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ABSTRACT—Recent work has shown that observers can

parse streams of syllables, tones, or visual shapes and

learn statistical regularities in them without conscious

intent (e.g., learn that A is always followed by B). Here, we

demonstrate that these statistical-learning mechanisms

can operate at an abstract, conceptual level. In Experi-

ments 1 and 2, observers incidentally learned which se-

mantic categories of natural scenes covaried (e.g., kitchen

scenes were always followed by forest scenes). In Experi-

ments 3 and 4, category learning with images of scenes

transferred to words that represented the categories. In

each experiment, the category of the scenes was irrelevant

to the task. Together, these results suggest that statistical-

learning mechanisms can operate at a categorical level,

enabling generalization of learned regularities using ex-

isting conceptual knowledge. Such mechanisms may guide

learning in domains as disparate as the acquisition of

causal knowledge and the development of cognitive maps

from environmental exploration.

One of the primary tasks of the brain is to extract regularities

from the environment in order to make inferences and guide

behavior in novel situations. Indeed, sensitivity to statistical

regularities plays an important role in various domains of per-

ception and cognition, from preparing motor actions (Nissen &

Bullemer, 1987) to parsing language (Trueswell, 1996) and

making higher cognitive judgments, such as predicting the

amount of money a movie will earn (Griffiths & Tenenbaum,

2006).

Recent work on statistical learning has demonstrated that

observers extract the covariance between syllables, tones, or

shapes that appear in a predictable order or spatial arrangement

(Behrmann, Geng, & Baker, 2005; Chun & Jiang, 1998; Fiser &

Aslin, 2002; Saffran, Aslin, & Newport, 1996; Saffran, Johnson,

Aslin, & Newport, 1999; Turk-Browne, Jungé, & Scholl, 2005).

In a visual variant of such an experiment, observers are pre-

sented with a sequence of shapes and are not told that the se-

quence consists of arrangements of four temporal triplets (i.e.,

groups of three shapes that always appear in the same order, as in

the sequence ABCGHIDEFABCJKLDEF . . . . After a brief ex-

posure to this stream, observers are able to reliably identify the

triplets (e.g., ABC) as more familiar than foil sequences (e.g.,

AEI), despite the fact that they have seen all the individual

shapes an equal number of times. This indicates that they have

learned which shapes appeared together, although their verbal

reports indicate no awareness of the structure in the stream.

To date, these experiments have used simple novel shapes to

investigate visual statistical learning. In the real world, however,

the units over which learning must operate are considerably

more information rich, and people often learn novel statistical

regularities that pertain to objects and environments that have

many prior associations. Furthermore, objects and scenes in the

world have semantic knowledge associated with them, and im-

portant regularities occur at multiple levels of semantic ab-

straction. For instance, the co-occurrence of different places

when you move through your home may allow you to infer that

your kitchen will lead to your living room (i.e., you form a cog-

nitive map; Tolman, 1948), but also allows you to construct a

hierarchy of such associations, moving from specific instances

(‘‘my kitchen and living room appear together’’) to basic-

level categories (‘‘kitchens and living rooms tend to appear

together’’) and more abstract representations (‘‘indoor rooms

appear together’’).
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The purpose of the present study was to examine the extent to

which statistical-learning mechanisms can operate automatically at

an abstract, conceptual level. Specifically, we used a novel modi-

fication of the statistical-learning paradigm to test whether observ-

ers incidentally learn category-level relationships, even when the

task does not require processing information at a categorical level.

We used real-world scenes as a case study for investigating

categorical statistical learning and transfer of learning across

levels of representation. In Experiment 1, we demonstrated sta-

tistical learning with complex real-world scenes. In Experiment 2,

we demonstrated that statistical-learning mechanisms can extract

regularities at a categorical level, by showing transfer of learning

between a particular image and another exemplar of the same

category. Finally, in Experiments 3 and 4, we showed that these

categorical representations can be accessed lexically, which in-

dicates that the regularities are present in an abstract format that

is divorced from the visual details of the images.

