, so our model
considered all items.
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