EXPERIMENT 1: STATISTICAL LEARNING USING
VISUAL IMAGES

Previous experiments investigating the extraction of statistics

of covariance from the visual world have used simple novel

shapes. In Experiment 1, we verified that the visual statistical-

learning mechanism computes relationships among complex

stimuli with which subjects have prior associations: visual

scenes.

Method

Observers

Ten naive observers were recruited from the MIT participant

pool (age range 5 18–35) and received $5 for their participa-

tion. All gave informed consent.

Apparatus and Stimuli

Stimuli were presented using MATLAB with the Psychophysics

Toolbox extensions (Brainard, 1997; Pelli, 1997). Twelve scene

categories were used (see Fig. 1): bathroom, bedroom, bridge,

building, coast, field, forest, kitchen, living room, mountain,

street, and waterfall. Each category contained 120 different full-

color images. For each observer, 1 picture was drawn from each

of the 12 categories at random, resulting in a set of 12 different

images. The images were centered and subtended 7.51� 7.51 of

visual angle. Observers sat 60 cm from a 21-in. monitor.

Fig. 1. Examples from each of the categories of real-world scenes used in all four experiments. Overall, 120 different images
of each category were selected.
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Each of the 12 selected images was randomly assigned a posi-

tion in one of four triplets (e.g., ABC)—sequences of three

images that always appeared in the same order. Then a sequence

of images was generated by randomly interleaving 75 repetitions

of each triplet, with the constraints that the same triplet could

never appear twice in a row and the same set of two triplets could

never appear twice in a row (e.g., ABCGHIABCGHI was dis-

allowed). In addition, 100 repeat images were inserted into the

stream such that sometimes either the first or third image in a

triplet repeated immediately (e.g., ABCCGHI or ABCGGHI).

Allowing only the first or third image in a triplet to repeat served

to keep the triplet structure intact, yet prevented the repeat

images from being informative for delineating triplets from one

another.

Procedure

Observers watched a 20-min sequence of 1,000 images, pre-

sented one at a time for 300 ms each with a 700-ms interstimulus

interval (ISI). During this sequence, the task was to detect back-

to-back repeats of the same image and to indicate repeats as

quickly as possible by hitting the space bar. This cover task was

intended to help prevent observers from becoming explicitly

aware of the structure in the stream (Turk-Browne et al., 2005),

and also avoided having observers simply view the stream

passively (which would make it unclear what they were pro-

cessing). Note that they were never informed that there was any

structure in the stream of images.

Following this study period, observers were asked if they had

recognized any structure in the stream and then were given

a surprise forced-choice familiarity test. On each test trial,

observers viewed two 3-image test sequences, presented se-

quentially at the center of the screen with the same ISI as during

the study phase and segmented from each other by an additional

1,000-ms pause. One of these test sequences was always a triplet

of images that had been seen in the stream (e.g., ABC), and

another was a foil constructed from images from three different

triplets (e.g., AEI). After the presentation of the two test se-

quences, observers were told to press either the ‘‘1’’ or the ‘‘2’’

key to indicate whether the first or second test sequence seemed

more familiar from the initial study period. Each of the four

triplets was tested eight times, paired twice with each of four

different foil sequences (AEI, DHL, GKC, JBF), for a total of 32

test trials. Observers’ ability to discriminate triplet sequences

from foil sequences was used as a measure of statistical learning.

Results and Discussion

All 10 of the observers completed the repeat-detection task

during the study period with few errors, detecting an average of

91% of the repetitions (SD 5 5%) and committing between one

and five false alarms. These results demonstrate that observers

were attending to the sequence of images. However, when asked,

no observers reported explicitly noticing that the study stream

had any structure.1 Nonetheless, performance on the familiarity

test indicated very robust statistical learning, with triplets being

successfully discriminated from foils (86.6% of the test

sequences chosen were triplets, and 13.4% were foils), t(9) 5

8.72, p 5 .00001 (see Fig. 2).2

These results extend previous demonstrations of visual sta-

tistical learning in two ways. First, they demonstrate visual

statistical learning for scene stimuli, which are more compli-

cated and information rich than the stimuli for which statistical

learning has been demonstrated previously. Second, choosing

the correct triplets at test in this experiment required not just

forming episodic associations between the correct pictures, but

also overcoming prior knowledge about how the scenes repre-

sented are associated in the world (e.g., bridges are rarely as-

sociated with living rooms).

In this experiment, learning likely occurred at the image level,

because identical stimuli were repeated throughout the learning

and test phases (and statistical learning has been previously

demonstrated for shape and color: e.g., Turk-Browne, Isola,

Scholl, & Treat, 2008). Therefore, to examine the role of cate-

gory-level semantics in statistical learning, we performed a

second experiment, in which the same string of images was never

presented twice, but a pattern occurred at the categorical level.

Fig. 2. Percentage of triplets chosen as familiar in each experiment.
Error bars represent standard errors of the means. Chance level, indi-
cated by the dashed line, is 50%. Asterisks indicate percentages sig-
nificantly different from chance, p < .05.

1Observers were asked, ‘‘Did you notice any patterns in the stream of im-
ages?’’ and then ‘‘So, for example, if I asked you what images generally followed
mountains, would you be able to tell me?’’ All observers responded negatively to
both questions.

2For all experiments, a Lilliefors (1967) test failed to reject the null hy-
pothesis that the data were normally distributed, p > .10. In addition, Monte
Carlo methods that take into account the actual distribution of the stimuli (the
average over subjects of a sum of 32 Bernoulli trials) indicated that our data
were unlikely given the null hypothesis (all ps < .01).
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EXPERIMENT 2: STATISTICAL LEARNING OF
CATEGORICAL REGULARITIES

Recent work has suggested that statistical learning abstracts

away at least some of the perceptual information in the input:

Learning can be preserved despite changes in color and even the

order of the stimuli at test (Turk-Browne et al., 2008; Turk-

Browne & Scholl, in press). In the real world, however, it may be

useful to learn at an even more abstract level: the conceptual,

rather than perceptual, level. Categorization allows one to

compress information, because rather than storing the same

information about each possible object or scene, one can store

the information only one time and apply it to many different

stimuli (Mervis & Rosch, 1981). This suggests that for statistical

learning to be most useful (e.g., for statistical learning to max-

imize the number of stimuli to which a given regularity will

apply), observers should learn statistical relationships between

semantic categories, as well as between individual objects.

In order to learn information at the categorical level during

everyday visual experience, people would need to extract the

category of a given stimulus even though such information is

task irrelevant in most everyday interactions. Therefore, in Ex-

periment 2, we sought to determine (a) whether observers auto-

matically extract the basic-level category of real-world scenes

even when doing so is task irrelevant, and (b) whether observers

learn the statistics of covariation at this categorical level. We

used a design much like that of Experiment 1, except that the

same 12 pictures were not repeated throughout the study and

test periods; instead, new pictures from the same categories were

drawn each time a particular triplet was shown (see Fig. 3). Thus,

with the exception of the repeats required for the repeat-de-

tection task, no images were ever repeated, and the statistical

structure of the stream was defined only by the basic-level

categories of the images. Observers still performed an image-

level repeat-detection task during the study period, and were

unaware that the category of the images was relevant or that

there was a statistical structure in the stream of images.

Method

Eleven naive observers participated in this experiment. The

apparatus and stimuli were identical to those in Experiment 1,

with one exception: Every time a triplet appeared in the stream,

new images from the same categories were used. Thus, the triplet

ABC would be a particular mountain image, bathroom image,

and street image the first time it was presented, and a different

mountain image, bathroom image, and street image the next

time (e.g., A1B1C1G1H1H1I1D1E1F1A2B2C2. . .). Repeats (for the

Fig. 3. Samples from a stream in Experiment 2. The order in which images were presented was predictable, but only at the categorical level.
Thus, the first time a triplet was presented, one set of images was used; the next time, another set of images was used; and so forth. The blue
outlines highlight images from the same triplet. Repeated images (e.g., the image outlined in red) were still physically identical.
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repeat-detection task) were still of the exact same image, and

observers were not informed that the images were drawn from a

particular set of categories or that there was a structure in the

stream. The test sequences consisted of entirely new images

drawn from the same categories as the training images.

Results and Discussion

Ten of the observers completed the repeat-detection task with

few errors, detecting an average of 94% of the repetitions (SD 5

3%) and committing between one and eight false alarms. The

remaining observer was excluded from further analysis because

of a high error rate on this task (having missed 22% of the

repetitions). No observers reported noticing that the study

stream had any structure.

Nonetheless, performance on the familiarity test indicated

robust categorical statistical learning, with triplets successfully

discriminated from foils (61.3% of the test sequences chosen

were triplets, and 38.8% were foils), t(9) 5 2.61, p 5 .028 (see

Fig. 2). This indicates that observers were able to learn that

images from particular categories co-occurred with images from

other categories, even when the categorization was entirely

unrelated to the task being performed.

The results also demonstrate that people extract category

information automatically when confronted with real-world

images (e.g., Grill-Spector & Kanwisher, 2005). Although this

corroborates intuition in the literature on scene gist (Oliva,

2005; Potter, 1976) and fits well with the literature on semantic

priming (pictures presented outside of conscious awareness

result in priming that transfers to similar words, e.g., Dell’Acqua

& Grainger, 1999), observers’ ability to incidentally categorize

visual scenes at the basic level while performing an unrelated

task has not been previously reported, to our knowledge.

EXPERIMENT 3: LEXICAL RECALL OF VISUALLY
LEARNED REGULARITIES

Experiment 2 demonstrated that statistical learning operates at

a categorical level, forming associations based on the basic-

level category of scenes. However, because the images used

were real-world scenes, many of the images within the same

category shared low-level properties that they did not share with

images from other categories (e.g., Oliva & Schyns, 2000;

Oliva & Torralba, 2001). Thus, the statistical learning observed

in Experiment 2 could have been operating over low-level

regularities (color, orientation) that happened to covary strongly

with image category, rather than directly over more conceptual

representations. This distinction is tied to debates about

the representation of conceptual knowledge and whether this

representation is modality dependent (Barsalou, 1999) or more

abstract (Pylyshyn, 1984), and furthermore is related to the

degree to which categories are defined by visual similarity in the

first place (Mervis & Rosch, 1981). However, we suggest that if

the representations formed by statistical learning can be ac-

cessed in the absence of the low-level image regularities, they

should be thought of as conceptual rather than simply low level

(although low-level regularities are likely learned as well; this

probably accounts for why learning was significantly stronger in

Experiment 1 than in Experiment 2).

To probe the degree of abstraction present in the represen-

tations learned in our task, we changed the test sequences to

words representing the categories, rather than images from the

categories (e.g., in the triplet ABC, if A represented mountain

images throughout training, A was the word ‘‘mountain’’ at test).

Expression of learning in this context would indicate that the

regularities learned in this task result in the association of more

than just low-level perceptual features of the images.

Method

Ten naive observers participated in this experiment. The ap-

paratus and stimuli were identical to those in Experiment 2, with

one exception: At test, words, rather than images, were pre-

sented. For example, during training, the triplet ABC might be a

particular mountain image, bathroom image, and street image

the first time it was presented, and a different mountain image,

bathroom image, and street image the next time. At test, this

triplet was represented by the words ‘‘mountain,’’ ‘‘bathroom,’’

and ‘‘street.’’

Results and Discussion

All 10 of the observers completed the repeat-detection task with

few errors, detecting an average of 92% of the repetitions (SD 5

4%) and committing between one and four false alarms. No ob-

servers reported noticing that the study stream had any structure.

Nonetheless, performance on the familiarity test indicated

robust statistical learning, with triplets of words being suc-

cessfully discriminated from foils (61.1% of the test sequences

chosen were triplets, and 38.9% were foils), t(9) 5 2.51, p 5

.036 (see Fig. 2). This indicates that observers were able to in-

cidentally learn that images from particular categories co-oc-

curred with images from other categories and, surprisingly, were

able to transfer this knowledge to a lexical task at test.

The results from Experiment 3 suggest that the associations

formed in this task are not solely based on low-level image

regularities, or at least can be expressed in the absence of these

regularities. Thus, the learned information is automatically

abstracted from the perceptual input into a high-level concep-

tual representation.

EXPERIMENT 4: AUTOMATIC ABSTRACTION OF
CATEGORICAL REGULARITIES

Experiments 2 and 3 demonstrated that statistical learning op-

erates at a categorical level, forming associations based on the

basic-level category of scenes. However, in both of these ex-

periments, individual images were never repeated, meaning that
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the only regularity present in the stream was at the categorical

level. Does categorical learning happen even when other regu-

larities are present in the stream? Experiment 4 combined el-

ements of Experiments 1 and 3 as follows: During the study

stream, 12 identical images were repeated over and over again,

but at test, we examined whether observers could transfer their

learning to lexical items. Successful transfer would indicate that

observers extracted the regularities at the categorical level even

when regularities existed at the individual level.

Method

Fifteen naive observers participated in this experiment. The

apparatus and stimuli were identical to those in Experiment 1,

with one exception: During the test trials, we presented words,

rather than images.

Results and Discussion

All 15 of the observers completed the repeat-detection task

during the study period with few errors, detecting an average of

93% of the repetitions (SD 5 5%) and committing between one

and three false alarms. No observers reported noticing that the

study stream had any structure.

Nonetheless, performance on the familiarity test indicated

robust statistical learning, with triplets of words being suc-

cessfully discriminated from foils (61.5% of the test sequences

chosen were triplets, and 38.5% were foils), t(14) 5 2.14, p 5

.050 (see Fig. 2). This indicates that observers were able to in-

cidentally learn at a categorical level.

Our results suggest that categorical information is abstracted

from the perceptual input into a high-level categorical repre-

sentation even when regularities exist at both the perceptual and

the categorical levels. This provides further evidence for the

automaticity of learning at the categorical level. The difference

between the learning in this experiment and in Experiment 1

was significant (86.6% triplets vs. 61.5% triplets), p 5 .003, and

indicates that observers were better able to identify which

triplets they saw when the exact same images were used at test

than when words were used at test. We suggest this is because

observers were simultaneously learning at both the perceptual

and the categorical levels; in Experiment 1, both of those

sources of knowledge helped participants choose the correct

triplet at test, whereas in Experiment 3, only the conceptual

regularities informed observers’ choices at test.

GENERAL DISCUSSION

We examined for the first time whether statistical learning can

operate at an abstract conceptual level, to discover the co-

occurrence of semantic categories. In Experiment 1, we showed

that statistical learning operates over complex real-world scenes,

extending the domain of visual statistical learning to semanti-

cally meaningful stimuli. In Experiment 2, we demonstrated that

statistical learning can successfully extract categorical regu-

larities in a stream of pictures even when the semantic category

of the scenes is task irrelevant. In Experiment 3, we demon-

strated that these learned regularities can be accessed lexically,

which suggests that they are accessible in an abstract format.

Finally, in Experiment 4, we showed that observers learned the

categorical structure of the stream even when they could have

learned regularities at the perceptual level only. In all four ex-

periments, observers were unaware of the presence of a structure

in the stream and were unaware that category was relevant.

The present results extend understanding of statistical-learn-

ing mechanisms, demonstrating that they are powerful mecha-

nisms for organizing the input people receive from the world,

capable of extracting its underlying structure without conscious

intent or awareness. Statistical-learning mechanisms are capa-

ble of extracting many different regularities with only minutes of

exposure (joint probabilities—Fiser & Aslin, 2002; nonadjacent

dependencies—Newport & Aslin, 2004; etc.) and appear to be

relatively ubiquitous, occurring in the auditory, tactile, and vi-

sual domains, and in infants, adults, and monkeys (Conway &

Christiansen, 2005; Hauser, Newport, & Aslin, 2001; Kirkham,

Slemmer, & Johnson, 2002). They have been used to explain

processes as diverse as how listeners segment a speech stream

and how observers create visual objects from low-level per-

ceptual information (Saffran et al., 1996; Turk-Browne et al.,

2008).

The present study demonstrates that statistical-learning mech-

anisms operate at multiple levels of abstraction, including the

level of semantic categories. Making use of categories should

reduce the amount of information that must be extracted and

stored by statistical-learning mechanisms, which face partic-

ularly acute computational limitations because of the large

number of possible statistics and units over which such statistics

could be computed (Brady & Chun, 2007; Turk-Browne et al.,

2005).3 In other words, in the real world, where people need to

track relationships among huge numbers of objects and loca-

tions, it would make sense to learn these statistics at a level

where there is not a huge amount of redundancy; the level of the

semantic category is one such level.

The present results also demonstrate a surprising degree of

abstraction in statistical learning, as regularities learned with

images were transferred to a lexical test. There has been some

debate over how closely statistical-learning mechanisms are

tied to the perceptual characteristics of the input, particularly in

the literature on artificial-grammar learning (e.g., Conway &

Christiansen, 2006; Marcus, Vijayan, Bandi Rao, & Vishton,

3Even the earliest statistical-learning studies used regularities that pre-
sumably operated over categories, although ones with no semantic meaning
associated with them. For example, the results of Saffran et al. (1996) are in-
teresting only if infants can learn not only that particular sound waveforms (e.g.,
the waveform used to represent ‘‘pa’’ and the waveform used for ‘‘bi’’) tend to
occur in sequence, but also that the linguistic units these waveforms belong to
(the syllable ‘‘pa’’ and the syllable ‘‘bi’’) tend to occur in that sequence.
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1999). The transfer observed in the present study was between

highly related stimuli (pictures from a category and the word

representing that category), and therefore does not bear directly

on the question of whether people learn amodal ‘‘algebraic

rules’’ that can be applied to any new stimuli (as has been argued

by Marcus et al., 1999). However, the abstraction we observed

does indicate that statistical learning need not be tied to the

perceptual features of the input, contrary to a previous sugges-

tion (Conway & Christiansen, 2006).

Overall, our results suggest that statistical learning is about

more than just organizing low-level perceptual inputs: It might

be a useful tool for organizing conceptual knowledge as well.

The learning demonstrated here may be a useful mechanism for

encoding new relationships between visual episodes that are

tied together in a particular context. For example, learning new

cognitive maps can be thought of as extracting sequences of

places that often occur together from a continuous stream of

inputs (Tolman, 1948). In general, when observers are con-

fronted with a new environment with a novel distribution of

stimuli, statistical learning may provide them with the ability to

implicitly learn the new distribution of regularities (or lack of

regularities) in a context-dependent fashion, informed by, but

not constrained by, the regularities found in other similar en-

vironments they have encountered.

More broadly, inferences about causality are often based on

the observed covariance of causes (e.g., a block touches an

apparatus) and effects (e.g., a noise is produced), and statistical-

learning mechanisms are often cited as responsible for learning

of such covariance information, particularly in infants (Gopnik

& Schultz, 2004). If infants possess categorical statistical-

learning mechanisms like those revealed by the present study of

adults, they could have available the covariance information

necessary to learn not just that a particular object creates a

particular effect, but also that all objects of a known category

would create the same effect (e.g., intuitive theories: Carey,

1985). At this point, however, the utility of statistical-learning

mechanisms for building such high-level knowledge remains an

open question. Assessing the scope and depth of knowledge that

can be acquired via statistical-learning mechanisms presents a

challenge for future work.
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